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Abstract: Energy efficiency is one of the critical challenges in wireless sensor networks (WSNs).
WSNs collect and transmit data through sensor nodes. However, the energy carried by the sensor
nodes is limited. The sensor nodes need to save energy as much as possible to prolong the network
lifetime. This paper proposes a game theory-based energy-efficient clustering algorithm (GEC) for
wireless sensor networks, where each sensor node is regarded as a player in the game. According to
the length of idle listening time in the active state, the sensor node can adopt favorable strategies for
itself, and then decide whether to sleep or not. In order to avoid the selfish behavior of sensor nodes,
a penalty mechanism is introduced to force the sensor nodes to adopt cooperative strategies in future
operations. The simulation results show that the use of game theory can effectively save the energy
consumption of the sensor network and increase the amount of network data transmission, so as to
achieve the purpose of prolonging the network lifetime.

Keywords: wireless sensor network; game theory; penalty mechanism; idle listening time; network
lifetime

1. Introduction

Wireless sensor networks are composed of a large number of sensor nodes deployed
in a certain area, which provide feedback from information of the monitored area. As
the connection between the physical environment and information environment, it is an
important part of the Internet of things. At present, WSNs have been applied in the fields
of ecological environment monitoring, military affairs, medical treatment, transportation,
urban land use, and other fields [1–3]. Because of the wide application of WSNs, they have
attracted the attention of many scholars in recent years. In WSNs, the sensor nodes perceive,
transmit, and collect information in a cooperative way. This process will consume a certain
amount of energy. However, the sensor nodes are powered by batteries, and the amount
of power they carried is limited. Once the battery runs out, and the power supply cannot
be replaced or supplemented in time, the transmission of monitoring information will be
affected to a certain extent, and even the whole sensor network will be paralyzed [4,5].
Therefore, how to be as energy-efficient as possible in the case of limited energy, so as to
extend the lifetime of the entire sensor network, has become a bottleneck problem in real
applications of the sensor network.

In real applications, a battery with limited capacity is used to supply power for
wireless sensor nodes, and the wireless sensor network is deployed in unattended outdoor
or dangerous areas with a complex environment. The battery is used for power supply, and
the monitoring area is uncontrollable, which is not conducive to energy supply or battery
replacement of sensor nodes. To ensure the continuous work of WSNs, reducing the energy
consumption of sensor nodes is the most effective way to prolong the lifetime of a sensor
network [6]. Many experts and scholars have conducted several studies to optimize the
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energy consumption of sensor nodes to a certain extent [7–11]. After an extensive literature
review, it was found that there has been little research on the energy consumption of sensor
nodes in the idle listening stage. In fact, when a sensor node is in the active state, there
will be substantial idle listening time, and the idle listening phase will also consume some
energy [12,13]. If a large amount of energy is consumed at this stage, the energy used by
the sensor node to collect and transmit information will be greatly reduced, thus shortening
the lifetime of sensor nodes to a certain extent.

Moreover, the idle listening and sleep states of the sensor node in WSN have the
characteristics of a game. Different strategies adopted by sensor nodes will bring different
benefits and have different effects on the performance of sensor networks. On the one hand,
sleeping of sensor nodes can minimize their energy consumption [14], but they will also
consume a certain amount of energy when transitioning from the sleep state to the active
state and from the active state to the sleep state [15]. If the energy consumed during state
transition is too large, it will increase the energy consumption of the sensor nodes. On the
other hand, the idle listening phase of sensor nodes will also consume a certain amount of
energy. If the sensor nodes are idle listening for a long time, they will waste substantial
unnecessary energy. In other words, the idle listening and the sleep states influence each
other, which together determine the lifetime of the wireless sensor network.

To sum up, the main contributions of this work are as follows.

(1) Taking into account several aspects that affect the energy consumption of sensor
nodes, a game model is established.

(2) According to the energy consumption between the idle listening of sensor nodes and
the transition of sensor nodes from the sleep state to the active state, the threshold
value of sensor nodes entering the sleep state is determined.

(3) In order to avoid the selfish behavior of sensor nodes when they go to sleep, a penalty
mechanism is introduced to force the sensor nodes to adopt cooperative strategies
in future operations. The optimal number of penalty rounds for sensor nodes with
selfish behavior is proven.

(4) The simulation results show that using the games to control the transition between the
sleep state and active state of the sensor nodes can reduce their energy consumption,
thereby effectively prolonging the lifetime of the network.

The remainder of the paper is organized as follows: Section 2 reviews related work;
Section 3 describes the materials and methods; the simulation details and result analysis
are provided in Section 4; a discussion and an overview of future work are provided in
Section 5; the conclusion is introduced in Section 6.

