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a b s t r a c t 

This paper proposes an optimisation algorithm called Grasshopper Optimisation Algorithm (GOA) and ap- 

plies it to challenging problems in structural optimisation. The proposed algorithm mathematically mod- 

els and mimics the behaviour of grasshopper swarms in nature for solving optimisation problems. The 

GOA algorithm is first benchmarked on a set of test problems including CEC2005 to test and verify its 

performance qualitatively and quantitatively. It is then employed to find the optimal shape for a 52-bar 

truss, 3-bar truss, and cantilever beam to demonstrate its applicability. The results show that the pro- 

posed algorithm is able to provide superior results compared to well-known and recent algorithms in the 

literature. The results of the real applications also prove the merits of GOA in solving real problems with 

unknown search spaces. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The process of finding the best values for the variables of a 

particular problem to minimise or maximise an objective func- 

tion is called optimisation. Optimisation problems exist in different 

fields of studies. To solve an optimisation problem, different steps 

need to be taken. Firstly, the parameters of the problem should 

be identified. Based on the nature of the parameters, problems 

may be classified as continuous or discrete. Secondly, the con- 

straints that are applied to the parameters have to be recognised 

[1] . Constraints divide the optimisation problems into constrained 

and unconstrained. Thirdly, the objectives of the given problem 

should be investigated and considered. In this case, optimisation 

problems are classified into single-objective versus multi-objective 

problems [2] . Finally, based on the identified types of parameters, 

constraints, and number of objectives a suitable optimiser should 

be chosen and employed to solve the problem. 

Mathematical optimisation mainly relies on gradient-based in- 

formation of the involved functions in order to find the optimal 

solution. Although such techniques are still being used by different 

researchers, they have some disadvantages. Mathematical optimi- 

sation approaches suffer from local optima entrapment. This refers 

to an algorithm assuming a local solution is the global solution, 

thus failing to obtain the global optimum. They are also often inef- 

fective for problems with unknown or computationally expensive 
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derivation [3] . Another type of optimisation algorithm that allevi- 

ates these two drawbacks is stochastic optimisation [4] . 

Stochastic methods rely on random operators that allow them 

to avoid local optima. They all start optimisation process by creat- 

ing one or a set of random solutions for a given problem. In con- 

trast to mathematical optimisation techniques, they do not need 

to calculate the gradient of a solution, just evaluating the solutions 

using the objective function(s). Decisions as to how to improve the 

solutions are made based on the calculated objective values. There- 

fore, the problem is considered as a black box, which is a very use- 

ful mechanism when solving real problems with unknown search 

spaces. Due to these advantages, stochastic optimisation techniques 

have become very popular over the past two decades [5] . 

Among stochastic optimisation approaches, nature-inspired, 

population-based algorithms are the most popular [6] . Such tech- 

niques mimic natural problems-solving methods, often those used 

by creatures. Survival is the main goal for all creatures. To achieve 

this goal, they have been evolving and adapting in different ways. 

Therefore, it is wise to seek inspiration from nature as the best 

and oldest optimiser on the planet. Such algorithms are classified 

into two main groups: single-solutions-based and multi-solution- 

based. In the former class, a single random solution is generated 

and improved for a particular problem. In the latter class, how- 

ever, multiple solutions are generated and enhanced for a given 

problem. Multi-solution-based algorithms are more popular than 

single-solution-based methods, as the literature shows [7] . 

Multi-solution-based algorithms intrinsically have higher lo- 

cal optima avoidance due to improving multiple solutions dur- 

ing optimisation. In this case, a trapped solution in a local opti- 

mum can be assisted by other solutions to jump out of the local 
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optimum. Multiple solutions explore a larger portion of the search 

space compared to single-solution-based algorithms, so the prob- 

ability of finding the global optimum is high. Also, information 

about the search space can be exchanged between multiple so- 

lutions, which results in quick movement towards the optimum. 

Although multi-solution-based algorithms have several advantages, 

they require more function evaluations. 

The most popular single-solution-based algorithms are hill 

climbing [8] and simulated annealing [9] . Both algorithms follow 

a similar idea, but the local optima avoidance of SA is higher due 

to the stochastic cooling factor. Other recent single-solution-based 

algorithms are Tabu Search (TS) [10,11] , and Iterated Local Search 

(ILS) [12] . The most popular multi-solutions-based algorithms are 

Genetic Algorithms (GA) [13] , Particle Swarm Optimisation (PSO) 

[14] , Ant Colony Optimisation (ACO) [15] , and Differential Evolu- 

tion (DE) [16] . The GA algorithm was inspired by the Darwinian 

theory of evolution. In this algorithm, solutions are considered as 

individuals and the parameters of solutions take the place of their 

genes. Survival of the fittest individuals is the main inspiration of 

this algorithm where the best individuals tend to participate more 

in improving poor solutions. The PSO algorithm simulates the for- 

aging of herds of birds or schools of fishes. In this algorithm the 

solutions are improved with respect to the best solutions obtained 

so far by each of the particles and the best solution found by the 

swarm. The ACO algorithm mimics the collective behaviour of ants 

in finding the shortest path from the nest to the source of foods. 

Finally, DE utilises simple formulae combining the parameters of 

existing solutions to improve the population of candidate solutions 

for a given problem. 

The similarity of both classes of nature-inspired algorithms is 

the improvement of solutions until the satisfaction of an end cri- 

terion and the division of optimisation process into two phases: 

exploration versus exploitation [17] . Exploration refers to the ten- 

dency for an algorithm to have highly randomised behaviour so 

that the solutions are changed significantly. Large changes in the 

solutions cause greater exploration of the search space and conse- 

quently discovery of its promising regions. As an algorithm tends 

toward exploitation, however, solutions generally face changes on 

a smaller scale and tend to search locally. A proper balance of ex- 

ploration and exploitation can result in finding the global optimum 

of a given optimisation problem. 

The literature shows that there are many recent swarm intelli- 

gence optimisation techniques such as Dolphin Echolocation (DEL) 

[18,19] , Firefly Algorithm (FA) [20,21] , Bat Algorithm (BA) [22] , and 

Grey Wolf Optimizer (GWO) [3] . DEL and BA mimic echolocation of 

dolphins in finding prey and bats navigating respectively. However, 

FA simulates the mating behaviour of fireflies in nature. Cuckoo 

Search (CS) [23,24] is another recent algorithm in this field, in 

which the reproductive processes of cuckoos are employed to pro- 

pose an optimisation algorithm. The GWO is also a swarm-based 

technique that models the hunting mechanism of grey wolves. 

There are also other algorithms with different inspiration in the 

literature. For instance, State of Matter Search (SMS) [25,26] uses 

the concepts of different phases in matter to optimise problems 

and the Flower Pollination Algorithm (FPA) [27] has been inspired 

by the survival and reproduction of flowers using pollination. There 

is a question here as to why we need more algorithms despite the 

many algorithms proposed so far. 

The answer to this question is in the No Free Lunch (NFL) the- 

orem [28] that logically has proven that there is no optimisation 

technique for solving all optimisation problems. In other words, 

algorithms in this field perform equally on average when consid- 

ering all optimisation problems. This theorem, in part, has moti- 

vated the rapidly increasing number of algorithms proposed over 

the last decade and is one of the motivations of this paper as 

well. The next section proposes a new algorithm mimicking the 

behaviour of grasshopper swarms. There are a few works in the lit- 

erature that have tried to simulate locust swarm [29–33] . The cur- 

rent study is an attempt to more comprehensively model grasshop- 

per behaviours and propose an optimisation algorithm based on 

their social interaction. 

