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Seed moisture at harvest is a critical trait affecting maize quality and mechanized
production, and is directly determined by the dehydration process after physiological
maturity. However, the dynamic nature of seed dehydration leads to inaccurate
evaluation of the dehydration process by conventional determination methods. Seed
dry weight and fresh weight were recorded at 14 time points after pollination in a
recombinant inbred line (RIL) population derived from two inbred lines with contrasting
seed dehydration dynamics. The dehydration curves of RILs were determined by fitting
trajectories of dry weight accumulation and dry weight/fresh weight ratio change based
on a logistic model, allowing the estimation of eight characteristic parameters that can be
used to describe dehydration features. Quantitative trait locus (QTL) mapping, taking
these parameters as traits, was performed using multiple methods. Single-trait QTL
mapping revealed 76 QTL associated with dehydration characteristic parameters, of
which the phenotypic variation explained (PVE) was 1.03% to 15.24%. Multiple-
environment QTL analysis revealed 21 related QTL with PVE ranging from 4.23% to
11.83%. Multiple-trait QTL analysis revealed 58 QTL, including 51 pleiotropic QTL.
Combining these mapping results revealed 12 co-located QTL and the dehydration
process of RILs was divided into three patterns with clear differences in dehydration
features. These results not only deepen general understanding of the genetic character-
istics of seed dehydration but also suggest that this approach can efficiently identify
associated genetic loci in maize.
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1. Introduction

Seed moisture at harvest is critical for maize quality and
mechanized production. In some areas with high latitude or
altitude, rainfall is greater and daylight is shorter, with a
rapid decline in temperature after autumn. At low temper-
ature and in a wet and climate with short days, seed
moisture is too high to allow rapid dehydration, leading to
mildewed grain with reduced commercial quality [1]. Even
with artificial drying, drying time is prolonged by high grain
moisture content, incurring labor and financial costs. High
moisture also leads readily to seed breakage during
mechanized harvesting, reducing mechanized production
efficiency. For these reasons, breeding of maize varieties
with low moisture at harvest is an important goal for
breeders.

The change in seed moisture comprises two distinct
phases [2]. The first phase spans the time from the successful
pollination and initiation of seed development to seed
physiological maturity. During this phase, water loss in the
seed is due primarily to dry matter accumulation in the filling
process. The second phase spans the time from physiological
maturity to grain harvest and is defined as the seed
dehydration process [2,3]. In this process, seed moisture at
physiological maturity, length of dehydration time, and
dehydration rate jointly determine seed moisture at harvest.
Seed dehydration is a continuous and dynamic process in
which the moisture at each time point is affected by that at
the previous moment.

The dynamic nature of the dehydration process poses a
challenge to QTL mapping because, at individual develop-
mental stages or time points, different sets of genes are
involved. However, because of the importance of seed
moisture in production, researchers have studied the seed
dehydration process using diverse approaches. Most have
treated seed dehydration as a linear-change process and
determined the physiological maturity of maize from black-
layer formation and milk-line disappearance [4,5]. This
approach is too imprecise for quantitative analysis. An
improved method [6,7] converts seed dry weight to 100-
seed weight at 14% moisture content and defines physio-
logical maturity as occurring at the maximum value of this
measure. However, the harvest time, or time to reach a
stable moisture content, have been treated as identical for
all genotypes. In fact, different genotypes are likely to have
different dehydration periods, especially in separate popu-
lations [8]. Furthermore, these approaches have focused
only on average dehydration rate and failed to capture
other dehydration features affecting final moisture, such as
initial dehydration rate and dehydration duration.

A better strategy for studying such a time-dependent
trait is to fit a curve to the phenotypic values across the
entire dynamic process and analyze the fitted parameters
of the change trajectory using quantitative genetic ap-
proaches. A typical example is the description of seed
filling using a logistic function with a few fitted parameters
[9]. Replacing phenotypic measurements at multiple time
points with a few parameters with biological relevance
revealed the genetic architecture associated with seed

filling, indicating that this strategy is feasible and reliable.
Concretely, the author defined the filling characteristic
parameter t3 as the attainment time of maximum grain dry
weight, a definition consistent with that of physiological
maturity [10]. This above information provides clues and
inspiration for the study of seed dehydration.

