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Abstract: The technology of additive manufacturing, especially 3D concrete printing (3DCP), has
been recently adopted in the construction industry as a viable alternative to traditional construction
methods. Although the technology offers a wide variety of structural, economic, and environmental
benefits, it is still restricted in use due to certain limitations that are still under research. This paper
explains the fundamentals of the 3D printing process, its potential, challenges, as well as the different
3D printing systems. The recent literature is explored for recommended materials that possess the
required properties for 3D printing, as well as reinforcement methods and techniques. This paper also
reviews 3D printing extrusion using concrete and foam and explores the effect of both materials and
extruding systems on the final product. The application of different additive construction systems
with Building Information Modeling (BIM)-integrated algorithms are also discussed in this paper. It
is believed that with providing a comprehensive knowledge of 3D printing for concrete construction,
there is a huge potential to change the way cementitious materials are formulated and sustainability
aspects are implemented, especially for complicated designs.

Keywords: 3D printing; additive manufacturing; additive construction; reinforcement; buildability;
printability; green strength; building information modeling

1. Introduction and History

The construction industry plays a significant role in any country’s economy and
is overall responsible for about 6% of the global GDP [1] with an estimation to grow
to 14.7% by 2030 [2]. However, it is still perceived with acerbic criticism for its poor
performance and old-fashioned work processes [3]. Despite the necessity for improvements
in construction, inheriting new methods and techniques has been historically very slow-
paced around the world. The issue with conventional construction methods is that they
have unquestionable negative effects on the planet such as excessive carbon emissions and
raw material consumption that emphasize the need for more sustainable solutions. In 1997,
Joseph Pegna [4,5] first introduced AM-based on an automatic operation of incrementally
building up layers of the structure, while in 2003, Behrokh Khoshnevis [6] developed large-
scale 3D objects by Contour Crafting using cementitious materials. Richard Buswell then
continued the work by enhancing the free-form printing process to build irregular-shaped
panels in 2008 [4]. Recently, there has been a growing interest in Additive Manufacturing
(AM) in construction and 3D printing using concrete as a potentially sustainable solution.
Unlike subtractive manufacturing, in which objects are formed by the removal of material
through cutting or grinding, the process of AM involves the formation of objects by
depositing layers of materials on top of each other in an additive manner [3]. AM is
an optimum solution for the development of the building industry as it is associated with
notable advantages including cost, time, and material savings, as well as flexibility in
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design [4]. The technology also contributes to a reduction in injuries, a more controllable
construction process, and better durability, when compared to traditional techniques.
Although 3DCP is beneficial on many levels, there is a lack of review on the current
situation of 3D printing in the building industry, which limits its implementation. Recent
studies such as the one presented by Zhang et al. [4] predicted an increase in 3D concrete
printing adoption across the globe due to its remarkable advantages and the increasing
demand. The authors of this paper anticipate that the price of 3DCP will be reduced
in the future due to the repeated use of the technology in multiple projects. The paper
reviews several aspects of 3D printing and compares the challenges and opportunities
associated with developing high-performance structures based on 3D printing as compared
to traditional techniques.

Considering the technology’s limitations, one such limitation is reinforcement. Gen-
erally, unreinforced concrete lacks the ductility and strength capacity which limits its
application. Different types of reinforcement usually provide enhancements in ductil-
ity, tensile strength, load-bearing capacity, and cracking resistance of the concrete, hence
making it a crucial element of concrete production.

In the first part of this review article, the process of 3D printing is thoroughly explained
followed by different reliable printing systems. For enhanced structural performance, the
effects of using various cementitious materials are subsequently covered. This also includes
the evaluation of 3D concrete materials’ rheological and buildability performance. Finally,
this paper also aims to assess the realistic aspect of 3DCP applications by reviewing
large-scale 3D printed projects and the potential of Building Information Modelling (BIM)
integration in 3DCP.

1.1. Historical Development of Printing Methods

Since 1997, significant fast-track developments were achieved in digital fabrication
based on the AM technology proposed by Joseph Pegna. Today, different systems are being
employed in the construction field such as the AM by selective aggregates, the relatively
mature printing methods of Contour Crafting [7] and the D-shape technique [8], as well as
concrete printing [8]. All these methods however utilize Computer-Aided Design (CAD) to
define the geometrical parameters and to control the mechanical arms during the printing
process. To elaborate, the printing methods are discussed in the following sections.

1.1.1. Additive Manufacturing by Selective Aggregates

Joseph Pegna investigated the use of selective aggregation in additive manufacturing
for large-scale construction projects in 1997 [9]. He developed two dimensions for catego-
rizing the procedures utilized in additive manufacturing, which entails creating a product
in many layers. The shape of the finished product serves as the first dimension, while the
addition of materials at various stages serves as the second dimension [9,10]. The usage of
selective aggregation in additive manufacturing is illustrated in Figure 1. The process starts
by uniformly placing a layer of sand on the building bed (A) followed by a non-uniform
plotting of cement powder on the specified geometric surface, as shown in (B). These two
steps are performed once the layer geometry is scanned in the CAD file. Then, water, which
is a binding agent, is impregnated by being sprayed on the bed (C) [10].

The method shown in Figure 1 is repeated, according to [10], by elevating the place-
ment of cement and sand in accordance with the height of each layer. Pegna observed that
the sprayed water caused surface tension which then created brittle and cracked fabricated
samples. To avoid this issue, the fabricated sand/cement layers were exposed to steam and
water vapor at the layer’s interface instead of water spray. Multiple fabricated samples were
tested to evaluate the compressive and tensile strength of Pegna’s developed mixture. The
results indicated that the samples are twice as strong in compression as they are in tension,
mainly due to the high cement-to-water ratio. However, when employing the standard
water-to-cement ratio, it was discovered that the difference between the two strengths was
around 8%. Although it was noted that the material’s shape was consistent, the results
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also demonstrated that the concrete specimens are not isotropic [10]. Pegna concluded that
utilizing concrete in automated buildings is feasible and has a lot of potential [9,10].
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1.1.2. Contour Crafting

In the last decade, Professor Behrokh Khoshnevis from the University of Southern
California developed a 3DCP housing structure using “Contour Crafting” [11]. Unlike the
method researched by Pegna in [10], Dr. Khoshnevis viewed the application of additive
manufacturing in large-scale building components from another perspective. He believed
that the fabrication of assemblies by selective deposition of the construction material is
impractical. Thus, he decided to apply the technique by depositing a pre-mixed fluid
material that can harden once it gets laid on the building bed [11]. Contour Crafting
allows for the 3D printing of concrete structures that include the necessary electrical,
drainage, and conditioning channels. The professor argued that the application of rapid
prototyping in construction has highly reasonable advantages. Rapid prototyping relies on
automated operations which do not require continuous monitoring and is more precise
due to minimal human errors. Automation would also minimize the design and execution
time required by conventional methods, which will dramatically benefit the global market.
Khoshnevis emphasizes that the computer-based nature of Contour Crafting will allow
designers to produce geometrically more complex components [11]. The use of automated
building processes is expected to reduce construction waste by up to 100% and thus reduce
environmental pollution [12]. Khoshnevis’s method is considered a possible solution for
lowering the cost of housing in low-income countries [13].

The need for developing the process of additive manufacturing was raised as a result
of the drawbacks of previous processes that utilized photopolymers as primary materials.
Photopolymers are resin materials that solidify when exposed to light at a specific wave-
length [9]. The previous technique was observed to be slow and unsatisfactory especially
considering that speed and the reduction of manducating time are the primary objectives
of automation. Moreover, both the surface of the final product and its shape were not of
the desired quality and thus requiring elaborate finishing work.

A study performed by [14] affirmed that the products manufactured using the selective
laser sintering technique formed small fractures on their surfaces. Furthermore, similar
techniques produced breakable elements that failed in a brittle manner, which is considered
a deficiency in large-scale applications. In addition, the printing materials used in the
previously developed techniques are limited since they are mostly polymers. As a result,
another problem occurs, which is the relatively high cost of such materials especially when
large assemblies are to be produced using extensive quantities. The products manufactured
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using those techniques are relatively small, and only up to 1 m. The cost of the apparatus
used to operate the process is considered to be another drawback as it reaches up to USD
300,000 on average. The cost is also subjected to more increase as per the desired size
and quality of the final product [12]. This leads to a conclusion that due to the discussed
disadvantages, there is a necessity to develop and enhance a technology that is capable
of solving the drawbacks discussed earlier, such as cost and speed, and capable of being
employed in large-scale construction automating applications.

