
Advances in Engineering Software 105 (2017) 30–47

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Research paper

Grasshopper Optimisation Algorithm: Theory and application

Shahrzad Saremi a , b , Seyedali Mirjalili a , b , ∗, Andrew Lewis a

a School of Information and Communication Technology, Griffith University, Nathan, Brisbane, QLD 4111, Australia
b Griffith College, Mt Gravatt, Brisbane, QLD 4122, Australia

a r t i c l e i n f o

Article history:

Received 29 October 2016

Accepted 10 January 2017

Keywords:

Optimization

Optimization techniques

Heuristic algorithm

Metaheuristics

Constrained optimization

Benchmark

Algorithm

a b s t r a c t

This paper proposes an optimisation algorithm called Grasshopper Optimisation Algorithm (GOA) and ap-

plies it to challenging problems in structural optimisation. The proposed algorithm mathematically mod-

els and mimics the behaviour of grasshopper swarms in nature for solving optimisation problems. The

GOA algorithm is first benchmarked on a set of test problems including CEC2005 to test and verify its

performance qualitatively and quantitatively. It is then employed to find the optimal shape for a 52-bar

truss, 3-bar truss, and cantilever beam to demonstrate its applicability. The results show that the pro-

posed algorithm is able to provide superior results compared to well-known and recent algorithms in the

literature. The results of the real applications also prove the merits of GOA in solving real problems with

unknown search spaces.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The process of finding the best values for the variables of a

particular problem to minimise or maximise an objective func-

tion is called optimisation. Optimisation problems exist in different

fields of studies. To solve an optimisation problem, different steps

need to be taken. Firstly, the parameters of the problem should

be identified. Based on the nature of the parameters, problems

may be classified as continuous or discrete. Secondly, the con-

straints that are applied to the parameters have to be recognised

[1] . Constraints divide the optimisation problems into constrained

and unconstrained. Thirdly, the objectives of the given problem

should be investigated and considered. In this case, optimisation

problems are classified into single-objective versus multi-objective

problems [2] . Finally, based on the identified types of parameters,

constraints, and number of objectives a suitable optimiser should

be chosen and employed to solve the problem.

Mathematical optimisation mainly relies on gradient-based in-

formation of the involved functions in order to find the optimal

solution. Although such techniques are still being used by different

researchers, they have some disadvantages. Mathematical optimi-

sation approaches suffer from local optima entrapment. This refers

to an algorithm assuming a local solution is the global solution,

thus failing to obtain the global optimum. They are also often inef-

fective for problems with unknown or computationally expensive

∗ Corresponding author.

E-mail address: seyedali.mirjalili@griffithuni.edu.au (S. Mirjalili).

URL: http://www.alimirjalili.com (S. Mirjalili)

derivation [3] . Another type of optimisation algorithm that allevi-

ates these two drawbacks is stochastic optimisation [4] .

Stochastic methods rely on random operators that allow them

to avoid local optima. They all start optimisation process by creat-

ing one or a set of random solutions for a given problem. In con-

trast to mathematical optimisation techniques, they do not need

to calculate the gradient of a solution, just evaluating the solutions

using the objective function(s). Decisions as to how to improve the

solutions are made based on the calculated objective values. There-

fore, the problem is considered as a black box, which is a very use-

ful mechanism when solving real problems with unknown search

spaces. Due to these advantages, stochastic optimisation techniques

have become very popular over the past two decades [5] .

Among stochastic optimisation approaches, nature-inspired,

population-based algorithms are the most popular [6] . Such tech-

niques mimic natural problems-solving methods, often those used

by creatures. Survival is the main goal for all creatures. To achieve

this goal, they have been evolving and adapting in different ways.

Therefore, it is wise to seek inspiration from nature as the best

and oldest optimiser on the planet. Such algorithms are classified

into two main groups: single-solutions-based and multi-solution-

based. In the former class, a single random solution is generated

and improved for a particular problem. In the latter class, how-

ever, multiple solutions are generated and enhanced for a given

problem. Multi-solution-based algorithms are more popular than

single-solution-based methods, as the literature shows [7] .

Multi-solution-based algorithms intrinsically have higher lo-

cal optima avoidance due to improving multiple solutions dur-

ing optimisation. In this case, a trapped solution in a local opti-

mum can be assisted by other solutions to jump out of the local

http://dx.doi.org/10.1016/j.advengsoft.2017.01.004

0965-9978/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2017.01.004&domain=pdf
mailto:seyedali.mirjalili@griffithuni.edu.au
http://www.alimirjalili.com
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004

S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47 31

optimum. Multiple solutions explore a larger portion of the search

space compared to single-solution-based algorithms, so the prob-

ability of finding the global optimum is high. Also, information

about the search space can be exchanged between multiple so-

lutions, which results in quick movement towards the optimum.

Although multi-solution-based algorithms have several advantages,

they require more function evaluations.

The most popular single-solution-based algorithms are hill

climbing [8] and simulated annealing [9] . Both algorithms follow

a similar idea, but the local optima avoidance of SA is higher due

to the stochastic cooling factor. Other recent single-solution-based

algorithms are Tabu Search (TS) [10,11] , and Iterated Local Search

(ILS) [12] . The most popular multi-solutions-based algorithms are

Genetic Algorithms (GA) [13] , Particle Swarm Optimisation (PSO)

[14] , Ant Colony Optimisation (ACO) [15] , and Differential Evolu-

tion (DE) [16] . The GA algorithm was inspired by the Darwinian

theory of evolution. In this algorithm, solutions are considered as

individuals and the parameters of solutions take the place of their

genes. Survival of the fittest individuals is the main inspiration of

this algorithm where the best individuals tend to participate more

in improving poor solutions. The PSO algorithm simulates the for-

aging of herds of birds or schools of fishes. In this algorithm the

solutions are improved with respect to the best solutions obtained

so far by each of the particles and the best solution found by the

swarm. The ACO algorithm mimics the collective behaviour of ants

in finding the shortest path from the nest to the source of foods.

Finally, DE utilises simple formulae combining the parameters of

existing solutions to improve the population of candidate solutions

for a given problem.

The similarity of both classes of nature-inspired algorithms is

the improvement of solutions until the satisfaction of an end cri-

terion and the division of optimisation process into two phases:

exploration versus exploitation [17] . Exploration refers to the ten-

dency for an algorithm to have highly randomised behaviour so

that the solutions are changed significantly. Large changes in the

solutions cause greater exploration of the search space and conse-

quently discovery of its promising regions. As an algorithm tends

toward exploitation, however, solutions generally face changes on

a smaller scale and tend to search locally. A proper balance of ex-

ploration and exploitation can result in finding the global optimum

of a given optimisation problem.

The literature shows that there are many recent swarm intelli-

gence optimisation techniques such as Dolphin Echolocation (DEL)

[18,19] , Firefly Algorithm (FA) [20,21] , Bat Algorithm (BA) [22] , and

Grey Wolf Optimizer (GWO) [3] . DEL and BA mimic echolocation of

dolphins in finding prey and bats navigating respectively. However,

FA simulates the mating behaviour of fireflies in nature. Cuckoo

Search (CS) [23,24] is another recent algorithm in this field, in

which the reproductive processes of cuckoos are employed to pro-

pose an optimisation algorithm. The GWO is also a swarm-based

technique that models the hunting mechanism of grey wolves.

There are also other algorithms with different inspiration in the

literature. For instance, State of Matter Search (SMS) [25,26] uses

the concepts of different phases in matter to optimise problems

and the Flower Pollination Algorithm (FPA) [27] has been inspired

by the survival and reproduction of flowers using pollination. There

is a question here as to why we need more algorithms despite the

many algorithms proposed so far.

The answer to this question is in the No Free Lunch (NFL) the-

orem [28] that logically has proven that there is no optimisation

technique for solving all optimisation problems. In other words,

algorithms in this field perform equally on average when consid-

ering all optimisation problems. This theorem, in part, has moti-

vated the rapidly increasing number of algorithms proposed over

the last decade and is one of the motivations of this paper as

well. The next section proposes a new algorithm mimicking the

behaviour of grasshopper swarms. There are a few works in the lit-

erature that have tried to simulate locust swarm [29–33] . The cur-

rent study is an attempt to more comprehensively model grasshop-

per behaviours and propose an optimisation algorithm based on

their social interaction.

Due to their simplicity, gradient-free mechanism, high local op-

tima avoidance, and considering problems as black boxes, nature-

inspired algorithms have been applied widely in science and in-

dustry [34–36] . Therefore, we also investigate the application of

the proposed algorithm in solving real problems. The rest of the

paper is organised as follows:

The Grasshopper Optimisation Algorithm is proposed in

Section 2 . Section 3 presents and discusses the results on the

optimisation test beds and inspects the behaviour of the pro-

posed algorithm. Section 4 contains the application of the pro-

posed method in the field of structural design optimisation. Finally,

Section 5 concludes the work and suggests several directions for

future studies.

2. Grasshopper Optimisation Algorithm (GOA)

Grasshopper are insects. They are considered a pest due to

their damage to crop production and agriculture. The life cycle of

grasshoppers is shown in Fig. 1 . Although grasshoppers are usually

seen individually in nature, they join in one of the largest swarm

of all creatures [37] . The size of the swarm may be of continen-

tal scale and a nightmare for farmers. The unique aspect of the

grasshopper swarm is that the swarming behaviour is found in

both nymph and adulthood [38] . Millions of nymph grasshoppers

jump and move like rolling cylinders. In their path, they eat almost

all vegetation. After this behaviour, when they become adult, they

form a swarm in the air. This is how grasshoppers migrate over

large distances.

The main characteristic of the swarm in the larval phase is slow

movement and small steps of the grasshoppers. In contrast, long-

range and abrupt movement is the essential feature of the swarm

in adulthood. Food source seeking is another important character-

istic of the swarming of grasshoppers. As discussed in the intro-

duction, nature-inspired algorithms logically divide the search pro-

cess into two tendencies: exploration and exploitation. In explo-

ration, the search agents are encouraged to move abruptly, while

they tend to move locally during exploitation. These two functions,

as well as target seeking, are performed by grasshoppers natu-

rally. Therefore, if we find a way to mathematically model this be-

haviour, we can design a new nature-inspired algorithm.

The mathematical model employed to simulate the swarming

behaviour of grasshoppers is presented as follows [39] :

X i = S i + G i + A i (2.1)

where X i defines the position of the i-th grasshopper, S i is the so-

cial interaction, G i is the gravity force on the i-th grasshopper, and

A i shows the wind advection. Note that to provide random be-

haviour the equation can be written as X i = r 1 S i + r 2 G i + r 3 A i where

r 1 , r 2 , and r 3 are random numbers in [0,1].