2. Related Work

With the rapid development of the Internet of things, WSNs have been applied in
various fields. The energy problem in WSNs has attracted more and more attention, and
many experts and scholars have conducted several studies on energy efficiency. Under the
condition of the limited energy of sensor nodes, how to maximize the lifetime of the net-
work has become a hot topic in current discussion. In [7], they used two levels to optimize
the formation of clusters and the choice of cluster heads (CHs), corresponding to two stages,
i.e., the formation and operation of cluster. A new clustering optimization algorithm was
proposed for wireless sensor networks with multilevel energy heterogeneity. The wireless
sensor network based on this algorithm could balance the energy consumption of network
nodes and prolong the life cycle of the network. In [8], three main aspects of WSNs were
studied: accuracy, energy consumption, and computational complexity. A reverse asymmet-
ric time synchronization framework was proposed for multi-hop wireless sensor networks
with limited energy, and a beacon-free energy-saving time synchronization scheme based
on reverse unidirectional message propagation was designed. On the premise of ensuring
synchronization accuracy, the energy consumption and computational complexity were
minimized. In [9], considering that the available environmental energy is unpredictable and
changes with time, a method and its implementation to realize energy-neutral operation
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on energy collection wireless sensor nodes were proposed. The method utilizes adaptive
duty cycle, which provides energy-neutral operation via an energy management circuit
according to the energy available in the environment and the instantaneous energy state
of the node. When there is no energy harvesting, the sensor node enters sleep mode to
prolong its lifetime. In [10], the main purpose of the research was to design an energy
embedded routing protocol based on an optimal update of the mobile sink. Furthermore,
the mobile sink node is optimized to improve the network lifetime. In [11], a multi-hop
clustering algorithm for wireless sensor networks was proposed to solve the problem of the
low energy efficiency of nodes and long-term operation of an energy-harvesting wireless
sensor network. Fuzzy logic was used to select the cluster head, so as to maintain the
persistence of the network.

Game theory is a new branch of modern mathematics. It mainly considers the strate-
gies and benefits for players, and it studies their optimization strategies. At present, the
application of game theory in WSNs is becoming more and more extensive, mainly be-
ing used in energy efficiency, communication security, power control, data acquisition,
etc. [16–20]. In recent years, the application of game theory in WSN energy efficiency has
achieved particularly remarkable results. For example, in [21], a power control game model
was established to optimize the balance between energy consumption and data packet
transmission performance. Specifically, this paper first characterized the tradeoff using a
multivariable optimization problem, with the goal of balancing the outage performance
and the network lifetime. In [22], an energy-efficient clustering algorithm combined with
game theory was proposed, using a dual-cluster-head mechanism to reduce the energy
consumption of the sensor nodes. In [23], the existing distributed energy efficient clustering
(DEEC) protocol for heterogeneous WSNs was improved. Game theory was used as an
optimization algorithm, and the probability of the node becoming a cluster head was
adjusted on the basis of residual energy, thus prolonging the lifetime of clusters. In [24], an
energy-efficient clustering algorithm based on game theory was proposed. In the cluster
head selection phase, each node competes as a potential cluster head by joining a localized
clustering game, and a potential cluster head is selected to be a real cluster head through a
properly designed probability method. In [25], a distributed clustering protocol for WSNs
based on mixed game theory was proposed. Each node is modeled as a player, which
can selfishly choose its own strategies to be or not be the cluster head. Furthermore, the
payoff of each node was defined when choosing different strategies, in which the degree of
nodes and distance to base station were both considered. In [15], a new approach was intro-
duced by mixing a noncooperative game theory technique with a decentralized clustering
algorithm. The method uses game theory to control the activities of a sensor node and its
neighbors, so as to limit the number of forwarded messages and maximize the lifetime
of the WSN. In [26], a cooperative game theory approach to energy-efficiency coverage
in wireless sensor networks was put forward. The interaction between sensor nodes was
modeled as a cooperative bargaining game. In this game, each sensor node can meet the
needs of application awareness while minimizing energy consumption. In [27], a game
theory method for balancing energy consumption in clustered wireless sensor networks
was proposed. Considering the energy imbalance of sensor nodes, a penalty mechanism
was introduced to force nodes with higher energy to actively become cluster heads. The
clustering algorithm based on game theory proposed in this paper was proven to have a
good energy balance performance. In [28], a better-distributed routing algorithm based
on Q-learning game theory for underwater wireless sensor networks was introduced. Its
Q-learning game paradigm captured the dynamics of the underwater sensor networks
system in a decentralized and distributed manner. This method is effective in energy
efficiency and can effectively extend the network lifetime. In [29], a heterogeneous game
theoretical clustering algorithm called mobile clustering game theory 1 was proposed for
energy optimization in a heterogeneous mobile sensor environment. Energy optimization
was achieved through energy-efficient cluster head election and multipath routing in the
network. In [30], a game theory- and enhanced ant colony-based mobile sink route selec-
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tion and data gathering technique was presented, combining the optimal decision-making
skill of game theory in selecting the best rendezvous points. GTAC-DG helped to reduce
data transmission and management, energy consumption, and data transmission delay.
In [31], a noncooperative game theory power control strategy based on CDMA WSNs was
proposed. In this paper, the Nash equilibrium of power control strategy was discussed on
the basis of noncooperative game theory. It could save sensor node energy, obtain good
performance for the whole network, and greatly improve the network lifetime. In [32],
an energy consumption optimal model of node cooperation based on game theory was
proposed. In this model, the main energy consumption factor of the node-communication
energy consumption was taken as the independent variable, and the payment function of
the residual energy of the node was established. Moreover, it was verified that the optimal
game model of the energy consumption of node cooperation had better stability.