Moreover, contour crafting is a layer-based additive fabrication process where the
final product is built by the extrusion of flowing construction material that must solidify
after being placed into the designated spot. A nozzle, which is fixed on a mechanical
arm, is used to receive the delivered fluid and extrude it in a layer-by-layer fashion [15].
This method also enhances the product’s surface finishing through an attached trowel
that moves simultaneously with the nozzle and in correspondence to its movements. It
is recommended to attach two trowels to the nozzle: one for the side and one for the
top surfaces. A major aspect of contour crafting is the ability to specifically control the
movement of the extruded material through various mechanisms [16]. In brief, the process
is done by pumping material through a barrel and a nozzle. Then, with computer-aided
movement, the flowable material is extruded on the specified path and the surface finishing
is done by the trowels that are placed at the top and the exterior sides of the nozzle. Contour
crafting proved that it can be used in construction-scale applications, yet it is 2.5-dimension
technology. This process extrudes products vertically with a constant section; however,
it is not capable of producing irregular elements or unsupported ones because it prints
one layer upon the other on the same predetermined path. Although this is a drawback of
contour crafting, it has a high potential in the field of construction.

1.1.3. D-Shape Technique

The D-shape technique is another rapid prototyping process developed by Enrico
Dini in 2008 [8]. This method was developed specifically for manufacturing different
construction building components at a construction scale in a fully 3-dimensional procedure.
The method allows the printing of irregular shapes and cross-sections, unlike contour
crafting which is mostly used to extrude shapes with constant cross-sections. The D-shape
technique relies on a frame that outlines the planes at which the horizontal layers of the
final object will be printed. The frame also defines the enclosure of the printing area and
detects the circumference of the walls. The frame is also able to move vertically on the
z-axis in four directions, simultaneously. Besides the frame, there is a crane attached to
the printer, and it moves in both the x- and y-axes in correspondence to the movement
of the frame [17]. Because this is a layer-by-layer fabrication method, a computer-aided
design model is required to define the geometrical aspects of the surface of each layer.
According to Cesaretti et al. [17], the printing process starts once the CAD model is divided
into multiple layers that conform to the thickness of each layer; then, the sliced surfaces
get scanned from the bottom to the top of the CAD model. The technique also involves a
printing head that builds the layers by depositing grainy materials (sand) at the desired
locations that were predetermined by the computer model. The layers are then sprinkled
with liquid polymers that solidify the deposited powders to create a solid object. The
powders act as temporary support to print overhanging elements as well. This process is
repeated for each layer according to the sliced CAD models, and it operates off-site [17].

1.1.4. Concrete Printing

The concrete printing method is very similar in principle and application to contour
crafting although some minor variations are reported. For example, after the material gets
extruded, the surface of the concrete printed material is not finished as smooth as that
printed using contour crafting. This is mainly due to the absence of the trowel attached to
the printing nozzle. In addition, the size of the final element is restricted by the size of the
printing frame as it is contained within the frame [16,17].
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2. Breakdown of the 3D Printing Process

In order to build a structure, a concrete mix with appropriate rheological properties
should be pumped and then extruded layer by layer. The 3DCP process often begins with
a digital model and depends on an automated system for the build. Although many 3D
printing methods have been developed by companies and universities around the world,
currently the most used 3D printing method is Inject-Head Printing [18]. As shown in
Figure 2, this method can be divided into three basic phases, which are mixing, pumping,
and printing. The production starts with mixing materials with water, basically mortar
that may contain some additives or admixtures. The mixture is then pumped through
a hose to the 3D printer where it gets extruded through a nozzle. The 3D printer has a
rotational spindle that controls the flow of the material during extrusion and minimizes air
bubbles. The extruded material is then deposited at a predetermined location to form a
stable object [19]. The material requires special attention since its physical, chemical and
mechanical properties change with time and along each stage of the printing process. The
concrete mix should be designed to meet the following printing requirements: pumpability,
extrudability, buildability, interlayer bonding, open time, and segregation prevention.
Here, extrudability may be defined as the ability of the material to pass through the
nozzle and be deposited in a well-formed and continuous filament [20]. Buildability is
defined as the ability of a printed filament to keep its shape after extrusion and not deform
under the weight of deposited concrete layers. Interlayer bonding is the cohesiveness and
homogeneity achieved by the adjacent layers as they coalesce together. Open time is the
amount of time the fresh properties of the mix are suitable for printing, i.e., the material is
still pumpable and extrudable.
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All the factors mentioned above as well as segregation prevention are dependent
on workability or equated to flowability. High flowability is positive for extrusion and
negative for buildability. High flowability in a concrete mix can result in segregation. On
the other hand, low flowability promotes buildability but negatively affects extrusion and
interlayer bonding. Therefore, in terms of flowability, a balance should be found that allows
printability. To have flowability that includes all printability requirements, the concrete
mix should have thixotropic rheological behavior in which hardening is decoupled and
coupled throughout the printing process. The concrete mix should be designed to be
viscous, however, this viscosity is reduced when shear stress is applied in the pumping and
extrusion processes, only to be regained when the shear stress is removed after extrusion.
Thus, the thixotropy requirements should allow the material to be flowable when it is
being sheared through pumping and delivery and, then buildable when the shear stress
is removed at deposition. In particular, the early-age strength of the material needs to
be such that the bottom layers acquire increasing yield stress as the build progresses [21].
Furthermore, since concrete is strong in compression and weak in tension compared to
other construction materials [22], it is also advised to incorporate fibers such as glass,
basalt, polypropylene, and steel in the mix design to compensate for the absence of steel
reinforcement in 3D printed buildings as they improve the ductility and the tensile load-
bearing capacity of concrete. However, in comparison to fibers, engineered cementitious
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composite materials (ECC) offer more promising results as they exhibit strain-hardening
behavior which enables them to be more damage and flaw tolerant. Finally, the maximum
size of the aggregate in the concrete should not be large enough to disturb the operation of
the pressure system or block the hose pipes.

2.1. 3D Concrete Printing Systems

3D-printed buildings or structural elements are either printed on-site or pre-printed
elsewhere and assembled at the construction site. Regardless of the printing location, the
printing process can be performed using different systems including a gantry-based system,
cable-suspended platform, swarm approach, or mobile robotic arm. The selection of a
suitable 3D printing system is mostly dependent on the size and geometry of the building
or the structural component, and on the construction site.

1. Gantry-based system: It is the most used system for AM in construction. The gantry-
based system, shown in Figure 3a, is based on Contour Crafting and has a printing
head that moves in the X, Y, and Z directions like a CNC machine [23]. The drawbacks
of this system include the printing size of the structure as it is limited by the size of
the gantry itself. Besides, the degree of freedom of the gantry-based printing system
is limited to 3-4 degrees which constrain the printing of complex and curved parts.

2. Cable-suspended platform: This printing system is made of a frame with suspended
cables connected to the concrete extruder, as shown in Figure 3b. The movement of the
concrete extruder is controlled by motors in a fully automated way. The advantages
of this system are that it offers larger workspaces and is relatively inexpensive. The
system can be easily assembled, disassembled, transported, and reconfigured [24].
However, the size of the printed structure is limited by the size of the frame.

3. Swarm approach: It consists of a team of mobile or stationary robots, as shown in
Figure 3c. The usage of this system provides greater scalability as a larger printing
area is covered by the collective reach of the team of robots. Furthermore, it provides
greater flexibility due to having a full 6 or 7 degrees of freedom which allows the
printing of complex curved parts. The employment of multiple robots increases
time efficiency due to the concurrent printing process. However, the motion of
the robots must be carefully planned to avoid collisions. Additionally, to avoid
unalignment of printed parts by different robots, the robots should be localized with
high precision [25].