S i =

N ∑

j=1

j � = i

s
(
d i j

) ̂ d i j (2.2)

where d ij is the distance between the i-th and the j-th grasshopper,

calculated as d ij = | x j −x i |, s is a function to define the strength of

social forces, as shown in Eg. (2.3), and ̂ d i j =

x j −x i
d i j

is a unit vector

from the i th grasshopper to the j th grasshopper.

The s function, which defines the social forces, is calculated as

follows:

s (r) = f e
−r
l − e −r (2.3)

32 S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47

Adult

Nymph Egg

Fig. 1. (a) Real grasshopper (b) Life cycle of grasshoppers (left image courtesy of Mehrdad Momeny).

0 5 10 15
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02
s(d) when l=1.5 and f=0.5

Distance (d)

s(d
)

X=2.079
Y=0

1 2 3 4
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Distance (d)

s(d
)

Fig. 2. (left) Function s when l = 1.5 and f = 0.5 (right) range of function s when x is in [1 , 4] .

0 5 10 15

d

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

s(d
)

l=1.5

f=0.0

f=0.2

f=0.4

f=0.5

f=0.6

f=0.8

f=1.0

0 5 10 15

d

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

s(d
)

f=0.5

l=1.0

l=1.2

l=1.4

l=1.5

l=1.6

l=1.8

l=2.0

Fig. 3. Behaviour of the function s when varying l or f .

where f indicates the intensity of attraction and l is the attractive

length scale.

The function s is illustrated in Fig. 2 to show how it impacts on

the social interaction (attraction and repulsion) of grasshoppers.

It may be seen in this figure that distances from 0 to 15 are

considered. Repulsion occurs in the interval [0 2.079]. When a

grasshopper is 2.079 units away from another grasshopper, there

is neither attraction nor repulsion. This is called the comfort zone

or comfortable distance. Fig. 2 also shows that the attraction in-

creases from 2.079 unit of distance to nearly 4 and then gradually

decreases. Changing the parameters l and f in Eq. (2.3) results in

different social behaviours in artificial grasshoppers. To see the ef-

fects of these two parameters, the function s is re-drawn in Fig. 3

varying l and f independently. This figure shows that the parame-

ters l and f change comfort zone, attraction region, and repulsion

region significantly. It should be noted that the attraction or re-

pulsion regions are very small for some values (l = 1.0 or f = 1.0 for

instance). From all these values we have chosen l = 1.5 and f = 0.5 .

A conceptual model of the interactions between grasshoppers

and the comfort zone using the function s is illustrated in Fig. 4 . It

may be noted that, in simplified form, this social interaction was

the motivating force in some earlier locust swarming models [32] .

Although the function s is able to divide the space between two

grasshoppers into repulsion region, comfort zone, and attraction

region, this function returns values close to zero with distances

greater than 10 as Figs. 2 and 3 show. Therefore, this function is

not able to apply strong forces between grasshoppers with large

distances between them. To resolve this issue, we have mapped

S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47 33

Comfort zone Attraction force

Repulsion force

Fig. 4. Primitive corrective patterns between individuals in a swarm of grasshop-

pers.

the distance of grasshoppers in the interval of [1,4] . The shape of

the function s in this interval is shown in Fig. 2 (right).

The G component in Eq. (2.1) is calculated as follows:

G i = −g ̂ e g (2.4)

where g is the gravitational constant and ̂ e g shows a unity vector

towards the centre of earth.

The A component in Eq. (2.1) is calculated as follows:

A i = u ̂ e w (2.5)

where u is a constant drift and ̂ e w is a unity vector in the direction

of wind.

Nymph grasshoppers have no wings, so their movements are

highly correlated with wind direction.

Substituting S, G, and A in Eq.(2.1), this equation can be ex-

panded as follows:

X i =

N ∑

j=1

j � = i

s
(∣∣x j − x i

∣∣)x j − x i

d i j
− g ̂ e g + u ̂ e w (2.6)

where s (r) = f e
−r
l − e −r and N is the number of grasshoppers.

Since nymph grasshoppers land on the ground, their position

should not go below a threshold. However, we will not utilise this

equation in the swarm simulation and optimisation algorithm be-

cause it prevents the algorithm from exploring and exploiting the

search space around a solution. In fact, the model utilised for the

swarm is in free space. Therefore, Eq. (2.6) is used and can sim-

ulate the interaction between grasshoppers in a swarm. The be-

haviour of two swarms in 2D and 3D space using this equation

is illustrated in Figs. 5 and 6 . In these two figures, 20 artificial

grasshoppers are required to move over 10 units of time.

Fig. 5 shows how Eq. (2.6) brings the initial random population

closer until they form a united, regulated swarm. After 10 units

of time, all the grasshoppers reach the comfort zone and do not

move anymore. The same behaviour is observed in a 3D space in

Fig. 6 . This shows that the mathematical model is able to simulate

a swarm of grasshoppers in 2D, 3D, and hyper dimensional spaces.

However, this mathematical model cannot be used directly

to solve optimisation problems, mainly because the grasshoppers

quickly reach the comfort zone and the swarm does not converge

to a specified point. A modified version of this equation is pro-

posed as follows to solve optimisation problems:

X d i = c

⎛

⎜ ⎜ ⎜ ⎜ ⎝

N ∑

j=1

j � = i

c
u b d − l b d

2
s
(∣∣x d j − x d i

∣∣)x j − x i

d i j

⎞

⎟ ⎟ ⎟ ⎟ ⎠

+ ̂

 T d (2.7)

where ub d is the upper bound in the D th dimension, lb d is the

lower bound in the D th dimension s (r) = f e
−r
l − e −r , ̂ T d is the

value of the D th dimension in the target (best solution found so

far), and c is a decreasing coefficient to shrink the comfort zone,

repulsion zone, and attraction zone. Note that S is almost similar

to the S component in Eq. (2.1) . However, we do not consider grav-

ity (no G component) and assume that the wind direction (A com-

ponent) is always towards a target (̂ T d).

Eq. (2.7) shows that the next position of a grasshopper is de-

fined based on its current position, the position of the target,

and the position of all other grasshoppers. Note that the first

component of this equation considers the location of the current

grasshopper with respect to other grasshoppers. In fact, we have

considered the status of all grasshoppers to define the location of

search agents around the target. This is different to PSO as the

most well-regarded swarm intelligence technique in the literature.

In PSO, there are two vectors for each particle: position and ve-

locity vector. However, there is only one position vector for every

search agent in GOA. The other main difference between these two

algorithms is that PSO updates the position of particles with re-

spect to current position, personal best, and global best. However,

GOA updates the position of a search agent based on its current

position, global best, and the position of all other search agents.

This means that in PSO none of the other particles contribute to

updating the position of a particle, whereas GOA requires all search

agents to get involved in defining the next position of each search

agent.

It is also worth mentioning here that the adaptive parameter c

has been used twice in Eq. (2.7) for the following reasons:

• The first c from the left is very similar to the inertial weight

(w) in PSO. It reduces the movements of grasshoppers around

the target. In other words, this parameter balances exploration

and exploitation of the entire swarm around the target.
• The second c decreases the attraction zone, comfort zone, and

repulsion zone between grasshoppers. Considering the compo-

nent c
u b d −l d d

2 s (| x j − x i |) in the Eq. (2.7) , c u b d −l d d
2 linearly de-

creases the space that the grasshoppers should explore and

exploit. The component s (| x j −x i |) indicates if a grasshopper

should be repelled from (explore) or attracted to (exploitation)

the target.

It should be noted that the inner c contributes to the reduction

of repulsion/attraction forces between grasshoppers proportional to

the number of iterations, while the outer c reduces the search cov-

erage around the target as the iteration count increases.

In summary, the first term of Eq. (2.7) , the sum, considers the

position of other grasshoppers and implements the interaction of

grasshoppers in nature. The second term, ̂ T d , simulates their ten-

dency to move towards the source of food. Also, the parameter c

simulates the deceleration of grasshoppers approaching the source

of food and eventually consuming it. To provide more random be-

haviour, and as an alternative, both terms in Eq. (2.7) can be multi-

plied with random values. Also, individual terms can be multiplied

with random values to provide random behaviour in either inter-

action of grasshoppers or tendency towards the food source.

The proposed mathematical formulations are able to explore

and exploit the search space. However, there should be a mech-

anism to require the search agents to tune the level of exploration

to exploitation. In nature, grasshoppers first move and search for

foods locally because in larvae they have no wing. They then move

freely in air and explore a much larger scale region. In stochas-

tic optimisation algorithms, however, exploration comes first due

to the need for finding promising regions of the search space. Af-

ter finding promising regions, exploitation obliges search agents to

34 S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47

-10 -5 0 5 10
-10

-5

0

5

10
t + 0

-10 -5 0 5 10
-10

-5

0

5

10
t + 2

-10 -5 0 5 10
-10

-5

0

5

10
t + 4

-10 -5 0 5 10
-10

-5

0

5

10
t + 6

-10 -5 0 5 10
-10

-5

0

5

10
t + 8

-10 -5 0 5 10
-10

-5

0

5

10
t + 10

-2 0 2
-2

0

2

Fig. 5. Behaviour of swarm in a 2D space.

-10
0

10

-10

0

10
-10

-5

0

5

10

t + 0

-10
0

10

-10

0

10
-10

-5

0

5

10

t + 2

-10
0

10

-10

0

10
-10

-5

0

5

10

t + 4

-10
0

10

-10

0

10
-10

-5

0

5

10

t + 6

-10
0

10

-10

0

10
-10

-5

0

5

10

t + 8

-10
0

10

-10

0

10
-10

-5

0

5

10

t + 10

-2
0

2
-2

0
2
-2

0

2

Fig. 6. Behaviour of swarm in a 3D space.

search locally to find an accurate approximation of the global opti-

mum.

For balancing exploration and exploitation, the parameter c is

required to be decreased proportional to the number of iteration.

This mechanism promotes exploitation as the iteration count in-

creases. The coefficient c reduces the comfort zone proportional to

the number of iterations and is calculated as follows:

c = cmax − l
cmax − cmin

L
(2.8)

where cmax is the maximum value, cmin is the minimum value, l

indicates the current iteration, and L is the maximum number of

iterations. In this work, we use 1 and 0.0 0 0 01 for cmax and cmin

respectively.

S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47 35

(a)

(b)

(c)

6 6.5 7 7.5 8
6

6.5

7

7.5

8

2.5 3 3.5 4 4.5 5

2.5

3

3.5

4

4.5

5

6
6.5

7
7.

6
6.5

7
7.5

6

6.5

7

7.5

8

8.5

2
3

4
5

2
3

4
5

2.5

3

3.5

4

4.5

5

5.5

22

15

00

10

5

-2-2
0

22
00

10

5

-2-2
0

Fig. 7. (a) Behaviour of grasshoppers around a stationary and mobile target in 2D space and (b) 3D space (c) Behaviour of grasshoppers on a unimodal test function and a

multi-modal test function.