The objectives of this study were to define the seed
dehydration process based on a logistic model, to estimate
several parameters that meaningfully describe dehydration
features, and to identify QTL affecting these parameters using
several methods. We wished to show that the strategy used in
this study is suitable for analysis of the dynamic dehydration
process and to deepen general understanding of the genetic
characteristics of seed dehydration.

2. Materials and methods

2.1. Plant materials, field experiments, and phenotyping

A RIL population of 208 lines was derived from the cross of
the parental genotypes DH1M and T877, which differed
significantly in their dehydration features. DH1M has a long
seed dehydration duration and low final moisture levels,
whereas T877 has a much shorter seed dehydration
duration and produces seeds with higher final moisture
levels. The experiments were conducted at three geograph-
ically different locations in China: Nantong (31°55′N,
121°37′E) in 2015, Yangzhou (32°22′N, 119°16′E) in 2016,
and Sanya (18°23′N, 109°44′E) in 2017. For each RIL, 78
plants were grown in a plot consisting of six rows, with a
row length of 3.0 m, a distance between rows of 0.5 m, and
13 plants per row. The pollination dates were recorded for
individual RILs to determine the sampling time. Seeds were
sampled at 10, 15, 20, 25, 30, 35, 40, 43, 46, 49, 52, 55, 58, and
61 days after pollination (DAP). At each time point, two ears
with synchronous developmental processes were selected.
Fifty seeds in the middle of each ear were removed and
their fresh weights were recorded. The seeds were then
dried at 70–80 °C to constant weight after undergoing
fixation at 105 °C for 1 h and their dry weight was recorded.

2.2. Dehydration curve determination and parameter
estimation

The relationship between seed dry weight w and number of
days after pollination t may be described by a logistic function
[11]:

w ¼ k
1þ ae−bt

ð1Þ

where, k, a, and b are fitted parameters; k estimates the final
or upper limit of seed dry weight, b estimates the filling rate,
and a is associated with both the rate and duration of seed
filling.

Seed moisture at each time point may be calculated
using the formula (1 − dry weight/fresh weight) × 100%,
where the dry weight/fresh weight ratio increases with the
accumulation of dry matter until it finally stabilizes, and
follows a typical sigmoid curve that can also be fitted using
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a logistic function [11]. Thus, using the relationship
between moisture and dry weight/fresh weight ratio, seed
moisture m is calculated as

m ¼ 1−
kdfr

1þ adfre−bdfrt
ð2Þ

where kdfr estimates the final or upper limit of the dry weight/
fresh weight ratio, bdfr is the relative change rate of the dry
weight/fresh weight ratio, and adfr is associated with both the
change rate and duration of seed dehydration. The seed final
moisture was recorded as mfin and can be obtained using kdfr as
follows:

mfin ¼ 1−kdfr

Theoretically, seed dry weight will approach the asymp-
totic maximum k. Under the assumption that the seed
completes physiological maturation and enters dehydration
when w = 0.99 k [9], the dehydration initial time is calculated
by substituting 0.99 k for w in Eq. (1). Similarly, the parameter
mfin is also a theoretical asymptotic value. It may be assumed
that when the change in seed moisture is equal to 99% of the
total change in moisture, the seed moisture will no longer
change and the dehydration process is complete. The
dehydration initial time (tini) and dehydration final time (tfin)
may be accordingly calculated as follows:

tini ¼
lnð99aÞ

b
and tfin ¼ lnð99adfr þ 100Þ

bfdr:Using tini, tfin, and Eqs. (1) and (2), the seed dehydration
curve may be drawn (Fig. 1). Based on tini and tfin, the seed
dehydration duration (tdeh) can be calculated as follows:

tdeh ¼ ln 99adfr þ 100ð Þ
bfdr

−
ln 99að Þ

b
:

Substituting tini for t in Eq. (2), yields the dehydration initial
moisture (mini) using the equation

mini ¼ 1−
kdfr

1þ adfr 99að Þ−
bdfr
b

Subtracting mfin from mini yields the change of seed
moisture during the dehydration process (mdeh), using the
equation

mdeh ¼ kdfradfr 99að Þ−
bdfr
b

1þ adfr 99að Þ−
bdfr
b

The average dehydration rate (vdeh) from mdeh and tdeh
follows:

vdeh ¼ kdfradfrbdfrb 99að Þ−
bdfr
b

1þ adfr 99að Þ−
bdfr
b

2
4

3
5 b ln 99adfr þ 100ð Þ−bdfr ln 99að Þ½ �

The instantaneous rate (v) of seed dehydration at time t
may be expressed as the first derivative, with respect to t, of
the expression in Eq. (1).

v ¼ −
kdfradfrbdfre−bdfrt

1þ adfre−bdfrtð Þ2
ð3Þ

Based on this equation, the initial dehydration rate (vini)
may be obtained by substitution of tini for t in Eq. (3), as
follows:

Fig. 1 – A diagrammatic representation of the dry weight accumulation curve (green), dry weight/fresh weight ratio curve (blue),
and seed dehydration curve (red). Several seed dehydration characteristic parameters are included. vini is the initial dehydration
rate, tini is the dehydration initial time,mini is the dehydration initial moisture, tdeh is the dehydration duration,mdeh is the change
in moisture during the dehydration process, mfin is the final moisture, and tfin is the final dehydration time.
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vini ¼
kdfradfrbdfr 99að Þ−

bdfr
b

1þ adfr 99að Þ−
bdfr
b

2
4

3
5
2

Thus, eight characteristic parameters describing the seed
dehydration process may be estimated. The symbols of these
parameters, together with their biological definitions, are
listed in Table 1. Parameters k, a, b, kdfr, adfr, and bdfr may be
estimated using a nonlinear least-quares approach imple-
mented in R [12].

2.3. Statistical analysis of the parameters

Descriptive statistics of the parameters were calculated with
R. Broad-sense heritability (H2) across multiple environments
was estimated following Knapp [13], where δg2 is genetic
variance, δ2 is error variance, and e is number of environ-
ments. Pearson correlation coefficients among characteristic
parameters were calculated using the agricolae software
package [14,15].

2.4. Genotyping and bin-map construction

DNA of RILs and the two parents were extracted from
young, healthy leaves. The Illumina MaizeSNP50 BeadChip
[16] containing over 56,110 single-nucleotide polymorphisms
(SNPs) evenly distributed throughout the genome was used
for genotyping. Based on chi-square tests, SNPs with a
segregation distortion test significance of P < 0.001 or con-
taining abnormal bases were filtered out. A genetic linkage
map was constructed using a sliding-window approach [17].
The code used for linkage map construction may be found in
the supplementary data. The markers with same segregation
pattern were converted into bin data. Each bin is considered a
new marker for linkage mapping. The order of markers was
then checked using the ripple function in the R/qtl package
[18]. Genetic distances between bin markers were calculated
using the Kosambi function [19].

2.5. QTL analysis

QTL analysis for seed dehydration characteristic parameters
was performed by several methods. Single-trait QTL mapping
was performed using composite interval mapping (CIM), with

a window size of 10 cM and a step size of 1 cM in R/qtl [18].
Multiple-environment QTL mapping was performed using
inclusive composite interval mapping (ICIM) in IciMapping
[20–22]. QTL by environment interaction scanning was imple-
mented based on default parameters. Multiple-trait QTL
mapping was performed by multiple-trait composite interval
mapping (Mt-CIM) with default parameters in Windows QTL
Cartographer 2.5 [23]. To avoid the loss of QTL with small
effects, LOD thresholds were empirically set as respectively
2.5, 3.0, and 3.5 for single-trait, multiple-environment, and
multiple-trait QTL mapping. The total genetic variance
explained by all QTL for each characteristic parameter was
estimated by multiple interval mapping (MIM) in Windows
QTL Cartographer 2.5 [24].