4. Mobile Robotic Arm: The mobile 3D printer, illustrated in Figure 3d, is made of
a robotic arm on wheels or a continuous track. This system has great flexibility
due to having six or seven degrees of freedom which enables it to print complex
structural shapes. Although it is more useful to use this movable system when
compared to stationary ones; however, at some construction sites, the movement of
the mobile robotic arm and the accuracy of its localization is limited by the terrain
conditions. There are also other types of mobile 3D printers that do not contain wheels
or continuous tracks, and a crane is used to lift them from one printing location to
another at the construction site [23].
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2.2. Recommended Materials for 3D Printing in the Construction Industry

The selection of materials is critical for the successful production of 3D concrete-
printed structures. Similar to conventional concrete production, the use of Supplementary
Cementitious Materials (SCMs) can be beneficial in 3DCP. Pozzolanic or SCMs incorporated
into the concrete mix improves the compressive and tensile strength, reduces the chemicals
and water ingress, homogenizes the microstructure, increases the life span, and reduces the
carbon footprint. Several studies have researched the effects of using different SCMs on
fresh and hardened properties of 3D-printed concrete such as its thixotropic rheological
behavior that allows pumpability, extrudability, buildability, and shape stability, along
with improving the concrete’s chemical and physical properties. Both Panda et al. [26]
and Rahul et al. [27] investigated the use of slag-based cementitious materials in 3DCP.
Panda et al. [26] explored the use of high-volume slag, with small percentages of Portland
Cement (PC) and hydrated lime, in mortar specimens according to the rheological require-
ments of 3DCP. The results confirmed that high-volume slag/cement is applicable for 3D
printing, but with a shear-thinning flow behavior and orthotropic mechanical properties
of the printed layers. Whereas Rahul et al. [27] compared the desorptivity effect of GGBS,
fly ash, and limestone-calcined clay, and found that binders containing limestone-calcined
clay had the highest structural build-up rate. The incorporation of limestone and calcined
clay was also studied by Chen et al. [28] to assess the 3D concrete printed extricability
and early-age strength development. The authors reported that increasing the content of
metakaolin in calcined clay improved both the compressive strength at 7 and 28 days and
the green strength. This was due to the reduced initial setting time resulting from increased
initial hydration of the cement. The extrusion pressure of the calcined clay samples was
reported to be higher than those without calcined clay.

Moreover, a study conducted by Muthukrishnan et al. [29] investigated the influence
of rice husk ash (RHA) on the performance of 3DCP. RHA is a cementitious material
produced from the combustion of rice husks. The experimental results showed that the
incorporation of RHA significantly improved the fresh characteristics of the mortar used in
large-scale 3D printing. To clarify, when compared to the control sample, the fresh RHA
concrete was found to be stronger and met the workability requirements quicker, although
it had higher water and superplasticizer dosage, which allows for a longer duration of
the continuous printing process. nano-clay is another cementitious material that has great
potential in 3DCP enhancement [30,31]. The addition of nano-clay to the mix design
improves the buildability properties, green strength, stiffness, shape stability, cohesiveness,
and thixotropy. Zhang et al. [30] concluded that an adequate substitution of nano-clay and
silica fume enhanced the fluidity of the concrete mix as well as its static state as it allows for
better standing. For enhanced 3DCP properties, fiber or ECC incorporation is recommended
as it increases the ductility and tensile strength which facilitates reducing or eliminating
steel reinforcement in constructing a structure or a structural element. According to
the authors, the incorporation of the Thickening Agent (TA) improves the extrudability
properties due to exhibiting dough-like rheological properties. The authors also concluded
that a High-Range Water Reducer (HWRW) improves concrete’s workability and reduces
the high water demand that takes place because of the incorporation of pozzolanic materials
in the concrete mix design.

2.3. 3D Concrete Laboratory Set-Up

To set up a concrete laboratory to assess the quality of 3D concrete mixtures, certain
fresh and hardened tests should take place. However, the focus of this research is only
directed at the fresh properties because the procedures of assessing the hardened properties
of concrete are widely known and already implemented in almost all construction material
laboratories. The targeted fresh properties are the workability, rheological properties
(yield stress, plastic viscosity, and thixotropy), green (handling) strength, buildability,
penetration resistance, and hydration heat. The laboratory should be equipped with
a mix-pump system, robotic arm, control unit with an interface, material storage, and
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robot base. Furthermore, it should also include other equipment and apparatus to assess
the previously mentioned fresh properties, as illustrated in Table 1. The importance of
the fresh properties comes from the fact that if the 3D concrete mix design is pumpable,
extrudable, and buildable with sufficient shape stability, interlayer bonding, and minimal
or no deformation at all, it is highly likely the hardened properties of the concrete are
going to be in conformance with the quality requirements of the international standards.
Furthermore, since the layers will be deposited above one another in the fresh state, it is
important that the fresh properties, especially the green strength (handling strength), are
sufficient enough to achieve buildability without lateral deformation, layer settlement, or
collapse which reinforces the significance of the fresh properties’ tests. Structural build-up,
which is the development of the strength of the fresh concrete with time, is one of the main
fresh properties that is considered in the tests in Table 2 due to its significance. Structural
build-up is basically the underlying principle for buildability, and it is time-related, such
that a faster rate of structural build-up would enhance buildability [32]. Moreover, the
laboratory should be equipped with a temperature controller to simulate the printing
process in an exposed environment to the weather outside the laboratory. Additionally,
there are some parameters that should be taken into consideration, such as interlayer
bonding. Other testing methods of 3D concrete mixtures lack standardizations as they give
indications of the status of the fresh properties of the 3D concrete mix design.

Table 1. Rheological Parameters of 3DCP [1,8].

Parameter Definition

Extrudability The capability of the material to be homogenously ejected from the
nozzle in a continuous manner with no reports of clogging.

Open Time The period at which the material can be extruded continuously
without separation.

Pumpability The ease of transporting the material from the reservoir to the nozzle.
Extended Workability The ease with which concrete flows after it is pumped.

Table 2. Tests of the fresh properties of 3D concrete mixtures [4,24,32].

Parameter Test Equipment Standard Remarks

Workability/flowability Flow table test

Flow table, concrete
mold, tamping rod,

scoop, sampling
tray, and measuring

tape

ASTM
C230/C230M

Due to the high flowability of the 3D
concrete mixtures, the Flow table test is

used instead of the Slump test [4].

Rheological
properties (yield
strength, plastic

viscosity,
thixotropy)

Concrete rheometer
test Rheometer ASTM C1749

3D-printed concrete is considered as a
Bingham fluid (
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The fresh 3D concrete mixtures are
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of compaction, the molds are removed
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Table 2. Cont.

Parameter Test Equipment Standard Remarks

Penetration
resistance

Penetration
resistance test

Concrete mortar
penetrometer ASTM C403

Strength development at early-age is
evaluated using this test by determining
the initial and final setting time. Growth

of penetration resistance has a linear
relationship with the growth of static

yield stress; thus, penetration resistance
can be used to characterize the structural

build-up [32].

Hydration heat Isothermal
calorimetry test

TAM air isothermal
calorimeter ASTM C1702

The rate of heat of hydration is directly
proportional to the rate of structural

build-up [32].

3. Fundamentals of 3D Printing in the Building Industry

Initially, AM was developed to produce conceptual product models to identify design
flaws during the design process, but nowadays, furniture, medical devices, and aerospace
products are being produced with AM. In the construction industry, AM offers unique
characteristics which increased the demand for this technology. For instance, tooling is
not required, which consequently reduces production time and cost. Design can also be
easily and quickly changed and the potential to produce any design on demand means a
shorter supply chain that produces items quickly when needed and without having to keep
them unnecessarily in stock [3]. Nevertheless, the challenge in utilizing this technology is
associated with ensuring functional extrudability through controlling the fresh properties
of concrete such as pumpability, extrudability, and buildability. To clarify, workability
must be controlled and maintained to avoid premature solidification before and during
extrusion, along with a suitable setting time that enables the printed layer to support
the following printed layers [3]. Other challenges include the precise control of material
delivery such that it is synchronized with the velocity of the nozzle and the material does
not accumulate at sharp corners and bends [3]. It is important to mention that the concrete
mixture can contain sufficient proportions of binder (including fly ash and silica fume),
water, fine aggregates (including recycled glass and cork), and additives (such as retarders,
accelerators, and superplasticizers). However, the size of the aggregate should not be
large enough to block the nozzle. Several types of fibers can also be used, such as copper
fibers, carbon fibers, and steel fibers, and they play a crucial role in the stability of concrete
mixtures. Thus, further research is required to develop new printing materials that can
be used in construction along with their testing and characterization standards. Not only
that, but the production of large non-supported structures, such as roofs, is also one of the
challenges that require more attention and investigation.