The above research was optimized in terms of the clustering algorithm, power control,
CH selection, and other aspects of sensor nodes, greatly improving the lifecycle of sensor
networks. However, the energy consumption of sensor nodes during idle listening time was
rarely considered. In fact, the energy consumption of this state will also have a great impact
on the lifetime of the sensor node [12,13]. In this paper, we propose a game theory-based
energy-efficient clustering algorithm (GEC), where we use game theory to discuss the
transition of the sensor node between the active state and the sleep state, thereby reducing
unnecessary energy consumption of sensor nodes in the idle listening stage, and avoiding
the energy burden caused by frequent switching of the active state and the sleep state. This
allows maximizing the benefits of sensor nodes and achieving the purpose of prolonging
the network life cycle.

3. Materials and Methods
3.1. Study Object and WSN Deployment

In this paper, 100 sensor nodes with the same initial energy were randomly deployed
in an area of 100× 100, and the sink node was located in the center of the deployment area,
i.e., (50, 50). Once the sensor node was deployed, its location did not move. Sensor nodes
needed to continuously monitor the deployment area, and energy was no longer supplied.

3.2. Network Model

A WSN is a network randomly composed of a certain number of sensor nodes, which
together form multiple clusters, and each cluster includes a cluster head node and multiple
cluster members (CMs). Each CM determines whether it belongs to a cluster according
to its corresponding location. Furthermore, each CM has a certain sensing range, within
which each node can collect data from the monitored object and send the collected data to
the corresponding CH, which then sends the data to the sink node. The network diagram
used in this paper is shown in Figure 1.
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When the sensor node is working, it is usually divided into two states: active state and
sleep state. The sensor node in the active state can be divided into two stages: the working
stages when the node needs to send and receive data, and the idle listening stages when
there are no data to send and receive. When the sensor node is in sleep state, all functions
are turned off to minimize energy consumption. In this state, the energy consumption of
the sensor node can be considered as 0. In this paper, it is assumed that the sensor nodes
are reasonable, while the energy is limited and distributed in harsh environments. For
its own benefit, the sensor node should be as energy-efficient as possible to achieve the
purpose of maximizing lifetime. Therefore, on the basis of ensuring network performance,
when the sensor node is in the idle listening stage, it should enter a dormant state as much
as possible, so as to reduce energy consumption and maximize the network lifetime.

Figure 2 shows the working schematic diagram of the sensor node, where Energy A–S
represents the energy consumed by the sensor node in the transition from the active state
to the sleep state, and Energy S–A represents the energy consumed by the sensor node in
the transition from the sleep state to the active state.
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3.3. Energy Model

The energy consumption of a sensor node is related to many factors. The main factors
that directly influence the energy consumption of sensor nodes are discussed below. In
order to calculate the residual energy of the sensor node, it is necessary to study various
energy consumption factors of sensor nodes during the data processing. Therefore, the
notations related to the energy consumption of sensor nodes are provided in Table 1.

Table 1. Notations of parameters and variables.

Symbol Description

n Number of sensor nodes in the network
Si Sensor node where i = {1, 2, · · · , n}

Es(Si) Energy cost for sensing
Ep(Si) Energy cost for processing
Et(Si) Energy cost for sending
Er(Si) Energy cost for receiving
Ew(Si) Energy consumption for sleep to active mode

Ci Total energy consumption for sensor node

3.3.1. Energy Cost of Sensing

When the sensor works, it first senses the surrounding environment, and then acquires
the sensing data from the environment [33]. In addition, the energy consumed by sensor
nodes is related to the sensor itself. The sensing energy consumed by different sensors is
different. Generally, the sensing energy consumption of sensor node Si is defined as

Es(Si) = L(Si) ∗ I(Si) ∗ T(Si) ∗Vs, (1)

where I(Si) is the needed amount of current, Vs is the voltage supply, and T(Si) is the
duration to detect and collect L(Si) bits of data.
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3.3.2. Energy Cost for Processing

When the sensor node reads and stores data, it also consumes energy [34]; thus, the
energy consumption can be expressed as:

Ep(Si) =
L(Si) ∗Vs

8
(IWrite ∗ TWrite + IRead ∗ TRead), (2)

where TWrite and TRead indicate the durations taken by the sensor node in writing and
reading L(Si) bits of data, and IWrite and IRead denote the current required for the sensor
node to write and read per bit of data.

3.3.3. Energy Consumption for Communicating

The communication energy consumption of sensors mainly involves the energy con-
sumption when sending and receiving information [15]. Hence, the energy consumed by
the sensor node when sending information can be expressed as

Et(Si) =

{
L(Si) ∗ Eelec + L(Si) ∗ E f s ∗ d2 when d < d0

L(Si) ∗ Eelec + L(Si) ∗ Emp ∗ d4 when d > d0
, (3)

where Eelec is the energy consumed to receive or transmit per bit message, whereas the
constants E f s and Emp depend on the transmitter amplifier model, representing the free
space model and the multipath model, respectively. d is the distance between two sensor
nodes. d0 is the threshold distance, which can be expressed as

d0 =
√

E f s/Emp. (4)

The energy consumed by the sensor node when receiving information can be expressed as

Er(Si) = L(Si) ∗ Eelec. (5)

3.3.4. Energy Consumption in Transition from Sleep to Active Mode

When the sensor node is working, it will consume a certain amount of energy in the
transition from the sleep state to the active state, and vice versa. However, the energy
consumed for the switch from the active state to the sleep state is very small and, thus,
negligible [15]. Therefore, the energy consumed by the sensor node to switch the working
state is defined as

Ew(Si) =
Vs

2
∗ (Ia − Is) ∗ Tas, (6)

where Ia is the current in the active state of the sensor node, Is is the current in the sleep
state of the sensor node, and Tas is the time required for the sensor node to switch from the
sleep state to the active state.