The effect of this parameter on the movement and convergence

of grasshoppers is illustrated in Fig. 7 . The sub-figures illustrate

the position history of grasshoppers over 100 iterations. We have

performed the experiment on both stationary and mobile targets

to see how the swarm moves towards and chases them. This fig-

ure shows that the swarm converges gradually towards a station-

ary target in both 2D and 3D spaces. This behaviour is due to re-

ducing the comfort zone by the factor c . Fig. 7 also shows that

the swarm properly chases a mobile target as well. This is due to

the last component of Eq. (2.6) (̂ T d) , in which grasshoppers are at-

tracted towards the target. The interesting pattern is the gradual

convergence of grasshoppers towards the target over the course of

iteration, which is again due to decreasing the factor c . These be-

haviours will assist the GOA algorithm not to converge towards the

target too quickly and consequently not to become trapped in lo-

cal optima. In the last steps of optimisation, however, grasshoppers

will converge towards the target as much as possible, which is es-

sential in exploitation.

The above discussions show that the mathematical model pro-

posed requires grasshoppers to move towards a target gradually

36 S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47

Fig. 8. Pseudo codes of the GOA algorithm.

over the course of iterations. In a real search space, however, there

is no target because we do not know exactly where the global op-

timum, the main target, is. Therefore, we have to find a target for

grasshoppers in each step of optimisation. In GOA, it is assumed

that the fittest grasshopper (the one with the best objective value)

during optimisation is the target. This will assist GOA to save the

most promising target in the search space in each iteration and re-

quires grasshoppers to move towards it. This is done with the hope

of finding a better and more accurate target as the best approxima-

tion for the real global optimum in the search space. Fig. 7 includes

two test functions and shows that the proposed model and target

updating mechanism are effective in problems with unknown op-

timum as well.

The pseudo code of the GOA algorithm is shown in Fig. 8 . The

GOA starts optimisation by creating a set of random solutions. The

search agents update their positions based on Eq. (2.7) . The posi-

tion of the best target obtained so far is updated in each iteration.

In addition, the factor c is calculated using Eq. (2.8) and the dis-

tances between grasshoppers are normalised in [1,4] in each iter-

ation. Position updating is performed iteratively until the satisfac-

tion of an end criterion. The position and fitness of the best target

is finally returned as the best approximation for the global opti-

mum.

Although the above simulations and discussions demonstrate

the effectiveness of the GOA algorithm in finding the global op-

timum in a search space, the performance of the proposed algo-

rithm is investigated by employing a set of mathematical func-

tions and three challenging real problems in the next sections.

Note that the source codes of the GOA algorithm can be found at

http://www.alimirjalili.com/Projects.html and http://au.mathworks.

com/matlabcentral/profile/authors/2943818- seyedali- mirjalili .

3. Results

This section first presents the test bed problems and perfor-

mance metrics that are used to benchmark the performance of the

proposed GOA algorithm. The experimental results are then pro-

vided and analysed in detail.

3.1. Experimental setup

In the field of stochastic optimisation, it is common to employ

a set of mathematical test functions with known optima. Thus,

the performance of different algorithms can be measured quantita-

tively. However, the characteristics of the test functions should be

diverse to be able to draw a mature conclusion. In this work, three

sets of test functions with different features are employed to confi-

dently benchmark the performance of the proposed algorithm. The

test functions are unimodal, multimodal, and composite [40–43] .

The mathematical formulation of these test functions are available

in the appendix.

As shown in Fig. 9 , a unimodal test function has no local so-

lutions and there is only one global optimum. The entire search

space favours the global optima, so the convergence speed and ex-

ploitation of an algorithm can be benchmarked. Fig. 9 also shows

that multi-modal and composite test functions have many local

optima which make them highly suitable for benchmarking the

performance of an algorithm in terms of local optima avoidance

and exploration. Composite tests functions are usually more chal-

lenging than the multi-modal test functions and better mimic real

search spaces. Therefore, the potential performance of an algorithm

solving real problems may be inferred from such benchmarks.

For solving the test functions, 30 search agents and 500 iter-

ations were employed. Each of the test functions was solved 30

times to generate the statistical results. Different performance indi-

cators were utilised to quantitatively compare the algorithms: av-

erage and standard deviation of the best solutions obtained in the

last iterations. Obviously, the lower the value of average and stan-

dard deviation, the greater the ability of an algorithm in avoiding

local solutions and determining the global optimum. Qualitative

results, including convergence curves, trajectory of grasshoppers,

search history, and average fitness of population have been illus-

trated and analysed in the following subsection.

For verification of results, seven algorithms were employed

from the literature including well-known and recent ones: PSO,

SMS [25,26] , BA [22] , FPA [27] , CS [23,24] , FA [20,21] , GA, DE, and

Gravitational Search Algorithm (GSA) [44] . The initial controlling

parameters of all algorithms are shown in Table 1 .

3.2. Qualitative results and discussion

The first experiment was performed on the 2D version of some

of the test functions using only 5 artificial grasshoppers. The main

objective for this experiment was to observe the behaviour of the

GOA qualitatively. Five diagrams have been drawn for each of the

test functions in Fig. 10 in addition to the shape of test functions.

These diagrams are:

• Search history: this diagram shows the location history of the

artificial grasshoppers during optimisation.
• Attraction/repulsion rates: this diagram shows the number of

times that all artificial grasshoppers attracted or repelled each

other during optimisation.
• Trajectory of the first grasshopper in the first dimension: this

diagram shows the value of the first variable of the first

grasshopper in each iteration.
• Average fitness: this diagram indicates the average objective

value of all grasshoppers in each iteration.
• Convergence curve: this diagram shows the objective value of

the best solutions obtained so far (target) in each iteration.

As per the results in Fig. 10 , grasshoppers tend to explore

the promising regions of the search space and cluster around the

global optima eventually. This pattern can be observed in uni-

modal, multimodal, and composite test functions. These results

show that the GOA algorithm beneficially balances exploration and

exploitation to drive the grasshoppers towards the global optimum.

The rates of attraction and repulsion in the pie charts show that

the grasshoppers interact differently on the test functions. They

seem to attract each other more often on the unimodal test func-

tions. This can clearly be observed in the pie charts for F1 and F4.

This behaviour is fruitful because unimodal functions do not have

local optima, so grasshopper can better determine the global opti-

mum by moving towards the best solution obtained so far.

Another interesting pattern in the pie charts is the high re-

pulsion rate between grasshoppers when solving multi-modal and

composite test functions. This can be observed in the pie charts

http://www.alimirjalili.com/Projects.html
http://au.mathworks.com/matlabcentral/profile/authors/2943818-seyedali-mirjalili

S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47 37

F1 F9 F13

Fig. 9. An example of unimodal, multi-modal, and composite test functions.

Table 1

Initial values for the controlling parameters of algorithms.

Algorithm Parameter Value

PSO Topology Fully connected

Cognitive and social constants 1.5, 1.5

Inertial weight Linearly decreases from 0.6 to 0.3

GA Type Real coded

Selection Roulette wheel

Crossover Single point (probability = 1)

Mutation Uniform (probability = 0.01)

DE Crossover probability 0.9

Differential weight 0.5

GSA Rnorm, Rpower, alpha, and G 0 2, 1, 20, 100

BA Loudness (A), pulse rate (r) 0.5, 0.5

Frequency min and max 0, 2

FPA probability switch(p) 0.4

SMS Beta [0.9, 0.5, 0.1]

Alpha [0.3, 0.05, 0]

H [0.9, 0.2, 0]

Phases [0.5, 0.1, −0.1]

FA Alpha, beta, and gamma 0.2, 1, 1

of F9, F14 and F18. This is due to the fact that repulsion is a key

mechanism to avoid local solutions in the GOA algorithm and these

results show that this algorithm prevents grasshoppers from local

optima stagnation by high repulsion rates. It is worth mentioning

here that the results show that the high repulsion rate does not

negatively impact on the convergence. This is due to the adap-

tive parameter of GOA, which shrinks the repulsion area propor-

tional to the number of iterations. Therefore, grasshoppers avoid

local valleys in the initial steps of iteration and cluster around the

global optimum in the final stages of optimisation. For the test

functions with both unimodal and multi modal regions (F10 for

instance), Fig. 10 shows that the repulsion rate is lower. These re-

sults again demonstrate that GOA efficiently balances exploration

and exploitation to approximate the global optimum.

The trajectory curves in Fig. 10 show that the grasshoppers ex-

hibit large, abrupt changes in the initial steps of optimisation. This

is due to the high repulsion rate which causes exploration of the

search space by GOA. It also can be seen that the fluctuation de-

creased gradually during optimisation, which is due to the adap-

tive comfort zone and attraction forces between the grasshoppers.

This guarantees that the proposed GOA algorithm explores and

exploits the search space and converges towards a point eventu-

ally. To confirm that this behaviour results in improving the fitness

of grasshoppers, average fitness of grasshoppers and convergence

curves are provided in Fig. 10 . The curves clearly show descending

behaviour on all of the test functions. This proves that GOA en-

hances the initial random population on the test functions and de-

sirably improves the accuracy of the approximated optimum over

the course of iterations.

3.3. Quantitative results and discussion

The above discussed results qualitatively demonstrated that

the GOA is able to solve optimisation problems. However, the

test functions were of 2 variables and qualitative results can-

not tell us how much better this algorithm is compared to cur-

rent ones. In order to show the merits of GOA quantitatively,

this subsection solved the test functions with 30 dimensions and

presents/discusses the results quantitatively. The experimental re-

sults are provided in Tables 2 , 3 , and 4 for unimodal, multi-modal,

and composite test functions. Note that the results are normalised

between 0 and 1 for all the test functions due to the different do-

main/range of test functions. This assist us in conveniently com-

paring the results on different test functions as well.

As per the results in Table 2 , the GOA algorithm shows the best

results when solving unimodal test functions. The results of this

algorithm are substantially better in more than half of the uni-

modal test functions, showing the high performance of this algo-

rithm. Unimodal test functions have only one global optimum, so

the results clearly show that the GOA algorithm benefits from high

exploitation ability.

The results in Table 3 are consistent with those in Table 2 , in

which the GOA algorithm tends to significantly outperform others

in both of the performance metrics. The results of this algorithm

are again remarkably superior in the majority of multi-modal test

functions. Since the multi-modal test functions have a significant

number of local solutions, these results quantitatively show the ef-

fectiveness of the proposed algorithm in avoiding local solutions

during optimisation.