Due to their simplicity, gradient-free mechanism, high local op- 

tima avoidance, and considering problems as black boxes, nature- 

inspired algorithms have been applied widely in science and in- 

dustry [34–36] . Therefore, we also investigate the application of 

the proposed algorithm in solving real problems. The rest of the 

paper is organised as follows: 

The Grasshopper Optimisation Algorithm is proposed in 

Section 2 . Section 3 presents and discusses the results on the 

optimisation test beds and inspects the behaviour of the pro- 

posed algorithm. Section 4 contains the application of the pro- 

posed method in the field of structural design optimisation. Finally, 

Section 5 concludes the work and suggests several directions for 

future studies. 

2. Grasshopper Optimisation Algorithm (GOA) 

Grasshopper are insects. They are considered a pest due to 

their damage to crop production and agriculture. The life cycle of 

grasshoppers is shown in Fig. 1 . Although grasshoppers are usually 

seen individually in nature, they join in one of the largest swarm 

of all creatures [37] . The size of the swarm may be of continen- 

tal scale and a nightmare for farmers. The unique aspect of the 

grasshopper swarm is that the swarming behaviour is found in 

both nymph and adulthood [38] . Millions of nymph grasshoppers 

jump and move like rolling cylinders. In their path, they eat almost 

all vegetation. After this behaviour, when they become adult, they 

form a swarm in the air. This is how grasshoppers migrate over 

large distances. 

The main characteristic of the swarm in the larval phase is slow 

movement and small steps of the grasshoppers. In contrast, long- 

range and abrupt movement is the essential feature of the swarm 

in adulthood. Food source seeking is another important character- 

istic of the swarming of grasshoppers. As discussed in the intro- 

duction, nature-inspired algorithms logically divide the search pro- 

cess into two tendencies: exploration and exploitation. In explo- 

ration, the search agents are encouraged to move abruptly, while 

they tend to move locally during exploitation. These two functions, 

as well as target seeking, are performed by grasshoppers natu- 

rally. Therefore, if we find a way to mathematically model this be- 

haviour, we can design a new nature-inspired algorithm. 

The mathematical model employed to simulate the swarming 

behaviour of grasshoppers is presented as follows [39] : 

X i = S i + G i + A i (2.1) 

where X i defines the position of the i-th grasshopper, S i is the so- 

cial interaction, G i is the gravity force on the i-th grasshopper, and 

A i shows the wind advection. Note that to provide random be- 

haviour the equation can be written as X i = r 1 S i + r 2 G i + r 3 A i where 

r 1 , r 2 , and r 3 are random numbers in [0,1]. 

S i = 

N ∑ 

j=1 

j � = i 

s 
(
d i j 

) ̂ d i j (2.2) 

where d ij is the distance between the i-th and the j-th grasshopper, 

calculated as d ij = | x j −x i |, s is a function to define the strength of 

social forces, as shown in Eg. ( 2.3 ), and ̂ d i j = 

x j −x i 
d i j 

is a unit vector 

from the i th grasshopper to the j th grasshopper. 

The s function, which defines the social forces, is calculated as 

follows: 

s ( r ) = f e 
−r 
l − e −r (2.3) 
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Adult

Nymph Egg

Fig. 1. (a) Real grasshopper (b) Life cycle of grasshoppers (left image courtesy of Mehrdad Momeny). 
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Fig. 2. (left) Function s when l = 1.5 and f = 0.5 (right) range of function s when x is in [ 1 , 4 ] . 
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where f indicates the intensity of attraction and l is the attractive 

length scale. 

The function s is illustrated in Fig. 2 to show how it impacts on 

the social interaction (attraction and repulsion) of grasshoppers. 

It may be seen in this figure that distances from 0 to 15 are 

considered. Repulsion occurs in the interval [0 2.079]. When a 

grasshopper is 2.079 units away from another grasshopper, there 

is neither attraction nor repulsion. This is called the comfort zone 

or comfortable distance. Fig. 2 also shows that the attraction in- 

creases from 2.079 unit of distance to nearly 4 and then gradually 

decreases. Changing the parameters l and f in Eq. (2.3) results in 

different social behaviours in artificial grasshoppers. To see the ef- 

fects of these two parameters, the function s is re-drawn in Fig. 3 

varying l and f independently. This figure shows that the parame- 

ters l and f change comfort zone, attraction region, and repulsion 

region significantly. It should be noted that the attraction or re- 

pulsion regions are very small for some values ( l = 1.0 or f = 1.0 for 

instance). From all these values we have chosen l = 1.5 and f = 0.5 . 

A conceptual model of the interactions between grasshoppers 

and the comfort zone using the function s is illustrated in Fig. 4 . It 

may be noted that, in simplified form, this social interaction was 

the motivating force in some earlier locust swarming models [32] . 

Although the function s is able to divide the space between two 

grasshoppers into repulsion region, comfort zone, and attraction 

region, this function returns values close to zero with distances 

greater than 10 as Figs. 2 and 3 show. Therefore, this function is 

not able to apply strong forces between grasshoppers with large 

distances between them. To resolve this issue, we have mapped 
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Comfort zone Attraction force

Repulsion force

Fig. 4. Primitive corrective patterns between individuals in a swarm of grasshop- 

pers. 

the distance of grasshoppers in the interval of [1,4] . The shape of 

the function s in this interval is shown in Fig. 2 (right). 

The G component in Eq. (2.1) is calculated as follows: 

G i = −g ̂  e g (2.4) 

where g is the gravitational constant and ̂ e g shows a unity vector 

towards the centre of earth. 

The A component in Eq. (2.1) is calculated as follows: 

A i = u ̂  e w (2.5) 

where u is a constant drift and ̂ e w is a unity vector in the direction 

of wind. 

Nymph grasshoppers have no wings, so their movements are 

highly correlated with wind direction. 

Substituting S, G, and A in Eq.(2.1), this equation can be ex- 

panded as follows: 

X i = 

N ∑ 

j=1 

j � = i 

s 
(∣∣x j − x i 

∣∣)x j − x i 

d i j 
− g ̂  e g + u ̂  e w (2.6) 

where s (r) = f e 
−r 
l − e −r and N is the number of grasshoppers. 

Since nymph grasshoppers land on the ground, their position 

should not go below a threshold. However, we will not utilise this 

equation in the swarm simulation and optimisation algorithm be- 

cause it prevents the algorithm from exploring and exploiting the 

search space around a solution. In fact, the model utilised for the 

swarm is in free space. Therefore, Eq. (2.6) is used and can sim- 

ulate the interaction between grasshoppers in a swarm. The be- 

haviour of two swarms in 2D and 3D space using this equation 

is illustrated in Figs. 5 and 6 . In these two figures, 20 artificial 

grasshoppers are required to move over 10 units of time. 

Fig. 5 shows how Eq. (2.6) brings the initial random population 

closer until they form a united, regulated swarm. After 10 units 

of time, all the grasshoppers reach the comfort zone and do not 

move anymore. The same behaviour is observed in a 3D space in 

Fig. 6 . This shows that the mathematical model is able to simulate 

a swarm of grasshoppers in 2D, 3D, and hyper dimensional spaces. 