3.3.5. Total Energy Consumption for Sensor Node

According to Equations (1)–(6), the total energy consumption of the sensor node can
be obtained as follows:

Ci = Es(Si) + Ep(Si) + Et(Si) + Er(Si) + Ew(Si). (7)

3.4. Game Model
3.4.1. Establishment of Game Model

In order to prolong the lifetime of a WSN, the sensor nodes can switch reasonably
between the active state and the sleep state; thus, the dynamic switching of sensor nodes
can be regarded as a game problem. The model can be expressed as follows:

GT = {N, K, {ui}}, (8)
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where N represents the player in the WSN. All sensor nodes in the network are involved
in receiving and sending sensor information; hence, the game players include all sensor
nodes in the network. In other words, the game player is sensor node Si, i = {1, 2, · · · , n}.
K is the strategic space of players. In view of the reasonable preference of sensor nodes, in
this paper, the sensor node can determine the strategic space of game player by weighing
the energy consumption, i.e., the sensor node enters the sleep state from the active state,
and the sensor node does not enter the sleep state from the active state. {ui} represents the
utility function of i player,

ui(si, s−i) = Ui(si, s−i)− Ci(si, s−i), (9)

where si is the strategy adopted by sensor node Si, s−i is the strategy adopted by nodes other
than sensor node Si, Ui(si, s−i) is the revenue function of sensor node Si, and Ci(si, s−i) is
the cost function of sensor node Si.

The wireless sensor network communicates data packet forwarding in a multi-hop
manner. On the basis of the rational analysis of sensor nodes, the revenue function of a
sensor node is defined as the reward obtained by a sensor node for successfully forwarding
the data packet to the next sensor node. Therefore, the revenue function is defined as

U(si, s−i) = G ∗ P, (10)

where G is the reward of a sensor node for successfully forwarding the data packet to the
next sensor node, and P is the probability that the sensor node successfully forwards the
data packet.

The sensor node has two working states, i.e., active state and sleep state. Therefore,
xj(Si) is defined as the two working states of sensor node Si:

xj(Si) =

{
1 Active mode
0 Sleeping mode

. (11)

When the sensor node Si is in the sleep state, when it needs to forward data packets,
it will adopt two different strategies, i.e., selfish and non-forwarding or cooperative and
forwarding. Therefore, the two strategies adopted when the sensor node is in the dormant
state are defined as

yj(Si) =

{
1 Forward data packet
0 Do not f orward data packet

. (12)

When the sensor node is working, the cost function is

Ci(si, s−i) =


Es(Si) + Ep(Si) + Et(Si) + Er(Si) xj(Si) = 1 and yj(Si) = 1
Ep(Si) + Et(Si) + Er(Si) + Ew(Si) xj(Si) = 0 and yj(Si) = 1
0 xj(Si) = 0 and yj(Si) = 0

. (13)

3.4.2. Determination of Sleep State Threshold

When the sensor node in the wireless sensor network is working, how to determine
the transition between the sleep state and the active state differs as a function of the energy
consumption of the sensor node. At the same time, it also brings different benefits to the
players. In other words, the energy consumption of the sensor nodes can be reduced by
switching to a sleep state at an appropriate idle listening time, thus prolonging the lifetime
of the sensor network. In order to obtain the threshold of sleep state transition of the sensor
node, the following definitions are established:



Sensors 2022, 22, 478 8 of 19

Definition 1. Let R =
(

K j
si

)
be a strategic section adopted by the sensor node Si in the wireless

sensor network in the time period of j, ρ be the strategic section set of sensor nodes, and U+ be the
utility set obtained by sensor nodes. The utility obtained by the sensor node Si using the strategic
section R is ui (si, s−i) ∈ U+, and the utility obtained by the sensor node Si using a different
strategic section is u′ i(si, s−i) ∈ U+. If u′ i(si, s−i) does not exist, make u′ i(si, s−i) � ui(si, s−i);
this shows that the strategy R adopted by the sensor node Si is effective.

Definition 2. In the wireless sensor network, the players who make decisions can only improve
utility, denoting that the players are rational.

According to the personal rationality and strategic effectiveness of the players in the
wireless sensor network, the following theorems can be drawn:

Theorem 1. In the wireless sensor network, the sensor node is rational and the strategy is effective;
thus, so the threshold of switching from an idle listening state to sleep state is T′(Si), i.e.,

T′(Si) =
(Ia − Is) ∗ Tas

2 ∗ L(si) ∗ I(si)
. (14)

Proof of Theorem 1. In the wireless sensor network, the idle listening time of the sensor
node will fluctuate; however, but for the energy efficiency of sensor nodes, they will not
enter the sleep state during all idle listening periods when working. When the sensor node
is in the sleep state, the energy consumed by the sensor node in idle listening must be
greater than the energy consumed by the sensor node when switching working state, i.e.,