The results of the algorithms on composite test functions are

presented in Table 4 . These results show that the GOA algo-

rithm provides very competitive results compared to other algo-

rithms. Composite test functions are even more challenging than

the multi-modal ones and require a proper balance between ex-

ploration and exploitation. Therefore, it can be stated that the GOA

is able to balance exploration and exploitation properly for solving

such challenging problems.

Comparing algorithms based on average and standard devia-

tion over 30 independent runs does not compare each of the

runs. Therefore, it is still possible that the superiority occurs by

chance despite its low probability in 30 runs. In order to com-

pare the results of each run and decide on the significance of

the results, the Wilcoxon statistical test was performed at 5% sig-

nificance level and the p-values are reported in Table 5 . For the

statistical test, the best algorithm in each test function is chosen

and compared with other algorithms independently. For example,

if the best algorithm is GOA, a pairwise comparison is done be-

tween GOA/PSO, GOA/GSA , GOA/BA , and so on. Note that since

the best algorithm cannot be compared with itself, N/A has been

38 S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47

Fig. 10. Behaviour of GOA on the 2D benchmark problems.

written for the best algorithm in each function which stands for

Not Applicable.

As per the results in this table, p-values are mostly less than

0.05 for the GOA, which demonstrates that the superiority of this

algorithm is statistically significant. For the F3 function the results

show the FPA is not significantly superior to GOA. Overall, these

results show that GOA is able to outperform other algorithms in

the literature. According to the NFL theorem, therefore, it has the

potential to solve problems (of the types tested) that cannot be

solved efficiently by other algorithms.

S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47 39

Table 2

Results of unimodal benchmark functions.

F GOA PSO GSA BA

Ave std ave std ave std ave std

F1 0.0 0 0 0 0.0 0 0 0 0.2391 0.5622 0.0 0 02 0.0012 0.9882 1.0 0 0 0

F2 0.0020 0.0010 0.0097 0.0013 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0

F3 0.0010 0.0203 0.2613 0.3547 0.0328 0.0395 1.0 0 0 0 1.0 0 0 0

F4 0.0 0 0 0 0.0 0 0 0 0.4767 0.4730 0.3244 0.5119 0.9148 1.0 0 0 0

F5 0.0 0 0 0 0.0 0 0 0 0.0386 0.0944 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0

F6 0.0 0 0 0 0.0 0 0 0 0.7786 0.4808 0.3825 0.2231 1.0 0 0 0 1.0 0 0 0

F7 0.0 0 0 0 0.0 0 0 0 0.1349 0.1648 0.0226 0.0763 1.0 0 0 0 1.0 0 0 0

F FPA SMS FA GA

ave std ave std ave std ave std

F1 0.0329 0.0784 1.0 0 0 0 0.4478 0.1581 0.0748 0.4121 0.5202

F2 0.0131 0.0 0 07 0.0157 0.0 0 08 0.0076 0.0 0 01 0.0100 0.0 0 03

F3 0.0 0 0 0 0.0 0 0 0 0.3486 0.0651 0.0617 0.0160 0.2022 0.0710

F4 0.3219 0.4215 1.0 0 0 0 0.7232 0.3796 0.2116 0.7245 0.2384

F5 0.0060 0.0345 0.3901 0.4781 0.0068 0.0068 0.0746 0.0931

F6 0.0088 0.0189 0.7025 0.5891 0.0414 0.0190 0.1933 0.1932

F7 0.0386 0.0459 0.0036 0.0022 0.0590 0.0194 0.4416 0.2028

Table 3

Results of multimodal benchmark functions.

F GOA PSO GSA BA

ave std ave std ave std ave std

F8 1.0 0 0 0 0.0 0 02 0.7425 0.0016 0.8473 0.0020 0.0148 1.0 0 0 0

F9 0.0 0 0 0 0.0 0 07 0.6520 1.0 0 0 0 0.1361 0.2722 0.7022 0.7517

F10 0.0975 1.0 0 0 0 0.6140 0.2426 0.0 0 0 0 0.0 0 0 0 0.9665 0.1155

F11 0.0 0 0 0 0.0 0 0 0 0.8184 0.3512 1.0 0 0 0 0.5790 0.9912 1.0 0 0 0

F12 0.0 0 0 0 0.0 0 07 0.4689 0.8147 0.0577 0.4246 0.6892 0.9635

F13 0.0 0 0 0 0.0 0 0 0 0.0973 0.1647 0.1603 0.0890 1.0 0 0 0 1.0 0 0 0

F FPA SMS FA GA

ave std ave std ave std ave std

F8 0.0381 0.0 0 06 0.5613 0.0049 0.6140 0.0 0 0 0 0.0 0 0 0 0.0 0 06

F9 0.6568 0.4179 0.8628 0.2633 0.8377 0.0329 1.0 0 0 0 0.0 0 0 0

F10 0.7170 0.3848 1.0 0 0 0 0.0666 0.7078 0.0410 0.8628 0.1415

F11 0.0124 0.0058 0.6746 0.7789 0.0548 0.0070 0.1941 0.2865

F12 0.0237 0.1907 0.1140 0.0 0 0 0 0.2442 1.0 0 0 0 1.0 0 0 0 0.4363

F13 0.3766 0.1566 0.9609 0.2394 0.1119 0.1510 0.4 4 46 0.0798

Table 4

Results of composite benchmark functions.

F GOA PSO GSA BA

Ave std ave std ave std ave std

F14 0.0 0 0 0 0.3386 0.6083 1.0 0 0 0 0.0840 0.2977 1.0 0 0 0 0.5714

F15 0.4892 0.7182 0.4236 0.7929 0.0672 0.5226 1.0 0 0 0 1.0 0 0 0

F16 0.0 0 0 0 0.0 0 0 0 0.4651 0.6805 0.4799 0.8414 1.0 0 0 0 1.0 0 0 0

F17 0.8169 1.0 0 0 0 0.3241 0.2970 0.0 0 0 0 0.6439 1.0 0 0 0 0.6905

F18 0.0 0 0 0 0.0064 0.3122 1.0 0 0 0 0.0581 0.2503 1.0 0 0 0 0.8953

F19 0.7863 0.9355 1.0 0 0 0 0.0 0 0 0 0.9391 0.3063 0.9097 0.4190

F FPA SMS FA GA

ave std ave std ave std ave std

F14 0.0 0 08 0.0570 0.5604 0.4830 0.5035 0.6008 0.3799 0.0 0 0 0

F15 0.0 0 0 0 0.4822 0.5097 0.5559 0.5730 0.9765 0.1338 0.0 0 0 0

F16 0.3381 0.0759 0.8914 0.5077 0.4921 0.0922 0.6820 0.1783

F17 0.1395 0.0348 0.6594 0.0383 0.3264 0.4911 0.3660 0.0 0 0 0

F18 0.3249 0.9194 0.3144 0.4097 0.3160 0.3885 0.1347 0.0 0 0 0

F19 0.0 0 0 0 0.0702 0.4257 0.8595 0.7068 1.0 0 0 0 0.0211 0.1720

To further show the effectiveness of the proposed GOA algo-

rithm, we have solved more challenging test functions and com-

pared the results with the most popular algorithms in the liter-

ature. The test functions are 25 taken from the CEC2005 special

session [45] . These test functions are the most challenging test

functions in the literature and can be found in the appendix. The

results are compared to PSO, GA, DE, GSA, BA, FPA, and FA as

the most well-known and recent algorithms in the literature. The

results are again normalised in [0,1] and presented in Tables 6

and 7 .

Inspecting the results in Table 6 , it is evident that the pro-

posed GOA algorithm outperforms other algorithms on the major-

ity of the CEC2005 test functions. The p-values in Table 7 show

that the superiority of GOA is statistically significant. Comparison

40 S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47

Table 5

P-values obtained from the Wilcoxon ranksum test.

TP GOA PSO GSA BA FPA SMS FA GA

F1 N/A 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F2 0.002827 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F3 0.140465 0.0 0 0183 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183

F4 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F5 N/A 0.0 0 0183 0.241322 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F6 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F7 N/A 0.0 0 0183 0.0 0 033 0.0 0 0183 0.0 0 0183 0.0 0 0583 0.0 0 0183 0.0 0 0183

F8 0.0 0 0183 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F9 N/A 0.0 0 0183 0.01133 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F10 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F11 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.001315 0.0 0 0183 0.0 0 0183 0.0 0 0183

F12 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 6.39e-5 0.0 0 0183 0.0 0 0183

F13 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 6.39e-5 0.0 0 0183 0.0 0 0183

F14 N/A 0.001315 0.009108 0.0 0 0246 0.025748 0.001706 0.001315 0.002827

F15 0.0 010 08 0.004586 0.791337 0.0 0 0246 N/A 0.0 010 08 0.0 0 0769 0.002827

F16 N/A 0.0 0 0246 0.0 0 044 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F17 0.0 010 08 0.002827 N/A 0.0 010 08 0.002827 0.002827 0.002202 0.002827

F18 N/A 0.01133 0.472676 0.0 0 0183 0.025748 0.0 0 0183 0.0 0 0183 0.0 0 0183

F19 0.025748 0.0 0 0183 0.0 0 0183 0.0 0 0183 N/A 0.0 0 033 0.0 0 044 0.021134

with some of the algorithms provide p-values greater than 0.05 oc-

casionally. This shows that the GOA algorithm is not significantly

better on those functions. Also, GOA provides very competitive re-

sults on the F12_CEC20 05, F16_CEC20 05, and F24_CEC20 05 test

functions, since the high p-values show GSA was not significantly

better. Since CEC test functions are very challenging and mimic

different difficulties of a real search space, these results strongly

demonstrate the merits of the proposed GOA algorithm compared

to other algorithms in the literature.

To sum up, the discussions and findings of this section clearly

demonstrate the quality of exploration, local optima avoidance, ex-

ploitation, and convergence of the GOA algorithm. The high ex-

ploration and local optima avoidance of this algorithm originates

from the high repulsion rate between grasshoppers. The repulsive

force requires grasshoppers to avoid each other and explore the

search space extensively. This is the main reason for high local

optima avoidance of GOA as well. Exploitation and convergence

are encouraged by the attraction forces between the grasshop-

pers, and the adaptive comfort zone. High attractive forces be-

tween grasshoppers drive them quickly towards the best solution

obtained so far. The adaptive comfort zone coefficient decreases

proportional to the number of iterations, generating smaller repul-

sion forces and emphasising exploitation. The adaptive behaviour

of the comfort zone coefficient also results in a proper balance be-

tween exploration and exploitation.

Although these findings strongly suggest that GOA is able to

solve real problems, in the following section we use three real

problems in the field of structural design to demonstrate and con-

firm the applicability of this algorithm in solving real problems

with unknown search spaces.