3.1. Rheological Parameters of 3DCP

When compared to traditional concrete construction processes, 3DCP technology has
a completely different construction system. On the other hand, all these methods includ-
ing contour crafting and concrete printing are based on one aspect, which is the robotic
extrusion of the material to obtain the final product [16]. According to Wang et al. [33], it is
crucial to obtain adequate rheology parameters not only for the success of the procedure
but also for the safety of the robot and the attached system. This involves the pipes, tubes,
or conduits that are used to extrude the material onto the bed through the end nozzle. In
other words, the 3DCP material used should be capable of being pumped through the
nozzle with no clogging, stoppage, or hardening. Otherwise, the maintenance of the robot
itself or the attached delivery system will be significantly costly, which, in turn, negatively
affects the economic advantages of 3DCP. This has pushed researchers to study the rheology
of 3DCP in both standard methods and newly developed methods. Usually, standard tests
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including slump, flow table, and V-funnel are used to evaluate the rheological parameters
presented in Table 2.

Kolan et al. [14] also investigated the performance of direct shear tests and rotational
rheometry to evaluate the rheological parameters of 3DCP samples using cementitious
materials. The authors reported that there were some limitations in using rheometers due to
the insufficient maximum applicable torque; however, they suggested that a direct shear test
would be amongst the most adequate testing methods for evaluating the fresh properties
of the samples [16,34–36]. In addition, extrudability is another essential parameter in the
evaluation of 3D printing using mortar mixtures. Extrudability refers to the capability of the
material to be ejected from the nozzle in a continuous manner [9]. A material is said to be
extrudable if the printed strings are homogenous and the flow is continuous with no reports
of clogging during the printing process. Li et al. [37] and Le et al. [38] emphasize that the
longer the strips are printed without segregation and without being fractured the better
the extrudability of the material. As illustrated in Figure 4, to evaluate the extrudability
of the material used in 3DCP, it is recommended to extrude a 2000 mm long continuous
strip that returns eight times every 250 mm, creating eight subsegments [37]. The proposed
method is a YES or NO test, as the conclusion is based on observation of continuity and no
separation of the strips during the process.
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Open time is one of the rheological parameters used to evaluate the fresh properties
of 3D concrete printing. Open time is the period at which the material can be extruded
continuously without separation [37]. The open time is related to the setting time of the
material, and it is determined by the Vicat apparatus or slump tests. It is worth noting that
these methods are not useful when considering the printing of the material. This is because
they only target the initial and final setting time, which helps in evaluating the overall
workability but not a specific parameter that varies over time. Specifying the flow of the
material over time is crucial for the extrusion process. Alternatively, Le et al. [38] employed
the vane shear test to evaluate the open time of mixes used in 3DCP. The shear stress
indicates the workability and pumpability of the material and represents their variations
with time [39]. Hence, the open time can be defined as the time required to reach certain
shear stress that corresponds to a workability level that exceeds the limit of acceptable
printability. Another simplified method to measure the open time was proposed by Lim
et al [37], and it is done by extruding mortar strips with equal dimensions at equal time
intervals. The open time will then be the period until the first separation or blockage
happens during the printing process.

3.2. Reinforcement in 3D-Printed Concrete

In the last century, structures were designed based on the congenial relationship
between concrete and steel to form reinforced concrete, which was mainly used in con-
structing ingenious shell structures, bold roof structures, and bridge constructures [40].



Buildings 2023, 13, 827 11 of 27

Nowadays, reinforced concrete is used in masses and is associated with various environ-
mental concerns and geometric restrictions, leading to increasing demand for technological
developments in 3D concrete printing [40,41]. To elaborate, the greatest obstacle to uti-
lizing 3DCP is an effective reinforcement method that would ensure structural integrity
and optimize the load-bearing capacity of 3D concrete-printed structures [40–43]. Thus,
researchers have been studying and exploring the feasibility of constructing reinforced 3D
concrete-printed buildings using different materials and methods. Reinforcing 3D concrete-
printed structures using continuous cable or fibers within the printed layers was explored
by [44–47] and showed promising results. In a study performed by Wang et al. [45], a
micro-cable-reinforced geopolymer composite that was based on fly ash was used to assess
the strength of a 3DCP structure, especially its toughness and post-crack moment capacity.
To verify the applicability of utilizing the micro-cable-reinforced geopolymer composite,
three printing path scenarios were designed and evaluated using four point bending tests.
The results showed that the flexural strength and deflection resistance of the reinforced
printed layers were, respectively, eight and seventy times higher than that of non-reinforced
printed filaments. This result was only obtained when the reinforced layers were printed in
an inclined-crossed configuration [45]. The in-process steel-cable reinforcement method
studied by Pham et al. [46] also demonstrated that the flexural strength of concrete can be
increased up to 290% when it is reinforced using steel cables. Similar results were obtained
when Mineral-impregnated Carbon-Fiber (MCF) was implemented in reinforcing layers
printed by layered extrusion [47]. The addition of chopped fibers to the print mixture was
also investigated by [24,48,49] and led to an enhancement in the structural characteristics
of the printed layers. It was noticed that the rate of enhancement, especially in flexural
strength, depends on the type of fiber [48,49].

According to Marchment et al. [42], the previous reinforcing methods only consider
the direction that is parallel to the printed layers, while the interlayer reinforcement coming
from the perpendicular direction is excluded. However, few experimental studies have
explored interlayer reinforcement methods using small vertical meshes rolled off a spool
and robotic wielding [46,50,51]. The recently investigated interlayer reinforcement methods
have not yet been applied to large-scale applications as it requires more complex printing
processes [42]. Currently, manual processes such as post-tensioning, printing over pre-
installed reinforcements, or reinforcing cavities that are filled with grout or concrete are
used to overcome the interlayer reinforcement in 3D concrete-printed structures [42,52–54].
Despite their efficiency, these methods limit the benefits offered by 3DCP and complicate
the construction process [42]. In-process interlayer/vertical reinforcement was addressed
by the bar penetration technique in which pre-cut reinforcing steel bars penetrate the freshly
3D printed concrete layers in a repetitive manner, as illustrated in Figure 5 [55]. The bar
penetration test was found to be effective for automating reinforcement placement for up
to fifty layers of concrete. According to Sanjayan et al. [55], the bar penetration technique
causes a reduction in the bond between the bars and the concrete as we move from bottom
to top due to the disturbance occurring from repetitive penetrations. To address this issue,
a new method was developed by [42] in which bars are simultaneously coated with a
cementitious material that will be dragged down while the bar is penetrating the layers to
fill up the created voids. Others tested the use of small nails [56], staples [57], or fibers [58]
for more flexible designs; nevertheless, these methods are not effective for more than five
printed layers as they limit both strength and ductility [56–59]. Developing “in-process”
reinforcing techniques that enable both parallel and interlayer reinforcement is essential,
and more research is required for large-scale applications.

3.3. 3D Printing Using Concrete Extrusion

In the last decade, Professor Khoshnevis from the University of Southern California
developed a new additive manufacturing process called Contour Crafting (CC) [59]. Con-
tour crafting is a computer-aided method by which pre-mix cementitious materials are
deposited in a pre-designated position to form layers that solidify after being extruded
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from a nozzle attached to an arm [15,60]. The extrusion method in 3DCP is similar to that
in contour crafting, except that 3DCP allows 3-dimensional freedom and greater control
of the product’s internal and external geometry due to the relatively smaller resolution of
disposition [16]. For a successful extrusion-based 3D printer, several parameters and condi-
tions have to be satisfied, including the rheological properties of the concrete [36,53,61,62].
Generally, there are five issues to consider: workability, deformation, hardened properties,
conformity to the designed geometry, and geometrical freedom in design [61]. Pumpability,
which refers to the ease at which the fresh concrete moves from the pump to the extrusion
nozzle [38], is one of those critical parameters. While pumping, blockages can occur in the
hose due to particle segregation caused by insufficient mixing prior to pumping or due to
the mix design itself. This makes the process particularly sensitive to blockages and pauses
in the system. Rheology also highly affects the extrusion of 3DCP as, for example, materials
with higher yield stress and higher viscosity are relatively harder to extrude [61,63,64].
Extrudability describes the process of extruding the fresh concrete mix through the nozzle
with, ideally, no cross-sectional deformation and without a noticeable tearing of the printed
filaments. According to Buswell et al. [61], there are no adequate tests to assess extrudability
as it is currently evaluated by visual inspection. However, Rajeev et al. [64] suggest that
numerical simulation tools may be valuable in evaluating the extrudability criteria of 3DCP
and in understanding the flow behavior of concrete. The Discrete Element Method (DEM) is
one of the currently proposed simulation models that showed good results when compared
to the experimental pressure values, yet the model requires more improvements [64]. The
3D concrete extrusion also depends on the continuous deposition of material to ensure a
proper bond between layers and an overall homogenous component [61].