2.6. Co-located QTL identification and dehydration pattern
division

Using the results of QTL scanning, co-located QTL were
identified with the qtlhot package [25,26]. Based on these
identified co-located QTL, seed dehydration processes were
divided into several patterns using the hclust function.
Differences in dehydration characteristic parameters
among patterns were tested by analysis of variance
(ANOVA).

3. Results

3.1. Seed dehydration trajectories and related characteristic
parameters

To obtain the dehydration trajectories of each inbred line,
seed filling curves and moisture curves of 208 RILs were fitted
across three different environments. The mean coefficients of
determination (R2) of filling curves in Nantong in 2015,
Yangzhou in 2016, and Sanya in 2017 were 0.95, 0.95, and
0.97, respectively. The mean R2 values of moisture curves
were 0.98, 0.95, and 0.98, respectively. These results indicate
that the logistic function provided a good fit for the changes in
dry weight and moisture. Seed dehydration trajectories were
drawn based on change processes of seed filling and moisture
(Fig. 2-A). The dehydration processes of the 208 RILs showed
marked differences across the three environments. For
parents, the dehydration duration of DH1M was longer than
that of T877 and the final moisture of T877 was greater than
that of DH1M in all three environments. The eight character-
istic parameters associated with the dehydration process are
described in Table 2. The observation that the minimum
value of tdeh is negative indicates that seed moisture
stabilized before the filling process stopped. At that moment,
the characteristic parameters describing the dehydration
rate and changes of moisture were very small and
approached zero. All characteristic parameters among the
RILs showed wide variation, with coefficients of variation
ranging from 12.7% to 234.7%. The H2 of these characteristic
parameters ranged from 53.7% to 82.6%, where mfin had the
smallest and mdeh the largest H2. Thus, the segregating
population showed high genetic variation for seed dehydra-
tion dynamics.

Table 1 – Characteristic parameters associated with seed
dehydration.

Parameter
symbol

Biological significance

tini Dehydration initial time (DAP)
mini Dehydration initial moisture
vini Initial dehydration rate
tdeh Dehydration duration (days)
mdeh Moisture change during dehydration process
vdeh Average dehydration rate
mfin Final moisture
tfin Dehydration final time (DAP)
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3.2. Correlations between characteristic parameters associated
with dehydration

Pearson correlation coefficients between characteristic pa-
rameters are illustrated in Fig. 2-B. A high positive correlation
was found between mini and mfin. Interestingly, there was a
negative correlation between mfin and tfin that was stronger
than the correlations between mfin and other parameters
associated with dehydration time. Also, mdeh showed high
positive correlations with tini and vini, indicating that a higher
initial dehydration rate was associated with a larger change in
moisture content. Moreover, the dehydration duration would
be shorter owing to the negative correlation between tini and
tdeh. As evident from the low correlations among the three
environments for each parameter, these characteristic pa-
rameters may be affected by genotype–environment
interaction.

3.3. Construction of the genetic linkage map

The genetic linkagemap with 3227 bin markers is described in
Table S1 and Fig. 3. The map covered 2450 cM, with a mean
interval length of 0.76 cM. Chromosome length varied from
373.06 cM (chromosome 1) to 102.29 cM (chromosome 2). The
number of markers per chromosome varied from 503 to 111,
with chromosome 1 containing the most markers (503) and
chromosome 2 the fewest (111). The maximum marker
interval per chromosome ranged from 5.65 cM (chromosome

5) to 25.39 cM (chromosome 7). Chromosome 5 showed the
largest marker density, with a mean interval length of
0.64 cM. Chromosome 7 showed the smallest marker density,
with a mean interval length of 0.91 cM.