4. Real applications

Solving structural design problems using stochastic optimisa-

tion techniques has been a popular research direction in the liter-

ature [46–54] . This section solves three of the conventional struc-

tural design problems using the proposed GOA algorithm.

4.1. Three-bar truss design problem

This structural design problem is one of the most widely-used

case studies in the literature [55,56] . This problem is formulated as

follows:

Consider �
 x = [x 1 x 2] = [A 1 A 2] ,

Minimise f (� x) =

(
2
√

2 x 1 + x 2
)
∗l ,

Subject to g 1 (� x) =

√

2 x 1 + x 2 √

2 x 2
1

+ 2 x 1 x 2
P − σ ≤ 0 ,

g 2 (� x) =

x 2 √

2 x 2
1

+ 2 x 1 x 2
P − σ ≤ 0 ,

g 3 (� x) =

1 √

2 x 2 + x 1
P − σ ≤ 0 ,

Variable range 0 ≤ x 1 , x 2 ≤ 1 ,

where l = 100 cm , P = 2 KN / c m

2 , σ = 2 KN / c m

2

Fig. 11 shows the shape of this truss and the forces applied. As

this figure and the problem formulation show, there are two struc-

tural parameters: the area of bars 1 and 3 and area of bar 2. The

objective is to minimise the weight of the truss. This problem is

subject to several constraints as well: stress, deflection, and buck-

ling constraints.

The proposed GOA with 20 search agents and 650 iterations

was employed on this problem. Since this problem is a constrained

problem, a constraint handling method needed to be integrated

with GOA. For the sake of simplicity, a death penalty has been

utilised. It penalises the search agents that violate any of the con-

straints at any level with a large objective value. For verification,

the results are compared to ALO, DEDS, PSO-DE, MBA, Ray and

Sain, and Tsa methods and presented in Table 8 . This table shows

the optimal values for both variables and weight.

Inspecting the results of algorithms on this problem, it is ev-

ident that GOA managed to show very competitive results com-

pared to ALO, DEDS, PSO-DE, and MBA with a better maximum

function evaluation. Also, this algorithm outperforms the rest of

the algorithms significantly. These results show that the GOA al-

gorithm is able to handle the difficulties of a constrained search

space efficiently.

4.2. Cantilever beam design problem

This is another popular structural design problem in the litera-

ture formulated as follows:

Consider �
 x = [x 1 x 2 x 3 x 4 x 5]

Minimise f (� x) = 0 . 6224 (x 1 + x 2 + x 3 + x 4 + x 5) ,

Subject to g (� x) =

61

x 3
1

+

27

x 3
2

+

19

x 3
3

+

7

x 3
4

+

1

x 3
5

− 1 ≤ 0 ,

S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47 41

Table 6

Results on CEC benchmark functions.

F GOA PSO GA DE

Ave std ave std ave std ave std

F1_CEC2005 0.0 0 0 0 0.0 0 0 0 0.6040 1.0 0 0 0 0.4972 0.8825 0.0424 0.0950

F2_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3341 0.1579 0.4860 0.1481 0.3483 0.1134

F3_CEC2005 0.0037 0.0057 0.2299 0.2852 0.3130 0.0441 0.1311 0.0801

F4_CEC2005 0.0 0 0 0 0.0127 0.4569 0.3523 0.4807 0.0958 0.3726 0.0473

F5_CEC2005 0.0 0 0 0 0.0602 0.7003 0.4740 0.4788 0.0 0 0 0 0.2737 0.0513

F6_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3078 0.1878 0.2109 0.2577 0.0037 0.0016

F7_CEC2005 0.0 0 0 0 0.0 0 0 0 0.8524 0.6681 0.3416 0.3029 0.0759 0.0806

F8_CEC2005 0.5505 0.7277 1.0 0 0 0 0.0 0 0 0 0.9702 0.1651 0.9816 0.4399

F9_CEC2005 0.0 0 0 0 0.0356 0.5743 0.8935 1.0 0 0 0 0.3927 0.6055 0.1518

F10_CEC2005 0.0 0 0 0 0.0 0 0 0 0.5391 1.0 0 0 0 0.7874 0.0628 0.4904 0.1780

F11_CEC2005 0.7570 1.0 0 0 0 0.6283 0.8342 0.9965 0.3326 1.0 0 0 0 0.0 0 0 0

F12_CEC2005 0.1087 0.3460 0.3531 1.0 0 0 0 1.0 0 0 0 0.4454 0.6698 0.2908

F13_CEC2005 0.0 0 0 0 0.0046 0.1030 0.0580 0.4551 0.0808 0.1484 0.0091

F14_CEC2005 0.0154 0.0855 0.0 0 0 0 0.9627 0.6053 0.2766 0.5800 0.0083

F15_CEC2005 0.3527 1.0 0 0 0 0.5065 0.8562 0.6289 0.2734 0.4217 0.3437

F16_CEC2005 0.1520 0.8379 0.3316 0.7594 0.3718 0.0825 0.1878 0.0 0 0 0

F17_CEC2005 0.0 0 0 0 0.7666 0.4744 1.0 0 0 0 0.2712 0.0249 0.1401 0.0 0 0 0

F18_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3981 0.7095 0.5096 0.2305 0.2369 0.2265

F19_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3494 0.3857 0.4993 0.2066 0.2122 0.0501

F20_CEC2005 0.0 0 0 0 0.0 0 0 0 0.4166 0.8314 0.6018 0.3811 0.2662 0.0663

F21_CEC2005 0.0 0 0 0 0.0416 0.7469 0.0314 0.8364 0.0467 0.4840 0.3295

F22_CEC2005 0.0 0 0 0 0.0 0 0 0 0.40 0 0 0.7118 0.6116 0.2260 0.3587 0.1408

F23_CEC2005 1.0 0 0 0 0.3113 0.0 0 0 0 0.6942 0.0608 0.7502 0.2773 0.4302

F24_CEC2005 1.0 0 0 0 0.0724 0.0 0 0 0 0.7804 0.0458 0.7228 0.1298 0.2603

F25_CEC2005 0.3449 0.0075 0.8530 0.0765 0.8299 0.0035 0.4108 0.0442

F GSA BA FPA FA

ave std ave std ave std ave std

F1_CEC2005 0.4318 0.5622 1.0 0 0 0 0.8805 0.1184 0.3697 0.1076 0.1120

F2_CEC2005 0.2614 0.0257 1.0 0 0 0 1.0 0 0 0 0.0615 0.0320 0.1705 0.0191

F3_CEC2005 0.1419 0.1081 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0620 0.0640

F4_CEC2005 0.8724 0.4499 1.0 0 0 0 1.0 0 0 0 0.0651 0.0685 0.0661 0.0 0 0 0

F5_CEC2005 0.8225 0.0534 1.0 0 0 0 1.0 0 0 0 0.2707 0.3970 0.1041 0.0675

F6_CEC2005 0.1270 0.0762 1.0 0 0 0 1.0 0 0 0 0.0149 0.0323 0.0104 0.0067

F7_CEC2005 0.9108 0.5975 1.0 0 0 0 1.0 0 0 0 0.0708 0.1859 0.0725 0.0476

F8_CEC2005 0.2817 1.0 0 0 0 0.0 0 0 0 0.1382 0.9719 0.0924 0.9866 0.1094

F9_CEC2005 0.4704 1 0.7013 0.3595 0.6643 0.3360 0.7155 0.0 0 0 0

F10_CEC2005 0.2536 0.7690 1.0 0 0 0 0.8251 0.5307 0.9560 0.4252 0.0945

F11_CEC2005 0.0 0 0 0 0.4116 0.9638 0.2210 0.7825 0.0509 0.9867 0.0856

F12_CEC2005 0.0 0 0 0 0.1006 0.1440 0.6132 0.2963 0.0 0 0 0 0.4474 0.4266

F13_CEC2005 0.0516 0.0331 1.0 0 0 0 1.0 0 0 0 0.0824 0.0 0 0 0 0.1328 0.0061

F14_CEC2005 1.0 0 0 0 0.1088 0.7244 1.0 0 0 0 0.4733 0.0 0 0 0 0.4933 0.0425

F15_CEC2005 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 0.8301 0.3127 0.1340 0.4956 0.8700

F16_CEC2005 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.9453 0.1872 0.1099 0.1364 0.0588

F17_CEC2005 0.1055 0.5209 1.0 0 0 0 0.6007 0.0966 0.1335 0.1530 0.4022

F18_CEC2005 0.0306 0.0997 1.0 0 0 0 1.0 0 0 0 0.1485 0.4907 0.1162 0.0744

F19_CEC2005 0.023 0.0478 1.0 0 0 0 1.0 0 0 0 0.1259 0.1073 0.0975 0.0111

F20_CEC2005 0.056 0.3519 1.0 0 0 0 1.0 0 0 0 0.1484 0.1490 0.1075 0.0089

F21_CEC2005 0.2677 1 1.0 0 0 0 0.1528 0.6712 0.0793 0.5613 0.0 0 0 0

F22_CEC2005 0.1514 0.4313 1.0 0 0 0 1.0 0 0 0 0.2646 0.2646 0.2352 0.0618

F23_CEC2005 0.9926 0.0 0 0 0 0.4327 1.0 0 0 0 0.3589 0.5613 0.0206 0.4696

F24_CEC2005 0.5784 0.0 0 0 0 0.0691 1.0 0 0 0 0.3426 0.1616 0.0254 0.1246

F25_CEC2005 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 0.3751 0.0623 0.2689 0.0595

Variable range 0 . 01 ≤ x 1 , x 2 , x 3 , x 4 , x 5 ≤ 100 ,

Fig. 12 shows that the cantilever beam is built using five, hol-

low, square-section, box girders, and the lengths of those girders

are the design parameters for this problem. There is also one con-

straint for this problem. The GOA algorithm with 20 search agents

and a maximum of 650 iterations is employed to determine the

optimum for this problem. The results are presented and com-

pared to ALO, MMA, GCA_I, GCA-II, CS, and SOS for verification in

Table 9 .

The results in Table 9 show that GOA finds the second best op-

timal weight. However, this algorithm provides the lowest number

maximum function evaluation.

4.3. 52-bar truss design

In this problem, the objective is to minimise the weight of a

truss with 52 bars and 20 nodes. As shown in Fig. 13 , four of

the nodes are fixed and the bars are classified in 12 groups as

follows, which are the main parameters to be optimised for this

problem:

• Group 1: A 1 , A 2 , A 3 , A 4
• Group 2: A 5 , A 6 , A 7 , A 8 , A 9 , A 10
• Group 3: A 11 , A 12 , A 13
• Group 4: A 14 , A 15 , A 16 , A 17
• Group 5: A 18 , A 19 , A 20 , A 21 , A 22 , A 23
• Group 6: A 24 , A 25 , A 26
• Group 7: A 27 , A 28 , A 29 , A 30

42 S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47

Table 7

P-values obtained from the Wilcoxon ranksum test.