Buildings 2023, 13, x FOR PEER REVIEW 12 of 28 
 

 

move from bottom to top due to the disturbance occurring from repetitive penetrations. 
To address this issue, a new method was developed by [42] in which bars are simultane-
ously coated with a cementitious material that will be dragged down while the bar is pen-
etrating the layers to fill up the created voids. Others tested the use of small nails [56], 
staples [57], or fibers [58] for more flexible designs; nevertheless, these methods are not 
effective for more than five printed layers as they limit both strength and ductility [56–
59]. Developing “in-process” reinforcing techniques that enable both parallel and inter-
layer reinforcement is essential, and more research is required for large-scale applications. 

 
Figure 5. Illustration of the steps for the Bar Penetration Technique [55]. 

3.3. 3D Printing Using Concrete Extrusion 
In the last decade, Professor Khoshnevis from the University of Southern California 

developed a new additive manufacturing process called Contour Crafting (CC) [59]. Con-
tour crafting is a computer-aided method by which pre-mix cementitious materials are 
deposited in a pre-designated position to form layers that solidify after being extruded 
from a nozzle attached to an arm [15,60]. The extrusion method in 3DCP is similar to that 
in contour crafting, except that 3DCP allows 3-dimensional freedom and greater control 
of the product’s internal and external geometry due to the relatively smaller resolution of 
disposition [16]. For a successful extrusion-based 3D printer, several parameters and con-
ditions have to be satisfied, including the rheological properties of the concrete 
[36,53,61,62]. Generally, there are five issues to consider: workability, deformation, hard-
ened properties, conformity to the designed geometry, and geometrical freedom in design 
[61]. Pumpability, which refers to the ease at which the fresh concrete moves from the 
pump to the extrusion nozzle [38], is one of those critical parameters. While pumping, 
blockages can occur in the hose due to particle segregation caused by insufficient mixing 
prior to pumping or due to the mix design itself. This makes the process particularly sen-
sitive to blockages and pauses in the system. Rheology also highly affects the extrusion of 
3DCP as, for example, materials with higher yield stress and higher viscosity are relatively 
harder to extrude [61,63,64]. Extrudability describes the process of extruding the fresh 
concrete mix through the nozzle with, ideally, no cross-sectional deformation and without 
a noticeable tearing of the printed filaments. According to Buswell et al. [61], there are no 
adequate tests to assess extrudability as it is currently evaluated by visual inspection. 
However, Rajeev et al. [64] suggest that numerical simulation tools may be valuable in 
evaluating the extrudability criteria of 3DCP and in understanding the flow behavior of 
concrete. The Discrete Element Method (DEM) is one of the currently proposed simulation 
models that showed good results when compared to the experimental pressure values, 
yet the model requires more improvements [64]. The 3D concrete extrusion also depends 
on the continuous deposition of material to ensure a proper bond between layers and an 
overall homogenous component [61]. 

Figure 5. Illustration of the steps for the Bar Penetration Technique [55].

Once the material component is satisfied, the extruder assembly and the positioning
system became crucial [61]. To illustrate, the extruding system is required to be accurate in
depositing the precise quantities of the extruded materials over a pre-determined path [61],
along with an accurate positioning system [61,62]. Moreover, the experimental results
in [19,53,61,65,66] showed that the length of the extrusion path, the speed at which the
nozzle deposits the material, and the shape and size of the extrusion nozzle affect the final
3D concrete-printed product [61]. Elistratkin et al. [65] studied the influence of equipment
operation parameters on 3D printing. The authors found that the extrusion process was
affected by several factors such as the speed of the nozzle, and the speed of the screw
rotation, which resulted in a nonlinear printing process. To elaborate, the investigation
showed that a change in the speed of the nozzle can lead to degradation, stretching, and
an increase in the yield of the mixture [65]. Due to the inherent thixotropy of concrete,
changing the speed of the screw can also affect the viscosity and the dynamics of the
mixture, especially when the speed is reduced when printing corners or sharp edges.
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Furthermore, 3DCP by extrusion inherently exposes a greater surface area of the concrete,
and this, along with the lower w/c ratios commonly adopted, this translates to a higher
potential for cracking from dry and autogenous shrinkage [61]. Internal curing, shrinkage-
reducing admixtures, and moist curing are different approaches that can be used for this
problem. Buswell et al. [61] also showed through Scanning Electron Microscopy (SEM) that
the interlayer adhesion may also be weakly bonded due to shrinkage or carbonation. The
hydrostatic pressure increases as the build gains height which makes the bottom layers
compress under the self-weight of the upper layers. This in turn increases the distance
between the nozzle and the underlying layer causing a change in the shape of the filament
and possibly affecting layer adhesion or even causing buckling and collapse of the build.
Hence, it is desirable to maintain a constant layer height throughout the print [60–62].

3.4. 3D Printing Using Foam Extrusion

Benoit Furet et al. [67] investigated 3D printing polymer foam filled with concrete.
The Batiprint3D™ method in this study prototyped a complex wall of two leaves of
polyurethane (PU) foam filled with self-compacting concrete in the middle. This technique
allowed the inclusion of steel reinforcement in order to comply with the strength capacity
required by the used standard. Furthermore, the exterior side of the foam was coated
with mortar to be protected from the weather while internally, the foam was covered
by plasterboard which complies with all regulations of fire resistance in buildings. The
technique can be used to print a PU foam wall with an average width of 80–100 mm with
layer heights of about 35 mm and the parameters that need to be adjusted for the print are
the flow rates of the isocyanate and polyol components of the PU as well as the speed of the
nozzle and its distance from the underlying layer. On the other hand, the self-compacting
concrete used in this study allowed it to flow easily in the foam walls without the need for
vibration and consisted mainly of cement CEM III 42.5, limestone filler, sand (0–4 mm),
gravel (4–10 mm), water, and a set accelerator. For a real-scale demonstration, Yhnova™,
which is the structure shown in Figure 6, was evaluated by placing the robot system at
the site on a pre-constructed concrete slab [67]. The robot then printed the PU double-skin
foam incrementally in 40–110 cm sections such that the concrete can be easily placed. Once
the printing and concreting process was done, the exterior and interior walls of the house
were subjected to the application of coating and plastering, respectively; followed by the
wood frame, roof, doors, windows, and MEP installation. The authors concluded that the
Batiprint3D™ construction technique enabled greater freedom of shapes that allowed large,
curved geometry and increased the thermal resistance performance by 30–40% compared to
the best standards used for conventional construction, hence reducing the negative impact
on the environment [67].
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Yu Zhang et al. [4] conducted a study about the rheological and hardened proper-
ties of high-thixotropy 3D printing concrete. The rheology was quantitatively evaluated
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using a drop table as a pragmatic tool to measure workability over time as well as a
concrete rheometer for more accurate measurements. On the other hand, the hardened
properties were evaluated through (100 × 100 × 100 mm) cubes for compressive strength,
(100 × 100 × 400 mm) beams for flexure and drying shrinkage, and (100 × 100 × 300 mm)
specimens for axial compression, all of which were cut from (500 × 500 × 110 mm) printed
blocks. After 28 days of curing, the compressive and flexural tests were conducted in three
different loading directions T1, T2, and T3, as shown in Figure 7. The high-thixotropy
concrete itself had a sand-to-cement ratio (S/C) ranging from 0.6 to 1.5 (0.6, 0.8, 1.0, 1.2 and
1.5). The thixotropy composition (in the percentage of cement mass) was 2% nano-clay and
2% silica fume (SF). The polycarboxylate-based high-range water reducer (HRWR) was
0.26% and the water-to-cement ratio (w/c) was 0.35%. The thickening agent was 0.0125%
and the fine aggregate’s (river sand) properties were 2.84 fineness modulus and 1 mm
maximum particle size.
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The authors studied five mixes in this study and highlighted that the average spread
diameter for the drop table was between 192.5 and 294 mm. It was also observed that
as the open time increased, the spread diameter decreased. Furthermore, as the sand-to-
cement ratio (S/C) increased, the initial viscosity and initial yield stress increased, while the
initial thixotropy decreased. This may be the result of a decrease in nucleation sites in the
aqueous suspension. Exceeding the 1.5 S/C ratio caused a reduction in flowability which,
consequently, prevented the extrusion of concrete from the nozzle. On the other hand, the
mix that had a 0.8 S/C ratio experienced deformation. Therefore, the authors identified
an S/C ratio between 1.0 and 1.2 to be optimal in terms of pumpability, extrudability,
open time, and the capacity for continuous printing [4]. In terms of compressive and
flexural strength, values were more than 44.0 MPa and 8.5 MPa, respectively. The obtained
test results varied with the loading direction and the sand-to-cement ratio (S/C). As the
sand-to-cement ratio (S/C) increased, the compressive strength increased for all the loading
directions whereas the flexural strength decreased. The increase in the (S/C) caused the
fresh concrete to be stiff and difficult to print properly. Furthermore, a decreasing trend in
terms of compressive and flexural strength was noticed from T1 to T3. The average axial
compressive strength, elastic modulus, and Poisson’s ratio of the 100 × 100 × 300 mm3