However, this mathematical model cannot be used directly 

to solve optimisation problems, mainly because the grasshoppers 

quickly reach the comfort zone and the swarm does not converge 

to a specified point. A modified version of this equation is pro- 

posed as follows to solve optimisation problems: 

X d i = c 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

N ∑ 

j=1 

j � = i 

c 
u b d − l b d 

2 
s 
(∣∣x d j − x d i 

∣∣)x j − x i 

d i j 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

+ ̂

 T d (2.7) 

where ub d is the upper bound in the D th dimension, lb d is the 

lower bound in the D th dimension s (r) = f e 
−r 
l − e −r , ̂ T d is the 

value of the D th dimension in the target (best solution found so 

far), and c is a decreasing coefficient to shrink the comfort zone, 

repulsion zone, and attraction zone. Note that S is almost similar 

to the S component in Eq. (2.1) . However, we do not consider grav- 

ity (no G component) and assume that the wind direction ( A com- 

ponent) is always towards a target ( ̂  T d ). 

Eq. (2.7) shows that the next position of a grasshopper is de- 

fined based on its current position, the position of the target, 

and the position of all other grasshoppers. Note that the first 

component of this equation considers the location of the current 

grasshopper with respect to other grasshoppers. In fact, we have 

considered the status of all grasshoppers to define the location of 

search agents around the target. This is different to PSO as the 

most well-regarded swarm intelligence technique in the literature. 

In PSO, there are two vectors for each particle: position and ve- 

locity vector. However, there is only one position vector for every 

search agent in GOA. The other main difference between these two 

algorithms is that PSO updates the position of particles with re- 

spect to current position, personal best, and global best. However, 

GOA updates the position of a search agent based on its current 

position, global best, and the position of all other search agents. 

This means that in PSO none of the other particles contribute to 

updating the position of a particle, whereas GOA requires all search 

agents to get involved in defining the next position of each search 

agent. 

It is also worth mentioning here that the adaptive parameter c 

has been used twice in Eq. (2.7) for the following reasons: 

• The first c from the left is very similar to the inertial weight 

( w ) in PSO. It reduces the movements of grasshoppers around 

the target. In other words, this parameter balances exploration 

and exploitation of the entire swarm around the target. 
• The second c decreases the attraction zone, comfort zone, and 

repulsion zone between grasshoppers. Considering the compo- 

nent c 
u b d −l d d 

2 s ( | x j − x i | ) in the Eq. (2.7) , c u b d −l d d 
2 linearly de- 

creases the space that the grasshoppers should explore and 

exploit. The component s (| x j −x i |) indicates if a grasshopper 

should be repelled from (explore) or attracted to (exploitation) 

the target. 

It should be noted that the inner c contributes to the reduction 

of repulsion/attraction forces between grasshoppers proportional to 

the number of iterations, while the outer c reduces the search cov- 

erage around the target as the iteration count increases. 

In summary, the first term of Eq. (2.7) , the sum, considers the 

position of other grasshoppers and implements the interaction of 

grasshoppers in nature. The second term, ̂ T d , simulates their ten- 

dency to move towards the source of food. Also, the parameter c 

simulates the deceleration of grasshoppers approaching the source 

of food and eventually consuming it. To provide more random be- 

haviour, and as an alternative, both terms in Eq. (2.7) can be multi- 

plied with random values. Also, individual terms can be multiplied 

with random values to provide random behaviour in either inter- 

action of grasshoppers or tendency towards the food source. 

The proposed mathematical formulations are able to explore 

and exploit the search space. However, there should be a mech- 

anism to require the search agents to tune the level of exploration 

to exploitation. In nature, grasshoppers first move and search for 

foods locally because in larvae they have no wing. They then move 

freely in air and explore a much larger scale region. In stochas- 

tic optimisation algorithms, however, exploration comes first due 

to the need for finding promising regions of the search space. Af- 

ter finding promising regions, exploitation obliges search agents to 
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Fig. 5. Behaviour of swarm in a 2D space. 
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Fig. 6. Behaviour of swarm in a 3D space. 

search locally to find an accurate approximation of the global opti- 

mum. 

For balancing exploration and exploitation, the parameter c is 

required to be decreased proportional to the number of iteration. 

This mechanism promotes exploitation as the iteration count in- 

creases. The coefficient c reduces the comfort zone proportional to 

the number of iterations and is calculated as follows: 

c = cmax − l 
cmax − cmin 

L 
(2.8) 

where cmax is the maximum value, cmin is the minimum value, l 

indicates the current iteration, and L is the maximum number of 

iterations. In this work, we use 1 and 0.0 0 0 01 for cmax and cmin 

respectively. 
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Fig. 7. (a) Behaviour of grasshoppers around a stationary and mobile target in 2D space and (b) 3D space (c) Behaviour of grasshoppers on a unimodal test function and a 

multi-modal test function. 

The effect of this parameter on the movement and convergence 

of grasshoppers is illustrated in Fig. 7 . The sub-figures illustrate 

the position history of grasshoppers over 100 iterations. We have 

performed the experiment on both stationary and mobile targets 

to see how the swarm moves towards and chases them. This fig- 

ure shows that the swarm converges gradually towards a station- 

ary target in both 2D and 3D spaces. This behaviour is due to re- 

ducing the comfort zone by the factor c . Fig. 7 also shows that 

the swarm properly chases a mobile target as well. This is due to 

the last component of Eq. (2.6) ( ̂  T d ) , in which grasshoppers are at- 

tracted towards the target. The interesting pattern is the gradual 

convergence of grasshoppers towards the target over the course of 

iteration, which is again due to decreasing the factor c . These be- 

haviours will assist the GOA algorithm not to converge towards the 

target too quickly and consequently not to become trapped in lo- 

cal optima. In the last steps of optimisation, however, grasshoppers 

will converge towards the target as much as possible, which is es- 

sential in exploitation. 

The above discussions show that the mathematical model pro- 

posed requires grasshoppers to move towards a target gradually 
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Fig. 8. Pseudo codes of the GOA algorithm. 

over the course of iterations. In a real search space, however, there 

is no target because we do not know exactly where the global op- 

timum, the main target, is. Therefore, we have to find a target for 

grasshoppers in each step of optimisation. In GOA, it is assumed 

that the fittest grasshopper (the one with the best objective value) 

during optimisation is the target. This will assist GOA to save the 

most promising target in the search space in each iteration and re- 

quires grasshoppers to move towards it. This is done with the hope 

of finding a better and more accurate target as the best approxima- 

tion for the real global optimum in the search space. Fig. 7 includes 

two test functions and shows that the proposed model and target 

updating mechanism are effective in problems with unknown op- 

timum as well. 

The pseudo code of the GOA algorithm is shown in Fig. 8 . The 

GOA starts optimisation by creating a set of random solutions. The 

search agents update their positions based on Eq. (2.7) . The posi- 

tion of the best target obtained so far is updated in each iteration. 

In addition, the factor c is calculated using Eq. (2.8) and the dis- 

tances between grasshoppers are normalised in [1,4] in each iter- 

ation. Position updating is performed iteratively until the satisfac- 

tion of an end criterion. The position and fitness of the best target 

is finally returned as the best approximation for the global opti- 

mum. 