TP GOA PSO GA DE GSA BA FPA FA

F1_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079

F2_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0159 0.0079

F3_CEC2005 0.2222 0.0079 0.0079 0.0079 0.0079 0.0079 1.0 0 0 0 0.0079

F4_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0952 0.0317

F5_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079

F6_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079

F7_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079

F8_CEC2005 0.0079 0.0079 0.0079 0.0079 0.0079 1.0 0 0 0 0.0079 0.0079

F9_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079

F10_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079

F11_CEC2005 0.0079 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079

F12_CEC2005 0.0556 0.0079 0.0079 0.0079 N/A 0.0556 0.0079 0.0079

F13_CEC2005 N/A 0.0079 0.0079 0.0079 0.0159 0.0079 0.0079 0.0079

F14_CEC2005 0.6905 N/A 0.0556 0.0952 0.0079 0.0317 0.1508 0.1508

F15_CEC2005 0.0079 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079

F16_CEC2005 0.2222 0.0952 0.0079 0.6905 N/A 0.0079 0.6905 0.6905

F17_CEC2005 N/A 0.1508 0.1508 0.8413 0.3095 0.0079 1.0 0 0 0 0.4206

F18_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079

F19_CEC2005 N/A 0.0079 0.0079 0.0079 0.0159 0.0079 0.0079 0.0079

F20_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079

F21_CEC2005 N/A 0.0079 0.0079 0.0079 0.0952 0.0079 0.0079 0.0079

F22_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079

F23_CEC2005 0.0317 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079

F24_CEC2005 0.4206 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079

F25_CEC2005 0.0079 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.4206

Fig. 11. Three-bar truss design problem.

• Group 8: A 31 , A 32 , A 33 , A 34 , A 35 , A 36
• Group 9: A 37 , A 38 , A 39
• Group 10: A 40 , A 41 , A 42 , A 43
• Group 11: A 44 , A 45 , A 46 , A 47 , A 48 , A 49
• Group 12: A 50 , A 51 , A 52

The following list presents other parameters involved in this

problem:

• ρ =7860.0 kg / m

3

• E = 2.07 e 5 MPa
• Stress limitation = 180 MPa
• Maximum stress = 179.7652 MPa
• Design variabe set are chosen from Table 18
• P k = 100 kN , P y = 200 kN

This is a discrete problem, in which the values for the 12

parameters should be chosen from the 64 values available in

Table 10 . To make GOA discrete, we simply round the search

agents to the nearest integer. This problem is solved using 30

search agents and 500 iterations, and the results are presented in

Table 11 . Inspecting the results of this table, it is evident that the

GOA finds the best optimal value for this problem with the least

number of function evaluations. This highlights the performance

of GOA in solving real problems with more variables.

These results clearly demonstrate the merits of the GOA algo-

rithm in solving real problems with unknown search spaces. The

success of the GOA algorithm is due to several reasons. The ex-

ploration ability of GOA is high in the initial steps of optimisa-

tion, which is due to the large repulsion rate between grasshop-

pers. This assists GOA to explore the search space broadly and dis-

cover its promising regions. Then exploitation is high in the last

steps of optimisation, which is due to the larger attraction forces

between the grasshoppers. This behaviour causes local search and

Table 8

Comparison results of the three-bar truss design problem.

Algorithm Optimal values for variables Optimal weight Max. Eval.

x 1 x 2

GOA 0.788897555578973 0.407619570115153 263.895881496069 13,0 0 0

ALO [57] 0.7886628160 0 0317 0.408283133832901 263.8958434 14,0 0 0

DEDS [58] 0.78867513 0.40824828 263.8958434 15,0 0 0

PSO-DE [59] 0.7886751 0.4082482 263.8958433 17,600

MBA [56] 0.7885650 0.4085597 263.8958522 20,0 0 0

Ray and Sain [60] 0.795 0.395 264.3 N/A

Tsa [61] 0.788 0.408 263.68 N/A

CS [55] 0.78867 0.40902 263.9716 15,0 0 0

S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47 43

Fig. 12. Cantilever beam design problem.

Table 9

Comparison results for cantilever design problem.

Algorithm Optimal values for variables Optimal Max.

x 1 x 2 x 3 x 4 x 5 weight Eval.

GOA 6.011674 5.31297 4.48307 3.50279 2.16333 1.33996 13,0 0 0

ALO [57] 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995 14,0 0 0

MMA [62] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400 N/A

GCA_I [62] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400 N/A

GCA_II [62] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400 N/A

CS [55] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 2500

SOS [63] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 15,0 0 0

improving the accuracy of the solution(s) obtained in the explo-

ration phase. The algorithm smoothly balances exploration and ex-

ploitation, initially emphasising local optima avoidance and then

convergence. This behaviour is due to the proposal of the adaptive

comfort zone coefficient. The gradual decrementing of this compo-

nent brings the grasshopper closer to the target proportional to the

number of iterations. Finally, the proposed target chasing mecha-

nism requires GOA to save the best solution obtained so far as the

target and drive the grasshoppers towards it with the hope of im-

proving its accuracy or finding a better one in the search space.

Considering the simulations, results, discussion, and analyses of

this paper, we believe that GOA is able to solve many optimisa-

tion problems effectively. GOA considers a given optimisation prob-

lem as a black box, so it does not need gradient information of

the search space. Therefore, this algorithm can be applied to any

optimisation problem in different fields subject to proper problem

formulation.

5. Conclusion

This work proposed an optimisation algorithm called the

Grasshopper Optimisation Algorithm. The proposed algorithm

mathematically modelled and mimicked the swarming behaviour

of grasshoppers in nature for solving optimisation problems. A

mathematical model was proposed to simulate repulsion and at-

traction forces between the grasshoppers. Repulsion forces allow

grasshoppers to explore the search space, whereas attraction forces

encouraged them to exploit promising regions. To balance between

exploration and exploitation, GOA was equipped with a coefficient

that adaptively decreases the comfort zone of the grasshoppers. Fi-

nally, the best solution obtained so far by the swarm was consid-

ered as a target to be chased and improved by the grasshoppers.

In order to benchmark the performance of the proposed algo-

rithm, a series of tests was conducted. Firstly, a set of 2D test func-

tions was solved by the GOA to observe its performance qualita-

tively. This experiment and relevant discussions support the fol-

lowing conclusions:

• Grasshoppers effectively discover the promising regions of a

given search space.

B

A=3 m B=2 m

1 2 3 4

5

9 10 11 12

13 14 15 16

17 18 19 20

6 7 8

B B

A

A

A

A1 2 3 4

5 6 7 8 9 10
11 12 13

14 15 16 17

18 19 20 21 22 23
24 25 26

27 28 29 30

31 32 33 34 35 36
37 38 39

40 41 42 43

44 45 46 47 48 49
50 51 52

Fig. 13. Structure of a 52-bar truss.

• Grasshoppers face abrupt, large-scale changes in the initial

steps of optimisation, which assist them to search globally.
• Grasshoppers tend to move locally in the final steps of optimi-

sation, which allows them to exploit the search space.

44 S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47

Table 10

Available cross-section areas of the AISC norm (valid values for the parameters).

No. in. 2 mm

2 No. in. 2 mm

2

1 0.111 71 .613 33 3 .84 2477.414

2 0.141 90 .968 34 3 .87 2496.769

3 0.196 126 .451 35 3 .88 2503.221

4 0.25 161 .29 36 4 .18 2696.769

5 0.307 198 .064 37 4 .22 2722.575

6 0.391 252 .258 38 4 .49 2896.768

7 0.442 285 .161 39 4 .59 2961.284

8 0.563 363 .225 40 4 .8 3096.768

9 0.602 388 .386 41 4 .97 3206.445

10 0.766 494 .193 42 5 .12 3303.219

11 0.785 506 .451 43 5 .74 3703.218

12 0.994 641 .289 44 7 .22 4658.055

13 1 645 .16 45 7 .97 5141.925

14 1.228 792 .256 46 8 .53 5503.215

15 1.266 816 .773 47 9 .3 5999.988

16 1.457 939 .998 48 10 .85 6999.986

17 1.563 1008 .385 49 11 .5 7419.34

18 1.62 1045 .159 50 13 .5 8709.66

19 1.8 1161 .288 51 13 .9 8967.724

20 1.99 1283 .868 52 14 .2 9161.272

21 2.13 1374 .191 53 15 .5 9999.98

22 2.38 1535 .481 54 16 10,322.56

23 2.62 1690 .319 55 16 .9 10,903.2

24 2.63 1696 .771 56 18 .8 12,129.01

25 2.88 1858 .061 57 19 .9 12,838.68

26 2.93 1890 .319 58 22 14,193.52

27 3.09 1993 .544 59 22 .9 14,774.16

28 3.13 2019 .351 60 24 .5 15,806.42

29 3.38 2180 .641 61 26 .5 17,096.74

30 3.47 2238 .705 62 28 18,064.48

31 3.55 2290 .318 63 30 19,354.8

32 3.63 2341 .931 64 33 .5 21,612.86

• The varying comfort zone coefficient requires grasshoppers to

gradually balance exploration and exploitation, which helps

GOA not to become trapped in local optima and find an accu-

rate approximation of the global optimum.
• The GOA algorithm enhances the average fitness of grasshop-

pers, which shows that this algorithm is able to effectively im-

prove the initial random population of grasshoppers.
• The fitness of target is improved over the course of iterations,

which shows that the approximation of the global optimum be-

comes more accurate proportional to the number of iterations.

After the first experiment, four sets of challenging test func-

tions were employed. The test functions were unimodal, multi-

modal, composite, and CEC2005. The GOA algorithm managed

to outperform several algorithms in the literature. The findings

and discussions of the second experiment support the following

conclusions:

• Exploitation of the GOA is satisfactory on problems involving

unimodal test functions.
• Exploration of the GOA is intrinsically high for multi-modal test

functions.
• GOA properly balances exploration and exploitation when solv-

ing challenging problems involving composite test functions.
• GOA has the potential to significantly outperform several cur-

rent algorithms when solving a range of current or new opti-

misation problems.

The last experiment was performed on three real problems in

the field of structural design. All the problems were successfully

solved, which demonstrates the practical merits of the proposed

algorithm. From the results, findings, and discussions of the real

applications, the following conclusions can be drawn:

• GOA is able to improve the initial random population for a real

problem.
• The target is improved over the course of iterations, so the ap-

proximation of the global optimum become more accurate pro-

portional to the number of iterations.
• GOA is able to solve real problems with unknown search

spaces.