L(Si) ∗ I(Si) ∗ T′′ (Si) ∗Vs ≥
Vs

2
∗ (Ia − Is) ∗ Tas

⇔ T′′ (Si) ≥
(Ia − Is) ∗ Tas

2 ∗ L(si) ∗ I(si)
, (15)

where T′′ (Si) is the idle listening time of sensor node in the active state. The threshold of
the sleep state T′(Si) is the minimum idle listening time when the sensor node changes
from the active state to the sleep state. �

The Nash equilibrium [16] is an important solution to the optimization problems in
game theory. If each player Si in the game adopts a strategy to form a strategy combi-
nation

(
D∗S1

, D∗S2
, · · · , D∗Sn

)
, the strategy D∗Si

of any player Si is the best strategy for the

strategy combination
(

D∗S1
, D∗S2

, · · ·D∗Si−1
, D∗Si+1

, · · · , D∗Sn

)
of the remaining players in the

game. In other words, the utility function ui

(
D∗S1

, D∗S2
, · · ·D∗Si−1

, D∗Si
, D∗Si+1

, · · · , D∗Sn

)
≥

ui

(
D∗S1

, D∗S2
, · · ·D∗Si−1

, DSi , D∗Si+1
, · · · , D∗Sn

)
applies for any DSi ∈ K; thus, (D∗S1

, D∗S2
, · · · ,

D∗Sn
) is the Nash equilibrium of GT.
Theorem 1 gives the threshold for the sensor node to enter the sleep state. From the

utility function, it can be seen that, in the process of a staged game, the sensor nodes gain
more utility by adopting the sleep strategy. According to the self-interest of the sensor
nodes, when the sensor nodes reach the sleep threshold, they will take selfish actions to
save their own energy; thus, in a staged game, the sensor nodes adopt the sleep strategy
as the Nash equilibrium of the game. However, when the sensor nodes are working, the
game is a repetitive process. It is necessary to avoid sensor nodes using only a staged
Nash equilibrium, as this will lead to the decline of the overall performance of the network.
In this paper, a penalty mechanism is introduced to ensure the Nash equilibrium of the
whole network.
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3.4.3. Penalty Mechanism of Sensor Node

In WSN, sensor nodes lack knowledge of the whole network information, and sensor
nodes often adopt noncooperative strategies. In other words, sensor nodes can only choose
the optimal strategy according to their own benefit, but they are not optimal from the
standpoint of the entire network [35,36]. Due to the rational preference, once the sensor
node enters the sleep state, it may choose to stay asleep and stop receiving and forwarding
data packets to save energy consumption. This selfish behavior of node will lead to a delay
or failure of data packet transmission, which will directly affect the operation mechanism
of the whole wireless sensor network. In order to prevent the sensor node from taking
selfish behavior, a penalty mechanism is introduced to encourage sensor nodes to wake up
actively to send and receive data packets in a sleep state.

In order to ensure the normal operation of the wireless sensor network, the specific
measures of the punishment mechanism adopted in this paper are as follows: when
the sensor node in the wireless sensor network takes selfish behavior, the network will
immediately mark the node and locate its ID. In the subsequent M rounds, the node is
forced to remain in an idle listening state even if the idle listening time is longer than
the sleep state threshold. The sensor nodes pay a certain price for their previous selfish
behavior before, which also has a certain deterrent effect on the sensor node, forcing it to
wake up in time to receive the forwarding data packets in a future sleep state.

In the condition of ensuring a sufficient deterrent to selfish sensor nodes, the premature
death of sensor nodes due to too many penalty rounds can be avoided, thus destroying the
balance of strategy. Therefore, how to determine the penalty rounds for sensor nodes is
very important to prolong the lifetime of the whole wireless sensor network.

In order to better determine the penalty rounds of sensor nodes, this paper first defines
the different benefits of the active state, sleep state, and penalty state of sensor nodes in the
sensor network, thereby obtaining the utility matrix U of the sensor node as follows:

U =

 u11 u12
u21 u22
u31 u32

. (16)

In the matrix, uαβ represents the utility obtained after the sensor node takes an action,
where α = 1 means that the sensor node takes a wake up action, α = 2 means that the
sensor node takes a sleep action, and α = 3 means that the sensor node is punished. β = 1
means that the sensor node will forward the data packets to the next sensor node or sink
node, and β = 2 means that the sensor node will not forward the data packet to the next
sensor node or sink node.

Since the sensor node is working, each data forwarding of the sensor node is a game
process, and the sensor node will forward many times in its lifetime; therefore, we regard
the forwarding process of the sensor nodes as a repeated game [37]. According to the
principle of repeated game, in each game of the sensor node, the revenue obtained by the
sensor node will have a discount factor δ (0 < δ < 1); if the value is larger, it means that the
sensor node pays more attention to the future long-term gains. According to the discount
criterion, the cumulative revenue function Ui of the sensor node can be obtained as follows:

Ui =
M

∑
m=1

δm−1Uim, (17)

where Uim is the revenue obtained by the sensor node Si in the m round.
It is assumed that the sensor node Si adopts a noncooperative strategy when working.