cubes were similar to regular concrete at 35.12 MPa, 36.6 GPa, and 0.28, respectively. Finally,
the increase in the sand-to-cement ratio was insignificant in lowering the drying shrinkage,
especially before 56 days. The authors also concluded by reiterating their optimism toward
3D concrete printing as a future construction method.
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3.5. Early-Age Performance of 3D Printed Concrete

Biranchi Panda et al. [21] investigated the early-age mechanical properties of 3D
printing concrete and its effect on buildability. The study focused on the use of a high
volume of fly ash along with nano-clay particles in a formulation that avoids the use of
accelerators. The control 3D printing mix (C-mix) was composed of 60% fly ash, 38% OPC,
and 2% silica fume (by mass), and in order to gain early strength, 3% Na–sulphate (wt.
of binder) was added to activate the high volume of fly ash. To measure the early-age
strength of the mortar, the uniaxial compression test was used to evaluate samples after 5,
30, 60, 120, and 150 min from the time they were mixed with water. The test was applied
on (70 × 140 mm) cylindrical samples, chosen such that the effects of particle size were
minimized, and a diagonal shear failure was allowed. The deformation of the samples (both
lateral and vertical) was measured using 3D optical metrology. The rheology of the samples
was also tested after different resting times for up to 150 min, by applying a constant
shear rate and observing the time-dependent behavior. After conducting the tests, multiple
conclusions were drawn. First, in the uniaxial compression test, the younger cylinders
(t = 5, 30, and 60 min) failed by the barreling effect, whereas the older cylinders (t = 120
and 150 min) showed a distinct failure plane. The green strength (unconfined compressive
strength), which is the maximum stress after area correction, was hence shown to increase
with time. Similarly, the yield stress obtained from rheology testing was also shown to
increase with time. The mechanism for this strength gain at the early stage (dormant period)
in pozzolanic materials is mainly flocculation and C-S-H bridging [63]. This is followed by
rapid hydration after the dormant period which characterizes an exponential increase in
static yield stresses. Second, the incorporation of nano-clay increased the green strength
which consequently increased the buildability of the printable mortar. This is still limited
however by the rate of printing and if the weight of the subsequent layers exceeds the green
strength, then plastic failure will take place at the bottom layers and the build will collapse.
Adding admixture [68] to the mix can further increase the early-age strength such that the
load-bearing capacity of the layers underneath will increase and enable it to withstand the
weight of the freshly deposited layers without deforming. Finally, the buildability of any
printed structure does not depend solely on the strength of the fresh mortar but also on the
structural stability.

4. Buildability Measurement and Development

While extrudability refers to the ability to extrude materials easily without altering
their original shape, buildability can be defined as the ability to produce layers with
adequate strength up to the desired level without signs of excessive deformation or collapse,
which is achieved by the high yield strength of fresh materials. This means that the
printed layers should be strong enough to overcome the overburden pressure exerted by
the subsequent layers [69–71]. Since buildability is related to the height of the printed
structure, it can be visually evaluated by printing multiple layers [21,69,72]. However, the
inadequate buildability of the printed layers may be attributed to various factors such as
the material properties and the geometry of the printed elements. Therefore, for more
accurate predictions, adequate models and methods must be implemented. Several studies
were conducted to analyze and predict the buildability of printed layers using rheology-
based models and mechanical property-based models [63,73–76]. Others [77] combined
a modified green compression test (GCT) with material failure models to develop a time-
based model for 3D-printed cementitious materials. The model was based on different
failure modes at different times because buildability is a function of material properties,
which is time-dependent. The models showed an adequate prediction of failure heights
of a wall and a hollow cylinder specimen. The authors in [78] investigated the use of
several indirect methods used for assessing the buildability of 3DCP including rotational
velocity (CRV), unconfined uniaxial compression test (UUCT), constant shear rate (CSR)
test, confined uniaxial compression test (CUCT), and fast penetration test. The experimental
investigation conducted on extruded samples showed that the material failure predicted
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by all methods was not consistently accurate, although all methods showed a strong linear
correlation. The results also showed that the CRV test adequately predicted the failure only
when a geometry factor was applied; otherwise, it underestimated the actual capacity of
the 3D-printed samples. The results of the CUCT indicated that the obtained compressive
strength was higher than that obtained using UUCT [78]. Both [78] and [79] suggested that
the values of strength obtained between the elastic limit and plastic collapse can be used to
develop a precise buildability prediction of 3D-printed mortar and concrete.

Bos et al. [80] developed a discrete lattice model to assess the buildability performance
of 3D-printed concrete. The model incorporated various components such as printing
velocity, time-dependent stiffness and strength, non-uniform gravitational load, and local-
ized damage. The lattice model was used to predict the failure of a square and a cylinder
structure and the results were compared to those obtained experimentally. A 10% relative
difference and 41% overprediction were observed for the square structure and cylinder
structure, respectively. Chang et al. [81] studied the use of rotational rheometry, unconfined
uniaxial compression tests, and direct shear tests to evaluate different 3D printable cemen-
titious mortars. The study concluded that determining the friction angles of specimens is
critical in predicting buildability. This is because the test showed that a correlation is only
applicable by assuming significant friction angles which are related to Mohr–Coulomb
failure behavior. Hence, the authors suggest combining rheometry–shear and uniaxial
compression test results could be a valid approach, although extensive research is needed.
Another study performed by Muthukrishnan et al. [82] explored technologies for develop-
ing buildability in 3DCP. The authors tested enhancing the printed concrete buildability by
adding additives during the initial mixing, although it affects the pumpability parameter.
They have also tested adding some set-on-demand interventions at the print head. This
was performed by mixing heating, accelerators, ultrasonication, or magnetorheological
control at the print head. The previous process increased the yield strength of the printed
concrete immediately after extrusion and thus promoted buildability without affecting
pumpability [82].