3.4. QTL analysis

3.4.1. QTL for a single characteristic parameter in a single
environment
All QTL identified by single-trait QTL mapping in any of the
three environments are summarized in Table S2. The 76 QTL
included 31 in Nantong in 2015, 25 in Yangzhou in 2016, and
20 in Sanya in 2017. The logarithm of odds (LOD) curves are
shown in Fig. 4-A, where it is evident that the same
characteristic parameters showed different peaks in different
environments. These QTL were potentially affected by envi-
ronment. Some QTL for the same characteristic parameters
were repeatedly detected in multiple environments, such as a
QTL for tini on chromosome 7 and one for vini on chromosome
8. Some QTL were repeatedly detected for different character-
istic parameters, suggesting the action of pleiotropic loci. In
Nantong in 2015, the total phenotypic variation explained
(PVE) for each characteristic parameter ranged from 9.04% to
30.19%. In Yangzhou in 2016, mini showed the highest total
PVE (35.90%) and tfin the lowest (1.23%). In Sanya in 2017, mfin

showed the highest total PVE (30.27%) and vdeh showed the
lowest (2.21%). Across the three environments, the proportion
of phenotype variation explained by a single QTL ranged from

Fig. 2 – Seed dehydration curves of two parents and RILs (gray) in three environments, and correlations among dehydration
characteristic parameters. A) Red curves represent dehydration processes of DH1M and blue curves represent dehydration
processes of T877. The dehydration curves of the RILs show wide variation in three environments. B) The lower left diagonal
displays the correlations among characteristic parameters based on the three environments. The upper right diagonal displays
correlations among characteristic parameters based on a single environment. Red indicates positive and blue indicates
negative correlation. The darker the color, the stronger is the correlation.
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1.03% to 15.24% (Fig. 4-B). For all parameters, the explained
phenotype variation of most QTL was <10.00% and fewer loci
made larger phenotypic contributions. Both parents contrib-
uted favorable alleles at various loci. T877 provided increasing

QTL alleles for tini, mdeh, and mfin, whereas DH1M provided
increasing QTL alleles associated with tdeh, tfin, and vdeh (Fig.
4-C). This observation is consistent with the observed
phenotypic differences between the two parents.

Table 2 – Descriptive statistics for eight characteristic parameters associated with dehydration process.

Characteristic
parameters

Environment DH1M T877 RIL

Mean Standard
deviation

Maximum Minimum Coefficient of
variation (%)

Heritability
(%)

tdeh 2015 Nantong 30.520 12.190 22.043 14.004 57.740 −13.920 63.5 76.6
2016
Yangzhou

25.100 9.370 7.890 14.692 39.180 −23.570 186.2

2017 Sanya 16.810 0.430 11.661 9.632 35.950 −15.790 82.6
tfin 2015 Nantong 78.450 76.841 72.842 9.160 103.515 42.306 12.6 72.7

2016
Yangzhou

70.610 65.697 66.452 13.783 97.116 30.806 20.7

2017 Sanya 79.677 78.044 78.241 8.558 98.715 50.078 10.9
tini 2015 Nantong 47.934 64.647 50.862 12.248 92.413 24.906 24.1 77.9

2016
Yangzhou

45.508 56.323 58.947 14.513 99.030 29.357 24.6

2017 Sanya 62.864 77.613 66.695 8.465 105.787 46.610 12.7
vdeh 2015 Nantong 0.004 0.002 0.004 0.003 0.041 0.000 89.0 78.1