Although the above simulations and discussions demonstrate 

the effectiveness of the GOA algorithm in finding the global op- 

timum in a search space, the performance of the proposed algo- 

rithm is investigated by employing a set of mathematical func- 

tions and three challenging real problems in the next sections. 

Note that the source codes of the GOA algorithm can be found at 

http://www.alimirjalili.com/Projects.html and http://au.mathworks. 

com/matlabcentral/profile/authors/2943818- seyedali- mirjalili . 

3. Results 

This section first presents the test bed problems and perfor- 

mance metrics that are used to benchmark the performance of the 

proposed GOA algorithm. The experimental results are then pro- 

vided and analysed in detail. 

3.1. Experimental setup 

In the field of stochastic optimisation, it is common to employ 

a set of mathematical test functions with known optima. Thus, 

the performance of different algorithms can be measured quantita- 

tively. However, the characteristics of the test functions should be 

diverse to be able to draw a mature conclusion. In this work, three 

sets of test functions with different features are employed to confi- 

dently benchmark the performance of the proposed algorithm. The 

test functions are unimodal, multimodal, and composite [40–43] . 

The mathematical formulation of these test functions are available 

in the appendix. 

As shown in Fig. 9 , a unimodal test function has no local so- 

lutions and there is only one global optimum. The entire search 

space favours the global optima, so the convergence speed and ex- 

ploitation of an algorithm can be benchmarked. Fig. 9 also shows 

that multi-modal and composite test functions have many local 

optima which make them highly suitable for benchmarking the 

performance of an algorithm in terms of local optima avoidance 

and exploration. Composite tests functions are usually more chal- 

lenging than the multi-modal test functions and better mimic real 

search spaces. Therefore, the potential performance of an algorithm 

solving real problems may be inferred from such benchmarks. 

For solving the test functions, 30 search agents and 500 iter- 

ations were employed. Each of the test functions was solved 30 

times to generate the statistical results. Different performance indi- 

cators were utilised to quantitatively compare the algorithms: av- 

erage and standard deviation of the best solutions obtained in the 

last iterations. Obviously, the lower the value of average and stan- 

dard deviation, the greater the ability of an algorithm in avoiding 

local solutions and determining the global optimum. Qualitative 

results, including convergence curves, trajectory of grasshoppers, 

search history, and average fitness of population have been illus- 

trated and analysed in the following subsection. 

For verification of results, seven algorithms were employed 

from the literature including well-known and recent ones: PSO, 

SMS [25,26] , BA [22] , FPA [27] , CS [23,24] , FA [20,21] , GA, DE, and 

Gravitational Search Algorithm (GSA) [44] . The initial controlling 

parameters of all algorithms are shown in Table 1 . 

3.2. Qualitative results and discussion 

The first experiment was performed on the 2D version of some 

of the test functions using only 5 artificial grasshoppers. The main 

objective for this experiment was to observe the behaviour of the 

GOA qualitatively. Five diagrams have been drawn for each of the 

test functions in Fig. 10 in addition to the shape of test functions. 

These diagrams are: 

• Search history: this diagram shows the location history of the 

artificial grasshoppers during optimisation. 
• Attraction/repulsion rates: this diagram shows the number of 

times that all artificial grasshoppers attracted or repelled each 

other during optimisation. 
• Trajectory of the first grasshopper in the first dimension: this 

diagram shows the value of the first variable of the first 

grasshopper in each iteration. 
• Average fitness: this diagram indicates the average objective 

value of all grasshoppers in each iteration. 
• Convergence curve: this diagram shows the objective value of 

the best solutions obtained so far (target) in each iteration. 

As per the results in Fig. 10 , grasshoppers tend to explore 

the promising regions of the search space and cluster around the 

global optima eventually. This pattern can be observed in uni- 

modal, multimodal, and composite test functions. These results 

show that the GOA algorithm beneficially balances exploration and 

exploitation to drive the grasshoppers towards the global optimum. 

The rates of attraction and repulsion in the pie charts show that 

the grasshoppers interact differently on the test functions. They 

seem to attract each other more often on the unimodal test func- 

tions. This can clearly be observed in the pie charts for F1 and F4. 

This behaviour is fruitful because unimodal functions do not have 

local optima, so grasshopper can better determine the global opti- 

mum by moving towards the best solution obtained so far. 

Another interesting pattern in the pie charts is the high re- 

pulsion rate between grasshoppers when solving multi-modal and 

composite test functions. This can be observed in the pie charts 

http://www.alimirjalili.com/Projects.html
http://au.mathworks.com/matlabcentral/profile/authors/2943818-seyedali-mirjalili
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F1 F9 F13

Fig. 9. An example of unimodal, multi-modal, and composite test functions. 

Table 1 

Initial values for the controlling parameters of algorithms. 

Algorithm Parameter Value 

PSO Topology Fully connected 

Cognitive and social constants 1.5, 1.5 

Inertial weight Linearly decreases from 0.6 to 0.3 

GA Type Real coded 

Selection Roulette wheel 

Crossover Single point (probability = 1) 

Mutation Uniform (probability = 0.01) 

DE Crossover probability 0.9 

Differential weight 0.5 

GSA Rnorm, Rpower, alpha, and G 0 2, 1, 20, 100 

BA Loudness ( A ), pulse rate ( r ) 0.5, 0.5 

Frequency min and max 0, 2 

FPA probability switch( p ) 0.4 

SMS Beta [0.9, 0.5, 0.1] 

Alpha [0.3, 0.05, 0] 

H [0.9, 0.2, 0] 

Phases [0.5, 0.1, −0.1] 

FA Alpha, beta, and gamma 0.2, 1, 1 

of F9, F14 and F18. This is due to the fact that repulsion is a key 

mechanism to avoid local solutions in the GOA algorithm and these 

results show that this algorithm prevents grasshoppers from local 

optima stagnation by high repulsion rates. It is worth mentioning 

here that the results show that the high repulsion rate does not 

negatively impact on the convergence. This is due to the adap- 

tive parameter of GOA, which shrinks the repulsion area propor- 

tional to the number of iterations. Therefore, grasshoppers avoid 

local valleys in the initial steps of iteration and cluster around the 

global optimum in the final stages of optimisation. For the test 

functions with both unimodal and multi modal regions (F10 for 

instance), Fig. 10 shows that the repulsion rate is lower. These re- 

sults again demonstrate that GOA efficiently balances exploration 

and exploitation to approximate the global optimum. 

The trajectory curves in Fig. 10 show that the grasshoppers ex- 

hibit large, abrupt changes in the initial steps of optimisation. This 

is due to the high repulsion rate which causes exploration of the 

search space by GOA. It also can be seen that the fluctuation de- 

creased gradually during optimisation, which is due to the adap- 

tive comfort zone and attraction forces between the grasshoppers. 

This guarantees that the proposed GOA algorithm explores and 

exploits the search space and converges towards a point eventu- 

ally. To confirm that this behaviour results in improving the fitness 

of grasshoppers, average fitness of grasshoppers and convergence 

curves are provided in Fig. 10 . The curves clearly show descending 

behaviour on all of the test functions. This proves that GOA en- 

hances the initial random population on the test functions and de- 

sirably improves the accuracy of the approximated optimum over 

the course of iterations. 