In addition, Qiang Yuan et al. [15] provided a feasible method for measuring the
buildability of fresh 3D printing mortar. In this study, the development of specimen
deformation was monitored by a designed deformation monitoring device at different
loading intervals. Penetration resistance and a calorimetric test were also utilized to
describe the structural build-up in the mortar. The material used in preparing the printable
mortars were Portland cement (PC), polycarboxylate high-range water reducer (HRWR),
attapulgite (AG; used to enhance the structural build-up), and sodium gluconate (SG). The
mortar specimens were subjected to flowability, rheological, deformation tests, penetration
resistance measurement, and calorimetric tests. After performing the tests, numerous
conclusions were drawn. First, both AG and SAC increased the dynamic yield stress and
plastic viscosity of the mortars, although SAC did so to a lower extent. These parameters
helped enhance the extrusion performance of the mortar and reduce the chances of early-
age cracks. Second, the fast-hydrating SAC significantly improved the structural build-up
and the penetration resistance while the combination of SAC and attapulgite caused a
notable increase in the growth rate of the static yield stress [83]. Third, as the interval
time increased, the deformation values gradually decreased. Furthermore, the addition
of attapulgite and SAC decreased the deformation significantly [83]. Attapulgite addition
improved the thixotropic performance and shape stability. In this study, twenty layers were
printed in order to evaluate the buildability by determining the maximum deformation.
All the mix designs experienced large deformations despite no collapse taking place even
at a low rate of yield stress growth. To reduce these deformations, either the layer cycle
time should be reduced, the layer thickness should be reduced, or the rate of yield stress
growth of the mortar should be increased. It was concluded that the combination of SAC
and AG was the most effective for increasing the structural build-up rate [83]. The growth
of penetration resistance was also found to be directly proportional to the growth of static
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yield strength making the penetration resistance an effective method of measuring the
structural build-up of 3DCP mortars.

Yu Zhang et al. [30] studied the fresh properties of a novel 3D printing concrete
mortar such as its buildability, rheology, workability, green strength, open time, and heat of
hydration on different mixtures. Some mixtures incorporated nano-clay (NC), while others
incorporated silica fume (SF), as a partial cement replacement at a content of 2%. A high-
range water reducer (HRWR) was added to improve the workability of the mixtures due to
the high demand for water caused by the additive materials. Where a thickening agent (TA)
was used, the material exhibited dough-like rheological properties. To maintain a sufficient
open time, a retarder agent (RA) was added to verify the thixotropic property of the nano-
clay. Since there is no recognized standard for evaluating the buildability of concrete, the
height of the layers built and visual deformation or collapse were used to estimate the fresh
concrete’s buildability. In addition, for more accurate prediction, the green strength test was
used to assess the buildability of freshly printed concrete. Compared to the control mixture,
the silica fume mix, nano-clay mix, nano-clay, and RA mix had higher build-ups. The
incorporation of both silica fume and nano-clay resulted in the highest build-up; therefore,
it is the optimum mixture additives in terms of buildability [30].

5. Large-Scale 3D-Printed Structures

According to Puzatova et al. [84] and Wangler et al. [85], the main challenge of imple-
menting automation in real-life applications is the automatic tools. This is because large-
scale construction projects require extremely large components that require customized
tools such as robotic arms. The authors in [86–92] affirmed that the layer-by-layer extrusion
technique is the most widely used technology in the construction industry. Wang et al. [92]
concluded that this technology is suitable for large-scale construction projects and can be
functional for the most used materials in construction, which are concrete and steel. The
authors in [93–96] suggest that these two materials can be combined to construct reinforced
concrete 3D-printed structures. Puzatova et al. [84] evaluated the current additive man-
ufacturing printers including robotic arm printers, portal-type printers, and gantry 3D
printers. The authors noted that the gantry 3D printers are the most suitable for large-scale
mass construction. This is attributed to their configuration that allows the construction of
buildings without any size restrictions. However, all printers were found to be inapplicable
for printing concrete that contains coarse aggregates. Since the incorporation of coarse
aggregates is desired for optimum economics and performance, it is necessary to optimize
the 3D printing technology for printing with mix designs containing large aggregates.

Gosselin et al. [97] conducted research about the potential and buildability of large-
scale 3D printing of multifunctional structural elements using ultra-high-performance
concrete. The research focused on acquiring the rheological and setting characteristics of
the material that allows for an optimum layer length and path cycle time. Since the paths
are essentially three-dimensional, the tangential continuity method (TCM) was adopted
due to its suitability for large-scale AM. The advantage of this method is that it prevents
geometrical gaps between two layers. The developed printable mortar consists of Portland
cement (30–40%), crystalline silica (40–50%), silica fume (10%), and limestone filler (10%).
The prepared mortar was armed with the appropriate rheological properties for pumping,
early-age mechanical strength for structural build-up, and workability for the acceleration
of the printing process. Two structural wall elements were demonstrated in this study as
examples and proofs of concept. First, a multifunctional wall element was designed for
the rehabilitation of the damaged structure. The designed structural element would act as
an external supporting wall. The geometry of the structure was optimized to reduce the
amount of heat flowing through the whole structural element by reducing the contact area
between the two sides of the wall without sacrificing its structural performance. Second,
an acoustic dampening wall element was designed to perform structurally and acoustically.
The varying geometry of the wall tubes acts to dampen the acoustic waves passing through
them and provides a level of soundproofing to the wall. Besides the wall geometry, the
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soundproofing will also depend on the properties of the material. Figure 8 shows both
3D-printed structural walls [97].
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The two examples illustrate the feasibility and buildability of AM for the applications
of architecture and construction. However, there are also numerous limitations in concrete-
based AM. For instance, the need for support in the production of large-scale 3D printed
structures. Using a generic 6-axis robotic arm can enable complex geometries compared to
an overhead crane [98]. In conclusion, despite the importance of reducing cost and time of
construction, the main interest of AM is adding value to the structural element performance
through the clever use of geometry. Xu Zhang et al. [99] studied large-scale 3D printing by
a team of mobile robots. In this study, to overcome the limitation of the size of the printed
structure due to the reach of the robotic arm, a team of multiple mobile robots was utilized.
Each of the mobile robots was made up of a holonomic mobile platform, a mini 6-axis
robotic arm, a stereo camera, and a pump. Two concrete mix designs were prepared to meet
rheological requirements (viscosity and yield stress). The first mix design was ordinary
concrete that consisted of OPC, fly ash, silica fume, river sand, and water, whereas the
second mix design was a fiber-reinforced concrete that consisted of OPC, fiber, sand, water,
fly ash, silica fume, and superplasticizer. The two mixed designs were used by robotic
printers as shown in Figure 9 [99].
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The locations of the robots were first optimized and then followed by the program-
ming of the trajectories using OpenRAVE such that the robots can ensure the material is
delivered accurately and without any collisions. Then, once the print process is completed,
the robot printers return to their home station. In this study, the two mobile robots con-
currently printed a structure that was 1.86 × 0.46 × 0.13 m which is beyond the reach of
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either individual robot. Compared to existing 3DCP methods, the study suggested that
this proposed system has several advantages such as enhanced scalability, greater time
efficiencies, and a more practical on-site approach due to the increased mobility of the
system. However, the motion of the robots should be carefully planned in order to avoid
collisions and optimize material delivery. Additionally, to make sure that the parts printed
by the robots are perfectly aligned, the precision of the robot localization must be high.
The coordination of the robots’ mixing and pumping system is also crucial such that the
material delivery is continuous and synchronized.

6. Integration of BIM into 3D Construction

Building Information Modelling (BIM) is a digital version of a facility such that
its physical and functional properties are stored in an easy-to-access, visualize, share,
and understand format. It greatly helps in forming reliable and well-informed decisions
regarding the entire life cycle of the facility from conception to demolition [100]. Nowadays,
BIM software platforms are used for designing and carrying out many construction projects
worldwide. BIM offers a variety of benefits such as automated checking of compliance
with different building codes, automated cost estimation [101], scheduling [102], clash
detection between different disciplines [103], and energy analysis and simulations [104].
Furthermore, it improves energy efficiency, reinforces sustainability, reduces life cycle cost,
and generates less design coordination errors. BIM is also used for maintenance, cost
analysis, and operation throughout the building life cycle.