GOA is only able to solve single-objective problems with con-

tentious variables. For future work, binary and multi-objective ver-

sions of this algorithm may be developed to solve discrete and

multi-objective problems. The comfort zone parameter is an impor-

tant coefficient in GOA, so it is worth investigating the impacts of

different comfort zone functions on the performance of the algo-

rithm. Solving optimisation problems in different fields could also

be a valuable contribution. Tuning the main controlling parameters

of GOA may also be beneficial.

Appendix

Tables 12 –15

Table 11

Comparison of GOA optimisation results with literature for the 52-bar truss design problem.

Variables (mm

2) PSO [64] PSOPC [64] HPSO [64] DHPSACO [65] MBA [66] SOS [63] GOA

A1 - A4 4658.055 5999.988 4658.055 4658.055 4658.055 4658.055 4658.055

A5 - A10 1374.19 1008.38 1161.288 1161.288 1161.288 1161.288 1161.288

A11 - A13 1858.06 2696.77 363.225 494.193 494.193 494.193 494.193

A14 - A17 3206.44 3206.44 3303.219 3303.219 3303.219 3303.219 3303.219

A18 - A23 1283.87 1161.29 940 1008.385 940 940 940

A24 - A26 252.26 729.03 494.193 285.161 494.193 494.193 494.193

A27 - A30 3303.22 2238.71 2238.705 2290.318 2238.705 2238.705 2238.705

A31 - A36 1045.16 1008.38 1008.385 1008.385 1008.385 1008.385 1008.385

A37 - A39 126.45 494.19 388.386 388.386 494.193 494.193 494.193

A40 - A43 2341.93 1283.87 1283.868 1283.868 1283.868 1283.868 1283.868

A44 - A49 1008.38 1161.29 1161.288 1161.288 1161.288 1161.288 1161.288

A50 - A52 1045.16 494.19 792.256 506.451 494.193 494.193 494.193

Optimal weight (kg) 2230.16 2146.63 1905.495 1904.83 1902.605 1902.605 1902.605

No. of analyses 150,0 0 0 150,0 0 0 5300 11,100 5450 2350 2300

S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47 45

Table 12

Unimodal benchmark functions.

Function Dim Range f min

f 1 (x) =

∑ n
i =1 x

2
i

30 [−100,100] 0

f 2 (x) =

∑ n
i =1 | x i | +

∏ n
i =1 | x i | 30 [−10,10] 0

f 3 (x) =

∑ i
i =1 (

∑ i
j−1 x j)

2
30 [−100,100] 0

f 4 (x) = max
i

{ | x i | , 1 ≤ i ≤ n } 30 [−100,100] 0

f 5 (x) =

∑ n −1
i =1 [100 (x i +1 − x 2

i
)
2 + (x i − 1)

2
] 30 [−30,30] 0

f 6 (x) =

∑ n
i =1 ([x i + 0 . 5])

2
30 [−100,100] 0

f 7 (x) =

∑ n
i =1 ix

4
i

+ random [0 , 1) 30 [−1.28,1.28] 0

Table 13

Multimodal benchmark functions.

Function Dim Range f min

F 8 (x) =

∑ n
i =1 −x i sin (

√ | x i |) 30 [−50 0,50 0] −418.9829 ×Dim

F 9 (x) =

∑ n
i =1 [x

2
i

− 10 cos (2 πx i) + 10] 30 [−5.12,5.12] 0

F 10 (x) = −20 exp(−0 . 2
√

1
n

∑ n
i =1 x

2
i
) − exp(1

n

∑ n
i =1 cos (2 πx i)) + 20 + e 30 [−32,32] 0

F 11 (x) =

1
40 0 0

∑ n
i =1 x

2
i

− ∏ n
i =1 cos (

x i √
i
) + 1 30 [−60 0,60 0] 0

F 12 (x) =

π
n
{ 10 sin (πy 1) +

∑ n −1
i =1 (y i − 1)

2
[1 + 10 si n 2 (πy i +1)] + (y n − 1)

2 } +

∑ n
i =1 u (x i , 10 , 100 , 4) +

n ∑

i =1

u (x i , 10 , 100 , 4)

y i = 1 +

x i +1
4

u (x i , a, k, m) =

{ k (x i − a)
m

x i > a

0 − a < x i < a

k (−x i − a)
m

x i < −a

30 [−50,50] 0

F 13 (x) = 0 . 1 { si n 2 (3 πx 1) +

∑ n
i =1 (x i − 1)

2
[1 + si n 2 (3 πx i + 1)] + (x n − 1)

2
[1 + si n 2 (2 πx n)] } +

∑ n
i =1 u (x i , 5 , 100 , 4) 30 [−50,50] 0

Table 14

Composite benchmark functions.

Function Dim Range f min

F 14 (CF1): 30 [−5,5] 0

f 1 , f 2 , f 3 , …, f 10 =Sphere Function

[б 1 , б 2 , б 3 , . . . , б 10] = [1 , 1 , 1 , .., 1]

[λ1 , λ2 , λ3 …, λ10] = [5/100, 5/100, 5/100, .., 5/100]

F 15 (CF2): 30 [−5,5] 0

f 1 , f 2 , f 3 , . . . , f 10 = Griewank ’ s F unction

[б 1 , б 2 , б 3 , . . . , б 10] = [1 , 1 , 1 , .., 1]

[λ1 , λ2 , λ3 , …, λ10] = [5/100, 5/100, 5/100, .., 5/100]

F 16 (CF3): 30 [−5,5] 0

f 1 , f 2 , f 3 , . . . , f 10 = Griewank ’ s F unction

[б 1 , б 2 , б 3 , . . . , б 10] = [1 , 1 , 1 , .., 1]

[λ1 , λ2 , λ3 , …, λ10] = [1, 1, 1, .., 1]

f 17 (CF4): 30 [−5,5] 0

f 1 , f 2 = Ackley ’ sFunction

f 3 , f 4 = Rastrigin ’ s Function

f 5 , f 6 =Weierstrass Function

f 7 , f 8 = Griewank ’ s Function

f 9 , f 10 =Sphere Function

[б 1 , б 2 , б 3 , . . . , б 10] = [1 , 1 , 1 , .., 1]

[λ1 , λ2 , λ3 , …, λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/10 0, 5/10 0, 5/10 0]

f 18 (CF5): 30 [−5,5] 0

f 1 , f 2 = Rastrigin ’ s Function

f 3 , f 4 =Weierstrass Function

f 5 , f 6 = Griewank ’ s Function

f 7 , f 8 = Ackley ’ sFunction

f 9 , f 10 =Sphere Function

[б 1 , б 2 , б 3 , . . . , б 10] = [1 , 1 , 1 , .., 1]

[λ1 , λ2 , λ3 , …, λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

f 19 (CF6): 30 [−5,5] 0

f 1 , f 2 = Rastrigin ’ s Function

f 3 , f 4 =Weierstrass Function

f 5 , f 6 = Griewank ’ s Function

f 7 , f 8 = Ackley ’ sFunction

f 9 , f 10 =Sphere Function

[б 1 , б 2 , б 3 , . . . , б 10] = [0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1]

[λ1 , λ2 , λ3 , …, λ10] = [0.1 ∗1/5, 0.2 ∗1/5, 0.3 ∗5/0.5, 0.4 ∗5/0.5, 0.5 ∗5/100,
0.6 ∗ 5/100, 0.7 ∗5/32, 0.8 ∗ 5/32, 0.9 ∗5/100, 1 ∗5/100]

46 S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47

Table 15

CEC2005 test functions.

Function Dim Range f min

F1_CEC2005: Shifted Sphere Function 30 [−100,100] −450

F2_CEC2005: Shifted Schwefel’s Problem 30 [−100,100] −450

F3_CEC2005:Shifted Rotated High Conditioned Elliptic Function 30 [−100,100] −450

F4_CEC2005: Shifted Schwefel’s Problem with Noise in Fitness 30 [−100,100] −450

F5_CEC2005: Schwefel’s Problem with Global Optimum on Bounds 30 [−100,100] −310

F6_CEC2005: Shifted Rosenbrock’s Function 30 [−100,100] 390

F7_CEC2005: Shifted Rotated Griewank’s Function without Bounds 30 [−60 0, 60 0] −180

F8_CEC2005: Shifted Rotated Ackley’s Function with Global Optimum on Bounds 30 [−32,32] −140

F9_CEC2005: Shifted Rastrigin’s Function 30 [−5,5] −330

F10_CEC2005: Shifted Rotated Rastrigin’s Function 30 [−5,5] −330

F11_CEC2005: Shifted Rotated Weierstrass Function 30 [−0.5,0.5] 90

F12_CEC2005: Schwefel’s Problem 30 [−100,100] −460

F13_CEC2005: Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2) 30 [−3,1] −130

F14_CEC2005: Expanded Rotated Extended Scaffe’s F6 30 [−100,100] −300

F15_CEC2005: Hybrid Composition Function 1 30 [−5,5] 120

F16_CEC2005: Rotated Hybrid Composition Function 1 30 [−5,5] 120

F17_CEC2005: Rotated Hybrid Composition Function 1 with Noise in Fitness 30 [−5,5] 120

F18_CEC2005: Rotated Hybrid Composition Function 2 30 [−5,5] 10

F19_CEC2005: Rotated Hybrid Composition Function 2 with a Narrow Basin for the Global Optimum 30 [−5,5] 10

F20_CEC2005: Rotated Hybrid Composition Function 2 with the Global Optimum on the Bounds 30 [−5,5] 10

F21_CEC2005: Rotated Hybrid Composition Function 3 30 [−5,5] 360

F22_CEC2005: Rotated Hybrid Composition Function 3 with High Condition Number Matrix 30 [−5,5] 360

F23_CEC2005: Non-Continuous Rotated Hybrid Composition Function 3 30 [−5,5] 360

F24_CEC2005: Rotated Hybrid Composition Function 4 30 [−5,5] 260

F25_CEC2005: Rotated Hybrid Composition Function 4 without Bounds 30 [−5,5] 260

References

[1] Coello Coello CA . Theoretical and numerical constraint-handling techniques

used with evolutionary algorithms: a survey of the state of the art. Comput
Meth Appl Mech Eng 2002;191:1245–87 .

[2] Marler RT , Arora JS . Survey of multi-objective optimization methods for engi-
neering. Struct Multidiscipl Optim 2004;26:369–95 .

[3] Mirjalili S , Mirjalili SM , Lewis A . Grey wolf optimizer. Adv Eng Softw

2014;69:46–61 .

[4] Spall JC . Introduction to stochastic search and optimization: estimation, simu-

lation, and control, vol. 65. John Wiley & Sons; 2005 .
[5] Dasgupta D , Michalewicz Z . Evolutionary algorithms in engineering applica-

tions. Springer; 1997 .
[6] Yang X-S . Nature-inspired metaheuristic algorithms. Luniver press; 2010 .