3.3. Quantitative results and discussion 

The above discussed results qualitatively demonstrated that 

the GOA is able to solve optimisation problems. However, the 

test functions were of 2 variables and qualitative results can- 

not tell us how much better this algorithm is compared to cur- 

rent ones. In order to show the merits of GOA quantitatively, 

this subsection solved the test functions with 30 dimensions and 

presents/discusses the results quantitatively. The experimental re- 

sults are provided in Tables 2 , 3 , and 4 for unimodal, multi-modal, 

and composite test functions. Note that the results are normalised 

between 0 and 1 for all the test functions due to the different do- 

main/range of test functions. This assist us in conveniently com- 

paring the results on different test functions as well. 

As per the results in Table 2 , the GOA algorithm shows the best 

results when solving unimodal test functions. The results of this 

algorithm are substantially better in more than half of the uni- 

modal test functions, showing the high performance of this algo- 

rithm. Unimodal test functions have only one global optimum, so 

the results clearly show that the GOA algorithm benefits from high 

exploitation ability. 

The results in Table 3 are consistent with those in Table 2 , in 

which the GOA algorithm tends to significantly outperform others 

in both of the performance metrics. The results of this algorithm 

are again remarkably superior in the majority of multi-modal test 

functions. Since the multi-modal test functions have a significant 

number of local solutions, these results quantitatively show the ef- 

fectiveness of the proposed algorithm in avoiding local solutions 

during optimisation. 

The results of the algorithms on composite test functions are 

presented in Table 4 . These results show that the GOA algo- 

rithm provides very competitive results compared to other algo- 

rithms. Composite test functions are even more challenging than 

the multi-modal ones and require a proper balance between ex- 

ploration and exploitation. Therefore, it can be stated that the GOA 

is able to balance exploration and exploitation properly for solving 

such challenging problems. 

Comparing algorithms based on average and standard devia- 

tion over 30 independent runs does not compare each of the 

runs. Therefore, it is still possible that the superiority occurs by 

chance despite its low probability in 30 runs. In order to com- 

pare the results of each run and decide on the significance of 

the results, the Wilcoxon statistical test was performed at 5% sig- 

nificance level and the p-values are reported in Table 5 . For the 

statistical test, the best algorithm in each test function is chosen 

and compared with other algorithms independently. For example, 

if the best algorithm is GOA, a pairwise comparison is done be- 

tween GOA/PSO, GOA/GSA , GOA/BA , and so on. Note that since 

the best algorithm cannot be compared with itself, N/A has been 
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Fig. 10. Behaviour of GOA on the 2D benchmark problems. 

written for the best algorithm in each function which stands for 

Not Applicable. 

As per the results in this table, p-values are mostly less than 

0.05 for the GOA, which demonstrates that the superiority of this 

algorithm is statistically significant. For the F3 function the results 

show the FPA is not significantly superior to GOA. Overall, these 

results show that GOA is able to outperform other algorithms in 

the literature. According to the NFL theorem, therefore, it has the 

potential to solve problems (of the types tested) that cannot be 

solved efficiently by other algorithms. 
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Table 2 

Results of unimodal benchmark functions. 

F GOA PSO GSA BA 

Ave std ave std ave std ave std 

F1 0.0 0 0 0 0.0 0 0 0 0.2391 0.5622 0.0 0 02 0.0012 0.9882 1.0 0 0 0 

F2 0.0020 0.0010 0.0097 0.0013 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

F3 0.0010 0.0203 0.2613 0.3547 0.0328 0.0395 1.0 0 0 0 1.0 0 0 0 

F4 0.0 0 0 0 0.0 0 0 0 0.4767 0.4730 0.3244 0.5119 0.9148 1.0 0 0 0 

F5 0.0 0 0 0 0.0 0 0 0 0.0386 0.0944 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

F6 0.0 0 0 0 0.0 0 0 0 0.7786 0.4808 0.3825 0.2231 1.0 0 0 0 1.0 0 0 0 

F7 0.0 0 0 0 0.0 0 0 0 0.1349 0.1648 0.0226 0.0763 1.0 0 0 0 1.0 0 0 0 

F FPA SMS FA GA 

ave std ave std ave std ave std 

F1 0.0329 0.0784 1.0 0 0 0 0.4478 0.1581 0.0748 0.4121 0.5202 

F2 0.0131 0.0 0 07 0.0157 0.0 0 08 0.0076 0.0 0 01 0.0100 0.0 0 03 

F3 0.0 0 0 0 0.0 0 0 0 0.3486 0.0651 0.0617 0.0160 0.2022 0.0710 

F4 0.3219 0.4215 1.0 0 0 0 0.7232 0.3796 0.2116 0.7245 0.2384 

F5 0.0060 0.0345 0.3901 0.4781 0.0068 0.0068 0.0746 0.0931 

F6 0.0088 0.0189 0.7025 0.5891 0.0414 0.0190 0.1933 0.1932 

F7 0.0386 0.0459 0.0036 0.0022 0.0590 0.0194 0.4416 0.2028 

Table 3 

Results of multimodal benchmark functions. 

F GOA PSO GSA BA 

ave std ave std ave std ave std 

F8 1.0 0 0 0 0.0 0 02 0.7425 0.0016 0.8473 0.0020 0.0148 1.0 0 0 0 

F9 0.0 0 0 0 0.0 0 07 0.6520 1.0 0 0 0 0.1361 0.2722 0.7022 0.7517 

F10 0.0975 1.0 0 0 0 0.6140 0.2426 0.0 0 0 0 0.0 0 0 0 0.9665 0.1155 

F11 0.0 0 0 0 0.0 0 0 0 0.8184 0.3512 1.0 0 0 0 0.5790 0.9912 1.0 0 0 0 

F12 0.0 0 0 0 0.0 0 07 0.4689 0.8147 0.0577 0.4246 0.6892 0.9635 

F13 0.0 0 0 0 0.0 0 0 0 0.0973 0.1647 0.1603 0.0890 1.0 0 0 0 1.0 0 0 0 

F FPA SMS FA GA 

ave std ave std ave std ave std 

F8 0.0381 0.0 0 06 0.5613 0.0049 0.6140 0.0 0 0 0 0.0 0 0 0 0.0 0 06 

F9 0.6568 0.4179 0.8628 0.2633 0.8377 0.0329 1.0 0 0 0 0.0 0 0 0 

F10 0.7170 0.3848 1.0 0 0 0 0.0666 0.7078 0.0410 0.8628 0.1415 

F11 0.0124 0.0058 0.6746 0.7789 0.0548 0.0070 0.1941 0.2865 

F12 0.0237 0.1907 0.1140 0.0 0 0 0 0.2442 1.0 0 0 0 1.0 0 0 0 0.4363 

F13 0.3766 0.1566 0.9609 0.2394 0.1119 0.1510 0.4 4 46 0.0798 

Table 4 

Results of composite benchmark functions. 