Recently, the focus on integrating BIM with additive manufacturing in construction
has increased. There are numerous algorithms developed for 3D printing in construction
using BIM. Omid Davtalab et al. [104] proposed a perspective of utilizing BIM in AM in
construction projects as shown in Figure 10. Printing 3D structure projects start with 3D
modeling—a function of the architectural and structural analysis and design—using CAD
software. After that, the 3D model is sent to software called POCSAC in order to extract
some data and send them to different units. The 3D model is sliced into layers of a specific
thickness, and then POCSAC carries out the toolpath optimization of the sliced 2D layers.
Then, numerical control (NC) commands (or G-code) are sent to the robot to control its
movement and material mix proportioning commands are sent to the automated material
preparation unit to prepare the mix.
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Prior to 3D printing of the structure, the designed concrete mixture is laboratory
tested. POCSAC reports three main groups of data for mixture design stage. The initial
BIM model contains the concrete’s mechanical and durability properties along with the
environmental conditions of the project site but this information will not be extracted by
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the software. On the other hand, during the toolpath optimization, the interlayer time gap
is calculated and then reported by POCSAC. During the construction process, POCSAC
documents a lot of detailed significant environmental and process data by a sensory system.
These data are a future reference. For instance, the formation of any cold joints due to a
delay in layer deposition can be studied and referenced from POCSAC reports even years
after construction. Another BIM-based automated construction system was developed by
Ding et al. [105]. The basic procedure of AM technology, as shown in Figure 11, decomposes
a three-dimensional model into lamellar files of a certain thickness in a certain direction
of the model (usually Z direction), transforms the three-dimensional model into several
approximately two-dimensional profiles, then amends the lamellar files and generates NC
programs, and finally imports the NC programs to the Computer Numerical Control (CNC)
system so that the CNC system controls the material regularly and accurately, stacking up
to achieve automatic construction.
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Figure 11. The basic procedure of AM technology [105].

The proposed system consists of two main core parts: the NC program-generating
system and NC program execution setup. The first main core part converts the BIM model
layer data which are sliced by manual operation to specific CNC codes. These codes drive
the second main core part to automatically 3D print the building components according
to the designed BIM model. Figure 12 demonstrates the framework of the proposed BIM-
based automated construction system. Mehmet Sakin and Yusuf Kiroglu [100] presented a
framework for utilizing BIM for 3D printing sustainable houses. The process starts with
designing a 3D model. If the designed 3D model is not in an STL file format, then it should
be converted to an STL file. The model must be sliced and converted to layers that are
readable by the 3D printer. After that, the 3D printer processes the materials and then
layers the material according to the design. Figure 13 illustrates the BIM-based 3D printing
of a sustainable house system. Building Information Modeling (BIM) adds great value to
conventional and automated construction in terms of improving the efficiency throughout
the life cycle of the structure. However, there has not been any comprehensive investigation
into implementing BIM in automated construction [105]. Therefore, further investigation
is required to develop the optimal BIM-based 3D printing system that addresses all the
significant aspects of AM in construction.
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7. Challenges Associated with 3DCP

In terms of challenges, since 3D printing technology is still in the development phase,
there are multiple challenges encountered by the implementors of this technology around
the world. Some of these challenges include:

• Developing a concrete mix design with thixotropic rheological behavior that is un-
segregable, pumpable, extrudable, buildable, and printable in an exposed environment
with various weather conditions.

• Developing a concrete mix design with a small coarse aggregate size that has sufficient
mechanical properties to avoid clogs inside the 3D printing machine.

• Developing a concrete mix design with proper tensile properties that allows eliminat-
ing or diminishing steel reinforcement.

• Developing a concrete mix design entirely from the materials available locally without
the need of acquiring overseas products.

• There are no codes or standards to follow for AM in the construction of buildings.
• Constructing a multi-story building entirely by the 3D printer without using conven-

tional construction methods or other structural systems is still in development.
• 3D printers require skilled operators, careful handling, and proper cleaning.
• There are still no standardized tests to evaluate concrete’s buildability and interlayer

bonding.
• Applying the building regulations issued by governmental entities such as green

buildings regulations for thermal insulations issued by the Dubai Municipality.
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• Precise localization of the 3D printers under different terrain conditions.

8. Summary and Conclusion

This review article explained the general 3D concrete printing process performed
by different printing systems that are available in the market. The paper also reviewed
the materials that could enhance the performance of 3D concrete structures as suggested
by research. An overview of 3D concrete-printed reinforcement, extrusion methods, and
early-age performance of 3D-printed concrete was performed. This could help in setting
up a laboratory to assess and evaluate the fresh properties of the 3D concrete printing mix
designs to achieve printability and buildability requirements. The paper also explored
existing buildability measurement techniques and the potential of implementing BIM into
3D construction. The main points of this review article are:
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The 3D concrete mix design undergoes various stages of mixing, pumping, and ex-
truding before it produces a 3D structure. However, in order for the 3D concrete mix
to be successfully printed, it needs to have certain printability requirements such as
pumpability, extrudability, buildability, interlayer bonding, open time, and segrega-
tion prevention. All these printability requirements are dependent on the workability
(flowability) of the mix design. The concrete should exhibit thixotropic rheological
behavior in which the viscosity is reduced and regained through the printing stages in
order to have a flowability that allows printability to be achieved. It is recommended
to incorporate calcined clay, nano-clay, fibers or ECC, and pozzolanic materials into the
mix design to improve the concrete’s thixotropic rheological properties, mechanical
properties, durability, and sustainability.
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The implementation of AM in construction offers a wide range of advantages in-
cluding reductions in cost, labor, formwork, construction time, waste, and emissions.
It allows flexibility in changing the design of the structure, printing complex and
customized shapes for aesthetics, and utilizing the geometry of the printed structure
to improve the performance in terms of thermal insulating and soundproofing with
less amount of material required. AM allows improvement of efficiency and safety
at the construction site and support of damaged structures by allowing structural
rehabilitation by using 3D-printed elements.
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There are different systems of 3D printing such as gantry-based systems, cable-
suspended platforms, swarm approaches, and mobile robotic arms. The selection of
any of those systems is dependent on different factors: the 3D structure, budget, and
project site, among other factors.
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In comparison to conventional construction, additive construction offers a reduction
in cost, labor, and time, and an elimination of formwork and reinforcement. It
offers the flexibility of changing the design and combining 3D printing with other
construction systems. To date, additive construction faces a lot of obstacles that slow
down its full utilization. For instance, developing a 3D concrete mix design with
thixotropic rheological behavior that is pumpable, extrudable, and printable in an
exposed environment. It should also have sufficient mechanical properties regardless
of its small coarse aggregate size and has proper tensile properties to reduce or
eliminate steel reinforcement.
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There is a need for a fully operational 3D laboratory to assess the quality of 3D mix
designs in terms of hardened and rheological performance. The focus of this research
was directed at fresh properties due to the fact that fresh properties play a larger role
in achieving printability requirements. There are six parameters that were suggested
to be tested in the 3D laboratory which are workability (flowability), rheological
properties (yield strength, plastic viscosity, thixotropy), green strength, buildability,
penetration resistance, and hydration heat. Some of these tests lack standardization
and can be used for research purposes due to their value in indicating the quality
of the 3D mix design. Other parameters still lack testing methods such as interlayer



Buildings 2023, 13, 827 23 of 27

bonding. It is suggested that the 3D laboratory include a temperature controller to
mimic the printing process in an exposed environment.
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Additive construction can be integrated with Building Information Modeling (BIM)
to achieve higher performance throughout the life cycle of the 3D structure from the
construction stage to demolition in terms of design, cost, scheduling, energy, and
maintenance. In this research, three different algorithms developed for integrating
BIM with 3D concrete printing were discussed. The three BIM-integrated additive
construction frameworks share a lot of similarities and few differences because their
development was for slightly different purposes. However, this integration has not
been investigated in depth because it is still in its early stages. Therefore, BIM-
integrated additive construction systems still need to be studied in depth in order to
develop a system that covers all the significant aspects that can be used as a reference
for any 3D construction project.
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3DCP 3D Concrete Printing
AG Attapulgite
AM Additive Manufacturing
BIM Building Information Modelling
CAD Computer-Aided Design
CC Contour Crafting
CNC Computer Numerical Control
CSR Constant Shear Rate
CUCT Confined Uniaxial Compression Test
DEM Discrete Element Method
GCT Green Compression Test
HRWR High-Range Water Reducer
MCF Mineral-Impregnated Carbon Fiber
NC Nano-Clay
NC Numerical Control
PC Portland Cement
PU Polyurethane
RA Retarder Agent
RHA Rice Husk Ash
SCM Supplementary Cementitious Materials
SEM Scanning Electron Microscopy
SF Silica Fume
SG Sodium Gluconate
TA Thickening Agent
TCM Tangential Continuity Method
UUCR Unconfined Uniaxial Compression Test
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