In other words, when the idle listening time of the sensor node exceeds its sleep threshold
after a packet is forwarded, the node will take selfish behavior after entering the sleep state
and will no longer forward packet. Then, the network will mark the ID of the sensor node
and force the node to stay awake in the next M rounds. According to the revenue function
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and cost function of the game player, it can be concluded that the utility obtained by the
sensor node in the previous round and the subsequent penalty M rounds is as follows:

u22 +
M

∑
m=1

(u31)m = 0 +
M

∑
m=1

δm−1Uim −
M

∑
m=1

[
Esm(Si) + Epm(Si) + Etm(Si) + Erm(Si)

]
, (18)

where (u31)m represents the utility obtained by the sensor node Si when forwarding packets
in the m round penalty state, Esm(Si), Epm(Si), Etm(Si), and Erm(Si) are the energy costs of
sensor node Si for sensing, processing, sending, and receiving data, respectively, in the
m round.

It is assumed that the sensor node Si adopts a cooperative strategy when working. In
other words, the sensor node can always ensure the forwarding of the data packet, whether
it is in the active state or the sleep state. To simplify the discussion, it is assumed that
the sensor node will go to sleep when it reaches the threshold T′(Si). Therefore, it can be
concluded that the utility obtained by the node in the previous round and the subsequent
M rounds is

u21 + (1− p) ∗
M
∑

m=1
(u11)m + p ∗

M
∑

m=1
(u21)m

= G ∗ P−
[
Ep(Si) + Et(Si) + Er(Si) + Ew(Si)

]
+(1− p) ∗

[(
M
∑

m=1
δm−1Uim

)
−

M
∑

m=1

(
Esm(Si) + Epm(Si) + Etm(Si) + Erm(Si)

)]
,

+p ∗
[(

M
∑

m=1
δm−1Uim

)
−

M
∑

m=1

(
Epm(Si) + Etm(Si) + Erm(Si)

)
−M ∗ Ew(Si)

] (19)

where (u11)m and (u21)m represent the utility of forwarding data packets of sensor nodes
in the active state and sleep state, respectively; p is the proportion of the sensor node Si
entering the sleep state in the M rounds. In this paper, we define the average distribution of
actual idle listening time within the maximum idle listening time; therefore, the probability
density function of idle listening time t is as follows:

f (t) =

{
1

Tmax
t ∈ (0, Tmax)

0 Other
, (20)

where Tmax is the maximum idle listening time of the sensor node in actual work. Therefore,
it can be concluded that the probability of the sensor node Si entering the sleep state in the
M round is as follows:

p =
∫ Tmax(Si)

T′(Si)

1
Tmax

dt = 1− T′(Si)

Tmax(Si)
. (21)

In order to ensure the balance of strategies and avoid the premature death of sen-
sor nodes caused by excessive punishment, which can not only deter selfish nodes, but
also prolong the lifetime of sensor nodes to the maximum, the following relationship is
established:

u22 +
M

∑
m=1

(u31)m ≤ u21 + (1− p) ∗
M

∑
m=1

(u11)m + p ∗
M

∑
m=1

(u21)m. (22)

Substituting Equations (18) and (19) into Equation (22), we can get

p ∗M ∗ Ew(Si) ≤ G ∗ P−
[
Ep(Si) + Et(Si) + Er(Si) + Ew(Si)

]
+ p ∗

M

∑
m=1

Esm(Si). (23)
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Since the idle listening time is evenly distributed, the average idle listening time
without entering the sleep state is T′(Si)

2 ; thus, the following relationship can be obtained:

M

∑
m=1

Esm(Si) ≈ M ∗ T′(Si)

2
∗ L(Si) ∗ I(Si) ∗Vs. (24)

Substituting Equation (24) into Equation (23), we can get

M ≥
2 ∗
[
Ep(Si) + Et(Si) + Er(Si) + Ew(Si)

]
− 2 ∗ G ∗ P

p ∗ [2 ∗ Ew(Si)− T′(Si) ∗ L(Si) ∗ I(Si) ∗Vs]
. (25)

Equation (25) gives the range of the number of rounds to punish the sensor node Si
taking selfish behavior under the punishment mechanism. According to the definition
of the Nash equilibrium, it can be determined that, when the number of penalty rounds
M takes the minimum value, it is the Nash equilibrium of the whole network. In this
case, it can not only ensure a sufficient deterrent effect on the sensor nodes, but also avoid
premature energy depletion of the sensor node due to the excessive penalty rounds.

3.5. Algorithm Description

The sensor nodes are responsible for collecting and transmitting information in the
wireless sensor network. In this paper, it is set that the sensor nodes can reasonably switch
between idle listening and sleep states, thus reducing unnecessary energy consumption of
sensor nodes during idle listening time, as well as avoiding the energy burden caused by
frequent switching between idle listening and sleep states. Combining the game process
of sensor nodes in idle listening and sleeping states, the steps of the proposed method for
sensor nodes in the wireless sensor network are given in Algorithm 1.

Algorithm 1 Proposed Algorithm

1. Initialize:
2. N = total nodes
3. Dead = 0 //the number of dead nodes.
4. Begin
5. for i = 1:N
6. if S(i)·E > 0 //If node is alive
7. Cluster formation
8. Record the ID of node
9. if The sensor nodes need to forward the data
10. The sensor nodes forward the data
11. else
12. Calculate the sleep threshold T′(Si)
13. if T(Si) ≤ T′(Si)
14. The sensor node remains idle listen
15. else
16. The sensor node will enter the sleep state from idle listening
17. end if
18. end if
19. else
20. Dead = Dead +1
21. if Dead ≥ N
22. End of simulation
23. end if
24. end if
25.end for

The normal operation of a wireless sensor network is not only related to the number of
dead sensor nodes, but also depends on the number of dormant nodes. In order to maintain
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the normal operation of the sensor network, a penalty mechanism is introduced to punish
the sensor nodes in the sensor network for taking selfish behavior and force the sensor
nodes to adopt cooperative strategies in future network operation. Therefore, according to
the characteristics of the sensor network, the steps of the proposed method for the sensor
network is given in Algorithm 2.