F GOA PSO GSA BA 

Ave std ave std ave std ave std 

F14 0.0 0 0 0 0.3386 0.6083 1.0 0 0 0 0.0840 0.2977 1.0 0 0 0 0.5714 

F15 0.4892 0.7182 0.4236 0.7929 0.0672 0.5226 1.0 0 0 0 1.0 0 0 0 

F16 0.0 0 0 0 0.0 0 0 0 0.4651 0.6805 0.4799 0.8414 1.0 0 0 0 1.0 0 0 0 

F17 0.8169 1.0 0 0 0 0.3241 0.2970 0.0 0 0 0 0.6439 1.0 0 0 0 0.6905 

F18 0.0 0 0 0 0.0064 0.3122 1.0 0 0 0 0.0581 0.2503 1.0 0 0 0 0.8953 

F19 0.7863 0.9355 1.0 0 0 0 0.0 0 0 0 0.9391 0.3063 0.9097 0.4190 

F FPA SMS FA GA 

ave std ave std ave std ave std 

F14 0.0 0 08 0.0570 0.5604 0.4830 0.5035 0.6008 0.3799 0.0 0 0 0 

F15 0.0 0 0 0 0.4822 0.5097 0.5559 0.5730 0.9765 0.1338 0.0 0 0 0 

F16 0.3381 0.0759 0.8914 0.5077 0.4921 0.0922 0.6820 0.1783 

F17 0.1395 0.0348 0.6594 0.0383 0.3264 0.4911 0.3660 0.0 0 0 0 

F18 0.3249 0.9194 0.3144 0.4097 0.3160 0.3885 0.1347 0.0 0 0 0 

F19 0.0 0 0 0 0.0702 0.4257 0.8595 0.7068 1.0 0 0 0 0.0211 0.1720 

To further show the effectiveness of the proposed GOA algo- 

rithm, we have solved more challenging test functions and com- 

pared the results with the most popular algorithms in the liter- 

ature. The test functions are 25 taken from the CEC2005 special 

session [45] . These test functions are the most challenging test 

functions in the literature and can be found in the appendix. The 

results are compared to PSO, GA, DE, GSA, BA, FPA, and FA as 

the most well-known and recent algorithms in the literature. The 

results are again normalised in [0,1] and presented in Tables 6 

and 7 . 

Inspecting the results in Table 6 , it is evident that the pro- 

posed GOA algorithm outperforms other algorithms on the major- 

ity of the CEC2005 test functions. The p-values in Table 7 show 

that the superiority of GOA is statistically significant. Comparison 
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Table 5 

P-values obtained from the Wilcoxon ranksum test. 

TP GOA PSO GSA BA FPA SMS FA GA 

F1 N/A 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F2 0.002827 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F3 0.140465 0.0 0 0183 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F4 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F5 N/A 0.0 0 0183 0.241322 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F6 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F7 N/A 0.0 0 0183 0.0 0 033 0.0 0 0183 0.0 0 0183 0.0 0 0583 0.0 0 0183 0.0 0 0183 

F8 0.0 0 0183 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F9 N/A 0.0 0 0183 0.01133 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F10 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F11 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.001315 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F12 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 6.39e-5 0.0 0 0183 0.0 0 0183 

F13 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 6.39e-5 0.0 0 0183 0.0 0 0183 

F14 N/A 0.001315 0.009108 0.0 0 0246 0.025748 0.001706 0.001315 0.002827 

F15 0.0 010 08 0.004586 0.791337 0.0 0 0246 N/A 0.0 010 08 0.0 0 0769 0.002827 

F16 N/A 0.0 0 0246 0.0 0 044 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F17 0.0 010 08 0.002827 N/A 0.0 010 08 0.002827 0.002827 0.002202 0.002827 

F18 N/A 0.01133 0.472676 0.0 0 0183 0.025748 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F19 0.025748 0.0 0 0183 0.0 0 0183 0.0 0 0183 N/A 0.0 0 033 0.0 0 044 0.021134 

with some of the algorithms provide p-values greater than 0.05 oc- 

casionally. This shows that the GOA algorithm is not significantly 

better on those functions. Also, GOA provides very competitive re- 

sults on the F12_CEC20 05, F16_CEC20 05, and F24_CEC20 05 test 

functions, since the high p-values show GSA was not significantly 

better. Since CEC test functions are very challenging and mimic 

different difficulties of a real search space, these results strongly 

demonstrate the merits of the proposed GOA algorithm compared 

to other algorithms in the literature. 

To sum up, the discussions and findings of this section clearly 

demonstrate the quality of exploration, local optima avoidance, ex- 

ploitation, and convergence of the GOA algorithm. The high ex- 

ploration and local optima avoidance of this algorithm originates 

from the high repulsion rate between grasshoppers. The repulsive 

force requires grasshoppers to avoid each other and explore the 

search space extensively. This is the main reason for high local 

optima avoidance of GOA as well. Exploitation and convergence 

are encouraged by the attraction forces between the grasshop- 

pers, and the adaptive comfort zone. High attractive forces be- 

tween grasshoppers drive them quickly towards the best solution 

obtained so far. The adaptive comfort zone coefficient decreases 

proportional to the number of iterations, generating smaller repul- 

sion forces and emphasising exploitation. The adaptive behaviour 

of the comfort zone coefficient also results in a proper balance be- 

tween exploration and exploitation. 

Although these findings strongly suggest that GOA is able to 

solve real problems, in the following section we use three real 

problems in the field of structural design to demonstrate and con- 

firm the applicability of this algorithm in solving real problems 

with unknown search spaces. 

4. Real applications 

Solving structural design problems using stochastic optimisa- 

tion techniques has been a popular research direction in the liter- 

ature [46–54] . This section solves three of the conventional struc- 

tural design problems using the proposed GOA algorithm. 

4.1. Three-bar truss design problem 

This structural design problem is one of the most widely-used 

case studies in the literature [55,56] . This problem is formulated as 

follows: 

Consider �
 x = [ x 1 x 2 ] = [ A 1 A 2 ] , 

Minimise f ( � x ) = 

(
2 
√ 

2 x 1 + x 2 
)
∗l , 

Subject to g 1 ( � x ) = 

√ 

2 x 1 + x 2 √ 

2 x 2 
1 

+ 2 x 1 x 2 
P − σ ≤ 0 , 

g 2 ( � x ) = 

x 2 √ 

2 x 2 
1 

+ 2 x 1 x 2 
P − σ ≤ 0 , 

g 3 ( � x ) = 

1 √ 

2 x 2 + x 1 
P − σ ≤ 0 , 

Variable range 0 ≤ x 1 , x 2 ≤ 1 , 

where l = 100 cm , P = 2 KN / c m 

2 , σ = 2 KN / c m 

2 

Fig. 11 shows the shape of this truss and the forces applied. As 

this figure and the problem formulation show, there are two struc- 

tural parameters: the area of bars 1 and 3 and area of bar 2. The 

objective is to minimise the weight of the truss. This problem is 

subject to several constraints as well: stress, deflection, and buck- 

ling constraints. 

The proposed GOA with 20 search agents and 650 iterations 

was employed on this problem. Since this problem is a constrained 

problem, a constraint handling method needed to be integrated 

with GOA. For the sake of simplicity, a death penalty has been 

utilised. It penalises the search agents that violate any of the con- 

straints at any level with a large objective value. For verification, 

the results are compared to ALO, DEDS, PSO-DE, MBA, Ray and 

Sain, and Tsa methods and presented in Table 8 . This table shows 

the optimal values for both variables and weight. 