2016
Yangzhou

0.002 0.009 0.007 0.016 0.092 0.000 234.7

2017 Sanya 0.002 0.021 0.004 0.008 0.073 0.000 212.5
vini 2015 Nantong 0.009 0.002 0.008 0.006 0.024 0.000 73.1 79.6

2016
Yangzhou

0.007 0.002 0.003 0.003 0.019 0.000 118.5

2017 Sanya 0.003 0.001 0.003 0.002 0.009 0.000 69.6
mdeh 2015 Nantong 0.115 0.022 0.099 0.092 0.447 0.001 92.5 82.6

2016
Yangzhou

0.049 0.084 0.042 0.061 0.338 0.000 146.4

2017 Sanya 0.036 0.009 0.030 0.023 0.129 0.001 78.4
mfin 2015 Nantong 0.188 0.280 0.258 0.064 0.403 0.113 24.9 53.7

2016
Yangzhou

0.314 0.459 0.429 0.103 0.725 0.118 24.1

2017 Sanya 0.160 0.159 0.183 0.041 0.272 0.049 22.3
mini 2015 Nantong 0.302 0.302 0.357 0.078 0.685 0.182 21.9 65.3

2016
Yangzhou

0.363 0.543 0.471 0.116 0.775 0.181 24.6

2017 Sanya 0.196 0.168 0.213 0.035 0.298 0.123 16.4

Fig. 3 – Distribution of markers in the linkage map. Colors indicate numbers of markers per cM.
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3.4.2. Multiple-environment QTL detection
The LOD profiles of characteristic parameters based on
multiple-environment QTL analysis are shown in Fig. 5-A.

The 21 QTL identified across the three environments included
one for tdeh, four for tfin, four for tini, two for vini, one for mdeh,
seven for mfin, and two for mini (Table S3). The mean PVE for

Fig. 4 – Single-trait QTL mapping of eight characteristic parameters. A) LOD curves of characteristic parameters in different
environmental conditions. B) PVE distribution of the corresponding QTL for each characteristic parameter. Different colors
represent different environments. C) The number of increasing QTL alleles for different parameters contributed by each parent.
Blue bars indicate the numbers of increasing QTL alleles contributed by T877 and red bars indicate the numbers of increasing
QTL alleles contributed by DH1M.
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individual QTL ranged from 4.23% to 11.83%. The total PVE for
each characteristic parameter ranged from 4.23% to 44.87%.
AlthoughQTL-by-environment interactionwas detected in some
regions, some QTL with a large LODA (LOD scores for QTL with
only mean effects) and small LODAE (LOD scores for QTL with
only environmental interaction effects) were relatively stable in
different environments. In contrast, some QTL with small LODA

and large LODAE showed strong QTL–environment interaction. A
QTL for tini with a very large LOD was detected at 229.7 cM on
chromosome 6 with a mean additive effect of 2.488, indicating
that the allele from the parent T877 at this locus would delay
initial dehydration time by 2.488 days based on the population
mean. The PVEs of most QTL showed large environmental
interaction, and the interactive effects of some QTL were larger
than the additive effects. This result indicates that QTL–
environment interaction was an important factor controlling
these characteristic parameters and that dehydration features
were strongly influenced by environments.

3.4.3. Multiple-trait QTL analysis
The results of multiple-trait analysis in each environment are
shown in Fig. 5-B and Table S4. In Nantong during 2015, 22
QTL were detected, with 21 QTL being pleiotropic. For the
eight characteristic parameters, the total PVE ranged from
11.23% to 59.95%. In Yangzhou during 2016, 13 QTL were
detected, including nine pleiotropic QTL. The total PVE of
these QTL for each characteristic parameter ranged from
4.78% to 24.64%. In Sanya during 2017, 23 QTL were detected,

of which 21 QTL were pleiotropic. In total, 6.40%–38.69% of the
phenotypic variance for each characteristic parameter was
explained by these QTL. Thus, a total of 58 QTL were identified
for dehydration characteristic parameters, of which 51
showed pleiotropic effects. Most pleiotropic QTL showed
antagonistic pleiotropic effects and a few showed synergistic
pleiotropic effects. Thirteen QTL were identified on chromo-
some 6, the largest number on a single chromosome. On
chromosome 10, only one QTL was detected, and it controlled
mdeh, vini, and tini. No QTL for seed dehydration were found on
chromosome 9. Among the eight dehydration characteristic
parameters, mfin was controlled by the most QTL (31) and vdeh
by the fewest (9). tini, mini, vini, tdeh, mdeh, and tfin were
controlled by 21, 19, 21, 16, 14, and 26 QTL, respectively. Of
the pleiotropic QTL, most controlled two or three character-
istic parameters. Five controlled four characteristic parame-
ters. Only one QTL, located at 3.88 cM on chromosome 7,
controlled six characteristic parameters. The pleiotropies of
these QTL were consistent with correlations among the
characteristic parameters. As an example, three QTL located
at 140.8, 197.4, and 213.0 cM on chromosome 7 showed
antagonistic pleiotropy between mini and tfin, a finding
consistent with the negative correlation between mini and tfin.