[7] Mirjalili S , Lewis A . S-shaped versus V-shaped transfer functions for binary
particle swarm optimization. Swarm Evol Comput 2013;9:1–14 .

[8] Davis L . Bit-climbing, representational bias, and test suite design. ICGA

1991:18–23 .
[9] Kirkpatrick S , Gelatt CD , Vecchi MP . Optimization by simmulated annealing.

Science 1983;220:671–80 .
[10] L.J. Fogel, A.J. Owens, and M.J. Walsh, "Artificial intelligence through simulated

evolution," 1966.
[11] Glover F . Tabu search-part I. ORSA J Comput 1989;1:190–206 .

[12] H.R. Lourenço, O.C. Martin, and T. Stutzle, “Iterated local search,” arXiv preprint

math/0102188 , 2001.
[13] Holland JH . Genetic algorithms. Sci Am 1992;267:66–72 .

[14] Eberhart RC , Kennedy J . A new optimizer using particle swarm theory. In: Pro-
ceedings of the sixth international symposium on micro machine and human

science; 1995. p. 39–43 .
[15] Colorni A , Dorigo M , Maniezzo V . Distributed optimization by ant colonies. In:

Proceedings of the first European conference on artificial life; 1991. p. 134–42 .

[16] Storn R , Price K . Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. J Glob Optim 1997;11:341–59 .

[17] Eiben AE , Schippers C . On evolutionary exploration and exploitation. Funda-
menta Informaticae 1998;35:35–50 .

[18] Kaveh A , Farhoudi N . A new optimization method: dolphin echolocation. Adv
Eng Softw 2013;59:53–70 .

[19] Kaveh A , Farhoudi N . Dolphin monitoring for enhancing metaheuristic algo-

rithms: layout optimization of braced frames. Comput Struct 2016;165:1–9 .
[20] Yang X-S . Firefly algorithm, stochastic test functions and design optimisation.

Int J Bio Inspired Comput 2010;2:78–84 .
[21] Yang X-S . Firefly algorithm, Levy flights and global optimization. In: Research

and development in intelligent systems XXVI. Springer; 2010. p. 209–18 .
[22] Yang X-S . A new metaheuristic bat-inspired algorithm. In: Nature inspired co-

operative strategies for optimization (NICSO 2010). Springer; 2010. p. 65–74 .
[23] Yang X-S , Deb S . Cuckoo search via Lévy flights. In: Nature & biologically in-

spired computing, 2009. NaBIC 2009. World congress on; 2009. p. 210–14 .

[24] Yang X-S , Deb S . Engineering optimisation by cuckoo search. Int J Math Model
Numer Optim 2010;1:330–43 .

[25] Cuevas E , Echavarría A , Ramírez-Ortegón MA . An optimization algorithm in-
spired by the States of Matter that improves the balance between exploration

and exploitation. Appl Intel 2014;40:256–72 .

[26] Cuevas E , Echavarría A , Zaldívar D , Pérez-Cisneros M . A novel evolutionary al-
gorithm inspired by the states of matter for template matching. Expert Syst

Appl 2013;40:6359–73 .

[27] Yang X-S . Flower pollination algorithm for global optimization. In: Unconven-
tional computation and natural computation. Springer; 2012. p. 240–9 .

[28] Wolpert DH , Macready WG . No free lunch theorems for optimization. Evol
Comput IEEE Trans 1997;1:67–82 .

[29] Chen S . Locust Swarms-A new multi-optima search technique. In: Evolutionary
Computation, 2009. CEC’09. IEEE Congress on; 2009. p. 1745–52 .

[30] Chen S . An analysis of locust swarms on large scale global optimization

problems. In: Artificial Life: borrowing from biology. Springer; 2009. p. 211–20 .
[31] Chen S , Vargas YN . Improving the performance of particle swarms through di-

mension reductions—A case study with locust swarms. In: Evolutionary com-
putation (CEC), 2010 IEEE congress on; 2010. p. 1–8 .

[32] Lewis A . LoCost: a spatial social network algorithm for multi-objective opti-
misation. In: Evolutionary computation, 2009. CEC’09. IEEE congress on; 2009.

p. 2866–70 .

[33] Cuevas E , Cortés MAD , Navarro DAO . Optimization based on the behavior of
locust swarms. In: Advances of evolutionary computation: methods and oper-

ators. Springer; 2016. p. 101–20 .
[34] BoussaïD I , Lepagnot J , Siarry P . A survey on optimization metaheuristics. Inf

Sci 2013;237:82–117 .
[35] Gogna A , Tayal A . Metaheuristics: review and application. J Exp Theor Artif

Intel 2013;25:503–26 .

[36] Zhou A , Qu B-Y , Li H , Zhao S-Z , Suganthan PN , Zhang Q . Multiobjective evo-
lutionary algorithms: A survey of the state of the art. Swarm Evol Comput

2011;1:32–49 .
[37] Simpson SJ , McCaffery A , HAeGELE BF . A behavioural analysis of phase change

in the desert locust. Biol Rev 1999;74:461–80 .
[38] Rogers SM , Matheson T , Despland E , Dodgson T , Burrows M , Simpson SJ .

Mechanosensory-induced behavioural gregarization in the desert locust Schis-

tocerca gregaria. J Exp Biol 2003;206:3991–4002 .
[39] Topaz CM , Bernoff AJ , Logan S , Toolson W . A model for rolling swarms of lo-

custs. Eur Phys J Special Top 2008;157:93–109 .
[40] Yao X , Liu Y , Lin G . Evolutionary programming made faster. In: Evolutionary

computation, IEEE transactions on, 3; 1999. p. 82–102 .
[41] Digalakis J , Margaritis K . On benchmarking functions for genetic algorithms.

Int J Comput Math 2001;77:481–506 .
[42] M. Molga and C. Smutnicki, "Test functions for optimization needs," Test func-

tions for optimization needs , 2005.

[43] X.-S. Yang, "Test problems in optimization," arXiv preprint arXiv:1008.0549 ,
2010.

[44] Rashedi E , Nezamabadi-Pour H , Saryazdi S . GSA: a gravitational search algo-
rithm. Inf Sci 2009;179:2232–48 .

[45] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, et al., "Prob-
lem definitions and evaluation criteria for the CEC 2005 special session on

real-parameter optimization," KanGAL report , vol. 20 050 05, p. 20 05, 20 05.

[46] Kaveh A . Colliding Bodies Optimization. In: Advances in metaheuristic algo-
rithms for optimal design of structures. Springer; 2014. p. 195–232 .

[47] Kaveh A , Mahdavi V . Colliding bodies optimization: a novel meta-heuristic
method. Comput Struct 2014;139:18–27 .

[48] Kaveh A , Bakhshpoori T . A new metaheuristic for continuous structural

http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0010
http://math/0102188
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0022
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0022
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0022
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0028
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0028
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0029
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0029
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0029
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0030
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0030
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0032
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0032
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0032
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0032
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0043

S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47 47

optimization: water evaporation optimization. Struct Multidiscipl Optim

2016:1–21 .

[49] Kaveh A , Bakhshpoori T , Afshari E . An efficient hybrid particle swarm and
swallow swarm optimization algorithm. Comput Struct 2014;143:40–59 .

[50] Kaveh A , Khayatazad M . A new meta-heuristic method: ray optimization. Com-
put Struct 2012;112:283–94 .

[51] Kaveh A , Khayatazad M . Ray optimization for size and shape optimization of
truss structures. Comput Struct 2013;117:82–94 .

[52] Kaveh A , Nasrollahi A . A new hybrid meta-heuristic for structural design:

ranked particles optimization. Struct Eng Mech 2014;52:405–26 .
[53] Kaveh A , Talatahari S . A novel heuristic optimization method: charged system

search. Acta Mech 2010;213:267–89 .
[54] Kaveh A , Mirzaei B , Jafarvand A . An improved magnetic charged system search

for optimization of truss structures with continuous and discrete variables.
Appl Soft Comput 2015;28:400–10 .

[55] Gandomi AH , Yang X-S , Alavi AH . Cuckoo search algorithm: a metaheuristic ap-

proach to solve structural optimization problems. Eng Comput 2013;29:17–35 .
[56] Sadollah A , Bahreininejad A , Eskandar H , Hamdi M . Mine blast algorithm: A

new population based algorithm for solving constrained engineering optimiza-
tion problems. Appl Soft Comput 2013;13:2592–612 .

[57] Mirjalili S . The ant lion optimizer. Adv Eng Softw 2015;83:80–98 .
[58] Zhang M , Luo W , Wang X . Differential evolution with dynamic stochastic se-

lection for constrained optimization. Inf Sci 2008;178:3043–74 .
[59] Liu H , Cai Z , Wang Y . Hybridizing particle swarm optimization with differential

evolution for constrained numerical and engineering optimization. Appl Soft
Comput 2010;10:629–40 .

[60] Ray T , Saini P . Engineering design optimization using a swarm with an intelli-
gent information sharing among individuals. Eng Optim 2001;33:735–48 .

[61] Tsai J-F . Global optimization of nonlinear fractional programming problems in

engineering design. Eng Optim 2005;37:399–409 .
[62] Chickermane H , Gea H . Structural optimization using a new local approxima-

tion method. Int J Numer Methods Eng 1996;39:829–46 .
[63] Cheng M-Y , Prayogo D . Symbiotic organisms search: A new metaheuristic op-

timization algorithm. Comput Struct 2014;139:98–112 .
[64] Li L , Huang Z , Liu F . A heuristic particle swarm optimization method for truss

structures with discrete variables. Comput Struct 2009;87:435–43 .

[65] Kaveh A , Talatahari S . A particle swarm ant colony optimization for truss struc-
tures with discrete variables. J Constr Steel Res 2009;65:1558–68 .

[66] Sadollah A , Bahreininejad A , Eskandar H , Hamdi M . Mine blast algorithm

for optimization of truss structures with discrete variables. Comput Struct

2012;102:49–63 .

http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0045
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0045
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0045
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0048
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0048
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0048
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0049
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0049
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0049
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0049
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0050
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0050
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0050
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0050
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0052
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0052
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0053
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0053
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0053
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0053
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0056
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0056
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0058
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0058
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0058
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0059
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0059
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0059
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0059
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30564-6/sbref0061

	Grasshopper Optimisation Algorithm: Theory and application
	1 Introduction
	2 Grasshopper Optimisation Algorithm (GOA)
	3 Results
	3.1 Experimental setup
	3.2 Qualitative results and discussion
	3.3 Quantitative results and discussion

	4 Real applications
	4.1 Three-bar truss design problem
	4.2 Cantilever beam design problem
	4.3 52-bar truss design

	5 Conclusion
	 Appendix
	 References