Inspecting the results of algorithms on this problem, it is ev- 

ident that GOA managed to show very competitive results com- 

pared to ALO, DEDS, PSO-DE, and MBA with a better maximum 

function evaluation. Also, this algorithm outperforms the rest of 

the algorithms significantly. These results show that the GOA al- 

gorithm is able to handle the difficulties of a constrained search 

space efficiently. 

4.2. Cantilever beam design problem 

This is another popular structural design problem in the litera- 

ture formulated as follows: 

Consider �
 x = [ x 1 x 2 x 3 x 4 x 5 ] 

Minimise f ( � x ) = 0 . 6224 ( x 1 + x 2 + x 3 + x 4 + x 5 ) , 

Subject to g ( � x ) = 

61 

x 3 
1 

+ 

27 

x 3 
2 

+ 

19 

x 3 
3 

+ 

7 

x 3 
4 

+ 

1 

x 3 
5 

− 1 ≤ 0 , 
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Table 6 

Results on CEC benchmark functions. 

F GOA PSO GA DE 

Ave std ave std ave std ave std 

F1_CEC2005 0.0 0 0 0 0.0 0 0 0 0.6040 1.0 0 0 0 0.4972 0.8825 0.0424 0.0950 

F2_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3341 0.1579 0.4860 0.1481 0.3483 0.1134 

F3_CEC2005 0.0037 0.0057 0.2299 0.2852 0.3130 0.0441 0.1311 0.0801 

F4_CEC2005 0.0 0 0 0 0.0127 0.4569 0.3523 0.4807 0.0958 0.3726 0.0473 

F5_CEC2005 0.0 0 0 0 0.0602 0.7003 0.4740 0.4788 0.0 0 0 0 0.2737 0.0513 

F6_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3078 0.1878 0.2109 0.2577 0.0037 0.0016 

F7_CEC2005 0.0 0 0 0 0.0 0 0 0 0.8524 0.6681 0.3416 0.3029 0.0759 0.0806 

F8_CEC2005 0.5505 0.7277 1.0 0 0 0 0.0 0 0 0 0.9702 0.1651 0.9816 0.4399 

F9_CEC2005 0.0 0 0 0 0.0356 0.5743 0.8935 1.0 0 0 0 0.3927 0.6055 0.1518 

F10_CEC2005 0.0 0 0 0 0.0 0 0 0 0.5391 1.0 0 0 0 0.7874 0.0628 0.4904 0.1780 

F11_CEC2005 0.7570 1.0 0 0 0 0.6283 0.8342 0.9965 0.3326 1.0 0 0 0 0.0 0 0 0 

F12_CEC2005 0.1087 0.3460 0.3531 1.0 0 0 0 1.0 0 0 0 0.4454 0.6698 0.2908 

F13_CEC2005 0.0 0 0 0 0.0046 0.1030 0.0580 0.4551 0.0808 0.1484 0.0091 

F14_CEC2005 0.0154 0.0855 0.0 0 0 0 0.9627 0.6053 0.2766 0.5800 0.0083 

F15_CEC2005 0.3527 1.0 0 0 0 0.5065 0.8562 0.6289 0.2734 0.4217 0.3437 

F16_CEC2005 0.1520 0.8379 0.3316 0.7594 0.3718 0.0825 0.1878 0.0 0 0 0 

F17_CEC2005 0.0 0 0 0 0.7666 0.4744 1.0 0 0 0 0.2712 0.0249 0.1401 0.0 0 0 0 

F18_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3981 0.7095 0.5096 0.2305 0.2369 0.2265 

F19_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3494 0.3857 0.4993 0.2066 0.2122 0.0501 

F20_CEC2005 0.0 0 0 0 0.0 0 0 0 0.4166 0.8314 0.6018 0.3811 0.2662 0.0663 

F21_CEC2005 0.0 0 0 0 0.0416 0.7469 0.0314 0.8364 0.0467 0.4840 0.3295 

F22_CEC2005 0.0 0 0 0 0.0 0 0 0 0.40 0 0 0.7118 0.6116 0.2260 0.3587 0.1408 

F23_CEC2005 1.0 0 0 0 0.3113 0.0 0 0 0 0.6942 0.0608 0.7502 0.2773 0.4302 

F24_CEC2005 1.0 0 0 0 0.0724 0.0 0 0 0 0.7804 0.0458 0.7228 0.1298 0.2603 

F25_CEC2005 0.3449 0.0075 0.8530 0.0765 0.8299 0.0035 0.4108 0.0442 

F GSA BA FPA FA 

ave std ave std ave std ave std 

F1_CEC2005 0.4318 0.5622 1.0 0 0 0 0.8805 0.1184 0.3697 0.1076 0.1120 

F2_CEC2005 0.2614 0.0257 1.0 0 0 0 1.0 0 0 0 0.0615 0.0320 0.1705 0.0191 

F3_CEC2005 0.1419 0.1081 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0620 0.0640 

F4_CEC2005 0.8724 0.4499 1.0 0 0 0 1.0 0 0 0 0.0651 0.0685 0.0661 0.0 0 0 0 

F5_CEC2005 0.8225 0.0534 1.0 0 0 0 1.0 0 0 0 0.2707 0.3970 0.1041 0.0675 

F6_CEC2005 0.1270 0.0762 1.0 0 0 0 1.0 0 0 0 0.0149 0.0323 0.0104 0.0067 

F7_CEC2005 0.9108 0.5975 1.0 0 0 0 1.0 0 0 0 0.0708 0.1859 0.0725 0.0476 

F8_CEC2005 0.2817 1.0 0 0 0 0.0 0 0 0 0.1382 0.9719 0.0924 0.9866 0.1094 

F9_CEC2005 0.4704 1 0.7013 0.3595 0.6643 0.3360 0.7155 0.0 0 0 0 

F10_CEC2005 0.2536 0.7690 1.0 0 0 0 0.8251 0.5307 0.9560 0.4252 0.0945 

F11_CEC2005 0.0 0 0 0 0.4116 0.9638 0.2210 0.7825 0.0509 0.9867 0.0856 

F12_CEC2005 0.0 0 0 0 0.1006 0.1440 0.6132 0.2963 0.0 0 0 0 0.4474 0.4266 

F13_CEC2005 0.0516 0.0331 1.0 0 0 0 1.0 0 0 0 0.0824 0.0 0 0 0 0.1328 0.0061 

F14_CEC2005 1.0 0 0 0 0.1088 0.7244 1.0 0 0 0 0.4733 0.0 0 0 0 0.4933 0.0425 

F15_CEC2005 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 0.8301 0.3127 0.1340 0.4956 0.8700 

F16_CEC2005 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.9453 0.1872 0.1099 0.1364 0.0588 