3.5. Co-located QTL and dehydration pattern

QTLmapping based on multiple methods identified abundant
loci associated with dehydration features. Overall,

Fig. 5 – Profile plots for multiple-environment QTL mapping and multiple-trait QTL mapping. A) The LOD, LODA, and LODAE are
the LOD scores for detecting QTL with both mean and environmental interaction effects, QTL with only mean effects, and QTL
with only environmental interaction effects, respectively. Blue square means that the T877 allele had a positive effect and red
square means that the DH1M allele had a positive effect. The darker the color, the larger is the effect value. B) The top section
shows LOD curves of joint analysis in three environments. The bottom section shows heat maps along the genome for each
characteristic parameter, where blue square means that the T877 allele had a positive effect and red square means that the
DH1M allele had a positive effect. The darker the color, the larger is the effect value.
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characteristic parameters associated with seed dehydration
were regulated by some major loci and some loci with
environmental interactions or pleiotropic effects. However,
stable and reliable QTL are most desirable for genetic
improvement. Based on the results of QTL mapping, a total
of 12 co-located QTL were identified across the genome (Fig. 6,
Table S5). Chromosomes 2, 5, and 8 had one co-located QTL
each. Chromosomes 3, 4, and 6 had two co-located QTL each.
Three co-located QTL were identified on chromosome 7.
The seed dehydration processes of RILs were divided into
three patterns according to the 12 co-located QTL (Fig. 7-A).
The seed dehydration processes under three patterns
displayed obvious differences. The average dehydration
curve of each environment was described by different
patterns (purple dashed lines). The differences in dehydra-
tion features between patterns showed a consistent and
regular pattern. To eliminate the influence of the environ-
ment, average dehydration curves based on the three

environments under different patterns (blue solid lines)
were drawn. The overall average dehydration process
under pattern 1 showed a lagging initial dehydration time,
low average dehydration rate, lagging final dehydration
time, and low final moisture. The overall average dehydra-
tion process under pattern 2 showed an early initial
dehydration time, high initial dehydration rate, long
dehydration duration, large moisture change, high average
dehydration rate, early final dehydration time, and high
final moisture. The overall average dehydration process
under pattern 3 showed a small initial dehydration rate and
small moisture change. The differences of characteristic
parameters associated with seed dehydration between
different patterns were inspected (Fig. 7-B). All parameters
showed clear differences among different patterns, except
for tdeh. This finding indicates that the 12 co-located loci
were reliable and could effectively divide the seed dehy-
dration process.

Fig. 6 – Distribution along the genome of QTL detected by multiple mapping methods. From the center to the outside of the
image are QTL detected by single-trait mapping, QTL detected by multiple-environment mapping, QTL detected by multiple-
trait mapping, and co-located QTL. Different colors represent QTL from different characteristic parameters and mapping
methods.
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4. Discussion

Seed moisture at harvest is a primary factor affecting maize
quality and commercial production. Low seed moisture at
harvest can reduce the economic impact of artificial drying
and facilitate mechanical harvesting. The dehydration pro-
cess from physiological maturity to harvesting directly affects
final seed moisture. However, because seed dehydration is a
continuous dynamic process and corresponding start and end
times are difficult to determine accurately, genetic analysis of
seed dehydration features is a challenge for researchers. In
this study, we used a novel strategy based on the filling curve
and the dry weight/fresh weight ratio curve to define the seed
dehydration process in maize. We used eight characteristic
parameters determining the seed dehydration curve to
describe dehydration features. Compared with previous
studies, this strategy accurately determined the initial time
for dehydration based on the definition of physiological
maturity as the point at which the maximum dry weight of
the grain is realized [2,10]. In addition, the dehydration
duration of each inbred line was estimated rather than taken
as a uniform value. The use of eight characteristic parameters
allowed research contents associated with seed dehydration
to be more varied and not limited to final seed moisture and
average dehydration rate.