Algorithm 2 Proposed Algorithm

1. Initialize:
2. r = current round
3. Begin
4. for r = 1:max
5. if the sensor network operating normally
6. The sensors nodes are clustered
7. if the sensor in the cluster adopt cooperative strategy
8. The sensor node decides their own state according to the game strategy
9. else
10. Calculate the number of penalty rounds M
11. Mark the ID of the nodes and punish M rounds
12. end if
13. else
14. End of simulation
15. end if
16.end for

4. Analysis

In order to verify the effectiveness of the algorithm for the lifetime of the sensor
node, in this paper, MATLAB was used to simulate the low-energy adaptive cluster-
ing hierarchy (LEACH) [38–42], distributed energy efficient clustering (DEEC) [43–46],
improved LEACH-centralized (LEACH-C) [47,48], localized game theoretical clustering
algorithm (LGCA) [24,27], and our algorithm. The advantages of WSN sensor nodes in
terms of lifetime, data transmission, and node survival state are then evaluated. In this
paper, 100 sensor nodes were randomly distributed in an area of 100× 100, and the sink
node was set at (50, 50). Once the sensor nodes were arranged, energy was no longer
supplied. The specific parameter settings during simulation are shown in Table 2.

Table 2. Simulation parameters.

Parameters Value

Initial energy (J) Einitial 1.0
Number of iterations rmax 5000
Size of date packet (bits) 4000
Proper percentage of CH nodes (%) 5
Parameters of amplifier energy consumption

(
pJ/bit/m4 ) Emp 0.0013

Parameters of amplifier energy consumption
(
pJ/bit/m2 ) E f s 10

Eelec (nJ/bit) 50

Figure 3 shows the dead node comparison among LEACH, DEEC, LEACH-C, LGCA,
and the game theory-based energy-efficient clustering algorithm (GEC) proposed in this
article. The slope of the death node change curve of the GEC algorithm was obviously
lower than that of LEACH, DEEC, LEACH-C, and LGCA. After the first node death in the
GEC algorithm, the sensor nodes across a large area began to die. After 3500 rounds, the
speed of node death was significantly reduced, and the lifetime of the network was better
extended.
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Figure 3. The network dead node comparison.

Figure 4 shows a histogram of the five algorithms in terms of the number of rounds
after which the first node dies (FND), the tenth node dies (TND), half of the nodes die
(HND), and the last node dies (LND) in the sensor network. LEACH, DEEC, LEACH-C,
LGCA, and GEC exhibited FND after 1576, 1611, 1795, 1808, and 1888 rounds, respectively.
Compared with LEACH, DEEC, LEACH-C, and LGCA, the number of FND rounds in
GEC was extended by 19.80%, 17.19%, 5.18%, and 4.42% respectively. LEACH, DEEC,
LEACH-C, LGCA, and GEC exhibited TND after 1770, 1841, 1995, 2089, and 2154 rounds,
respectively. Compared with LEACH, DEEC, LEACH-C and LGCA, the number of TND
rounds in GEC was extended by 21.69%, 17.00%, 7.97%, and 3.11%, respectively. LEACH,
DEEC, LEACH-C, LGCA, and GEC exhibited HND after 2299, 2242, 2664, 2787, and 2855
rounds, respectively. Compared with LEACH, DEEC, LEACH-C, and LGCA, the number
of HND rounds in GEC was extended by 24.18%, 27.34%, 7.17%, and 2.44% respectively.
LEACH, DEEC, LEACH-C, LGCA, and GEC exhibited LND after 3417, 3379, 3817, 3952,
and 4343 rounds, respectively. Compared with LEACH, DEEC, LEACH-C, and LGCA,
the number of LND rounds in GEC was extended by 27.10%, 28.53%, 13.78%, and 9.89%
respectively. In this paper, GEC had an advantage in terms of the emergence of FND, TND,
HND, and LND in the sensor network, thus prolonging the network lifetime and better
ensuring the normal operation of the network.
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Figure 4. The network lifetime comparison.

Figure 5 shows the amount of data transmitted by the sensor network in its lifetime, i.e.,
the amount of data received by the sink node. Compared with LEACH, DEEC LEACH-C,
and LGCA, the data transmission capacity of the GEC was increased by 482.52%, 172.20%,
10.27%, and 5.71%, respectively. To address the problem of limited energy in a WSN, the
GEC in this paper can not only prolong the service life of the network, but also greatly
increase the data transmission volume of the network.
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Figure 5. The network data transmission comparison.