Understanding the complexity of seed dehydration based
on these characteristic parameters would aid in the selection

of an optimal breeding strategy. The high heritability of these
characteristic parameters suggests the presence of high
genetic variation in the segregating population, in which the
heritability of final seed moisture and average dehydration
rates were similar to those in previous studies [3,27–30]. This
result indicates that these characteristic parameters are
quantitative “traits” with stable inheritance and can be
effectively selected. The correlations between some charac-
teristic parameters were high, suggesting that they may
represent similar genetic mechanisms. For the same charac-
teristic parameter, correlations between environments
showed low levels, perhaps owing to large environment
differences and genotype-environment interaction. Interest-
ingly, the heritabilities of these characteristic parameters
showedmedium and high levels in this study, suggesting that
traits with high heritability might still show low correlations
between environments. Considering that heritability is de-
fined as the proportion of genetic variance to phenotypic
variance and is affected by many factors, such as experimen-
tal design, calculation method, and population type, the
heritability may not be directly related to the degree of
correlation between environments.

Maize seed dehydration is a complex process that is
affected by many external factors [31–33]. Different QTL
mapping methods have different detection powers for differ-
ent traits [34–36]. Therefore, it is necessary to identify QTL
associated with dehydration in maize by acquiring dehydra-
tion characteristic parameters in multiple environments and

Fig. 7 – Three patterns of the seed dehydration process defined by 12 co-located QTL. A) The dehydration curves of different
patterns in three environments, where red, light blue, and green represent dehydration curves for Nantong during 2015,
Yangzhou during 2016, and Sanya during 2017, respectively. Purple dashed lines show average dehydration curves in different
patterns and environments. Three dark blue solid lines denote the average dehydration curves of the three patterns. B)
Distribution of the eight dehydration characteristic parameters in three patterns. All parameters but tdeh showed marked
differences among the three patterns.
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using multiple mapping methods. In this study, we collected
seed moisture data in three environments and identified
abundant QTL associated with dehydration features using
single-trait, multiple-environment, and multiple-trait QTL
analysis. A QTL located at 104.1 cM on chromosome 5 was
consistent with one QTL identified by Wang [7]. In the same
QTL region, GRMZM5G809727 was identified by genome-wide
association analysis (GWAS) [6] as being associated with field
grain drying rate. A QTL located at 18.9 cM on chromosome 7
was close to GRMZM2G029722, identified as being associated
with grain drying rate and predicted to encode cucumber
mosaic virus (CMV) 1a interacting protein1 [37]. Three QTL
located at 3.9, 68.7, and 145.4 cM on chromosome 8 have also
been found in other studies [6,7]. For eight dehydration
characteristic parameters, multiple-trait QTL analysis re-
vealed more QTL than other methods, indicating that this
method was more powerful because it accounts for the
structure of genetic correlations between traits. It can
distinguish between pleiotropy and gene linkage as underly-
ing causes of a genetic relationship between traits [38,39].
Twelve co-located QTL associated with dehydration features
were determined and the dehydration process was divided
into three patterns with significant differences. These co-
located QTL are reliable and will be valuable for marker-
assisted selection in maize genetic improvement. These
results indicate that the research approach used in this
study could efficiently identify genetic loci that regulate the
dynamic features of seed dehydration.

Supplementary data for this article can be found online at
https://doi.org/10.1016/j.cj.2019.06.011.
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