Figure 6 shows the change in residual energy of the sensor network with network
rounds for the five different algorithms. It can be clearly seen from the figure that the GEC
algorithm used in this paper was obviously better than the other four algorithms under
the same number of rounds. In addition, the slope of the GEC algorithm was the smallest
among the five curves, indicating that the energy consumption of the GEC algorithm
was also the lowest. For example, as shown in Figure 7, compared with LEACH, DEEC,
LEACH-C, and LGCA, the energy savings of GEC in the 1000th round were 12.33%, 12.36%,
4.14%, and 1.51% respectively. Compared with LEACH, DEEC, LEACH-C, and LGCA,
GEC saved 29.52%, 29.46%, 9.01%, and 3.23% energy, respectively, in the 1500th round.
After 2000 rounds, compared with LEACH, DEEC, LEACH-C, and LGCA, GEC could
save 70.53%, 79.05%, 20.14%, and 6.43% energy, respectively. In addition, GEC could save
185.09%, 188.37%, 32.05%, and 10.27% energy, respectively, after 2500 rounds compared to
LEACH, DEEC, LEACH-C, and LGCA.
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In addition, the FND, TND, HND, and LND with variation in nodes are provided in
Figure 8 in stacked form. When deploying a different number of sensor nodes in the same
area, i.e., a different number of sensor nodes were distributed in a network cross-section
of 100 × 100, the algorithm adopted in this paper was still superior to the other four
algorithms. Figure 9 shows the stacked bar chart of FND, TND, HND, and LND with
the same number of sensor nodes (n = 100) distributed in different cross-sections. As
the deployment cross-section increased, the performance of the sensor network gradually
declined. This is because the range of the deployment cross-section increased, and the
distance for sensor nodes to transmit information increased; hence, the energy consumed
by the sensor node to send information increased, while the lifetime of the sensor network
decreased. However, under the same situation, the performance of this algorithm was
better than the other four algorithms.
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Figure 10 shows the change in network throughput when different numbers of sensor
nodes were deployed in the same network cross-section (100 × 100). With the increase in
the number of deployed sensor nodes, i.e., an increase in throughput, the GEC algorithm
adopted in this paper always outperformed the other four algorithms. Figure 11 shows the
change in network throughput when the same sensor nodes (n = 100) were deployed in
different network cross-sections. With the increase in network cross-section, the network
throughput decreased, but the GEC algorithm adopted in this paper was always better
than the existing protocols.
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5. Discussion

In the same area, the same number of sensor nodes was deployed. Compared with the
existing LEACH, DEEC, LEACH-C, and LGCA algorithms, the GEC algorithm adopted in
this paper could effectively prolong the life cycle of the network (Section 4, Figure 3) and
greatly improve the stability of the network (Section 4, Figure 4). The data throughput of
the network was also increased (Section 4, Figure 5), and the energy of the sensor network
could be effectively saved (Section 4, Figures 6 and 7). When different numbers of sensor
nodes were deployed in the same network cross-section, the GEC algorithm could still
effectively improve the stability of the network and greatly increase the data throughput of
the network (Section 4, Figures 8 and 10). Similarly, when the same number of sensor nodes
was deployed in different network cross-sections, the performance of the GEC algorithm
in WSN was still better than the other four algorithms (Section 4, Figures 9 and 11). This
is because the sensor nodes could rationally enter the sleep state during idle listening
time by using game theory, thereby reducing the energy consumption of sensor nodes and
effectively improving the WSN performance.

The development of the Internet of things (IoT) has already had a great impact on
people’s lives [49]. The IoT consists of three parts, sensor network, transmission network,
and application network, and the sensor network composed of wireless sensor nodes
is an important part of the IoT. Its function is to sense, collect, process, and transmit
the information in the area covered by the network in a cooperative way, relaying the
information to the users. Therefore, the sensor network plays a vital role in the development
and application of the IoT. Because of the low cost, low power consumption, and fault
tolerance of the wireless sensor network, even if some nodes are damaged, the whole
network will not be paralyzed. This ensures that the sensor network can still provide
accurate and reliable information in a harsh environment. Therefore, WSNs can be widely
used in many areas such as the military field, forest environment monitoring, and intelligent
transportation.

Energy is the basis of a node working, and the energy saving problem is an important
factor that limits the development of WSNs and the IoT. Therefore, this paper proposed
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a game theory-based energy-efficient clustering algorithm, which can effectively reduce
the energy consumption of sensor nodes in idle listening time and greatly improve the
performance of the WSN. In future work, we will try to build a dynamic game model in a
heterogeneous environment, so that the game model can be more widely used to improve
the lifetime of WSNs and provide an energy guarantee for the application and development
of WSNs and IoT.

6. Conclusions

In the condition of limited energy, in order to prolong the service life of sensor nodes
in a WSN, a model based on repeated games was established, and the strategy adopted
by sensor nodes was determined by studying the length of the idle listening stage. When
the idle listening time is longer than the sleep threshold, the sensor node enters the sleep
state to save energy consumption. When the idle listening time is less than the threshold of
the sleep state, the sensor node remains in an idle listening state, which reduces the energy
consumption caused by the transition between the sleep state and the active state of the
sensor node. In order to prevent the sensor node from adopting a noncooperative strategy
after going to sleep, this paper also proposed a punishment mechanism for the sensor node.
This not only ensures strategic balance, but also acts as a deterrent to selfish nodes, forcing
them to adopt cooperative strategies in future operations. The simulation results show that
the game theory-based energy-efficient clustering algorithm is effective in saving energy
consumption of the sensor network, increasing the data transmission of sensor nodes, and
extending the lifetime of sensor nodes.
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