F17_CEC2005 0.1055 0.5209 1.0 0 0 0 0.6007 0.0966 0.1335 0.1530 0.4022 

F18_CEC2005 0.0306 0.0997 1.0 0 0 0 1.0 0 0 0 0.1485 0.4907 0.1162 0.0744 

F19_CEC2005 0.023 0.0478 1.0 0 0 0 1.0 0 0 0 0.1259 0.1073 0.0975 0.0111 

F20_CEC2005 0.056 0.3519 1.0 0 0 0 1.0 0 0 0 0.1484 0.1490 0.1075 0.0089 

F21_CEC2005 0.2677 1 1.0 0 0 0 0.1528 0.6712 0.0793 0.5613 0.0 0 0 0 

F22_CEC2005 0.1514 0.4313 1.0 0 0 0 1.0 0 0 0 0.2646 0.2646 0.2352 0.0618 

F23_CEC2005 0.9926 0.0 0 0 0 0.4327 1.0 0 0 0 0.3589 0.5613 0.0206 0.4696 

F24_CEC2005 0.5784 0.0 0 0 0 0.0691 1.0 0 0 0 0.3426 0.1616 0.0254 0.1246 

F25_CEC2005 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 0.3751 0.0623 0.2689 0.0595 

Variable range 0 . 01 ≤ x 1 , x 2 , x 3 , x 4 , x 5 ≤ 100 , 

Fig. 12 shows that the cantilever beam is built using five, hol- 

low, square-section, box girders, and the lengths of those girders 

are the design parameters for this problem. There is also one con- 

straint for this problem. The GOA algorithm with 20 search agents 

and a maximum of 650 iterations is employed to determine the 

optimum for this problem. The results are presented and com- 

pared to ALO, MMA, GCA_I, GCA-II, CS, and SOS for verification in 

Table 9 . 

The results in Table 9 show that GOA finds the second best op- 

timal weight. However, this algorithm provides the lowest number 

maximum function evaluation. 

4.3. 52-bar truss design 

In this problem, the objective is to minimise the weight of a 

truss with 52 bars and 20 nodes. As shown in Fig. 13 , four of 

the nodes are fixed and the bars are classified in 12 groups as 

follows, which are the main parameters to be optimised for this 

problem: 

• Group 1: A 1 , A 2 , A 3 , A 4 
• Group 2: A 5 , A 6 , A 7 , A 8 , A 9 , A 10 
• Group 3: A 11 , A 12 , A 13 
• Group 4: A 14 , A 15 , A 16 , A 17 
• Group 5: A 18 , A 19 , A 20 , A 21 , A 22 , A 23 
• Group 6: A 24 , A 25 , A 26 
• Group 7: A 27 , A 28 , A 29 , A 30 
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Table 7 

P-values obtained from the Wilcoxon ranksum test. 

TP GOA PSO GA DE GSA BA FPA FA 

F1_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F2_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0159 0.0079 

F3_CEC2005 0.2222 0.0079 0.0079 0.0079 0.0079 0.0079 1.0 0 0 0 0.0079 

F4_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0952 0.0317 

F5_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F6_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F7_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F8_CEC2005 0.0079 0.0079 0.0079 0.0079 0.0079 1.0 0 0 0 0.0079 0.0079 

F9_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F10_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F11_CEC2005 0.0079 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079 

F12_CEC2005 0.0556 0.0079 0.0079 0.0079 N/A 0.0556 0.0079 0.0079 

F13_CEC2005 N/A 0.0079 0.0079 0.0079 0.0159 0.0079 0.0079 0.0079 

F14_CEC2005 0.6905 N/A 0.0556 0.0952 0.0079 0.0317 0.1508 0.1508 

F15_CEC2005 0.0079 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079 

F16_CEC2005 0.2222 0.0952 0.0079 0.6905 N/A 0.0079 0.6905 0.6905 

F17_CEC2005 N/A 0.1508 0.1508 0.8413 0.3095 0.0079 1.0 0 0 0 0.4206 

F18_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F19_CEC2005 N/A 0.0079 0.0079 0.0079 0.0159 0.0079 0.0079 0.0079 

F20_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F21_CEC2005 N/A 0.0079 0.0079 0.0079 0.0952 0.0079 0.0079 0.0079 

F22_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F23_CEC2005 0.0317 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079 

F24_CEC2005 0.4206 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079 

F25_CEC2005 0.0079 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.4206 

Fig. 11. Three-bar truss design problem. 

• Group 8: A 31 , A 32 , A 33 , A 34 , A 35 , A 36 
• Group 9: A 37 , A 38 , A 39 
• Group 10: A 40 , A 41 , A 42 , A 43 
• Group 11: A 44 , A 45 , A 46 , A 47 , A 48 , A 49 
• Group 12: A 50 , A 51 , A 52 

The following list presents other parameters involved in this 

problem: 

• ρ =7860.0 kg / m 

3 

• E = 2.07 e 5 MPa 
• Stress limitation = 180 MPa 
• Maximum stress = 179.7652 MPa 
• Design variabe set are chosen from Table 18 
• P k = 100 kN , P y = 200 kN 

This is a discrete problem, in which the values for the 12 

parameters should be chosen from the 64 values available in 

Table 10 . To make GOA discrete, we simply round the search 

agents to the nearest integer. This problem is solved using 30 

search agents and 500 iterations, and the results are presented in 

Table 11 . Inspecting the results of this table, it is evident that the 

GOA finds the best optimal value for this problem with the least 

number of function evaluations. This highlights the performance 

of GOA in solving real problems with more variables. 

These results clearly demonstrate the merits of the GOA algo- 

rithm in solving real problems with unknown search spaces. The 

success of the GOA algorithm is due to several reasons. The ex- 

ploration ability of GOA is high in the initial steps of optimisa- 

tion, which is due to the large repulsion rate between grasshop- 

pers. This assists GOA to explore the search space broadly and dis- 

cover its promising regions. Then exploitation is high in the last 

steps of optimisation, which is due to the larger attraction forces 

between the grasshoppers. This behaviour causes local search and 

Table 8 

Comparison results of the three-bar truss design problem. 

Algorithm Optimal values for variables Optimal weight Max. Eval. 

x 1 x 2 

GOA 0.788897555578973 0.407619570115153 263.895881496069 13,0 0 0 

ALO [57] 0.7886628160 0 0317 0.408283133832901 263.8958434 14,0 0 0 

DEDS [58] 0.78867513 0.40824828 263.8958434 15,0 0 0 

PSO-DE [59] 0.7886751 0.4082482 263.8958433 17,600 

MBA [56] 0.7885650 0.4085597 263.8958522 20,0 0 0 

Ray and Sain [60] 0.795 0.395 264.3 N/A 

Tsa [61] 0.788 0.408 263.68 N/A 

CS [55] 0.78867 0.40902 263.9716 15,0 0 0 
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Fig. 12. Cantilever beam design problem. 

Table 9 

Comparison results for cantilever design problem. 

Algorithm Optimal values for variables Optimal Max. 

x 1 x 2 x 3 x 4 x 5 weight Eval. 

GOA 6.011674 5.31297 4.48307 3.50279 2.16333 1.33996 13,0 0 0 

ALO [57] 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995 14,0 0 0 

MMA [62] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400 N/A 

GCA_I [62] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400 N/A 

GCA_II [62] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400 N/A 

CS [55] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 2500 

SOS [63] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 15,0 0 0 

improving the accuracy of the solution(s) obtained in the explo- 

ration phase. The algorithm smoothly balances exploration and ex- 

ploitation, initially emphasising local optima avoidance and then 

convergence. This behaviour is due to the proposal of the adaptive 

comfort zone coefficient. The gradual decrementing of this compo- 

nent brings the grasshopper closer to the target proportional to the 

number of iterations. Finally, the proposed target chasing mecha- 

nism requires GOA to save the best solution obtained so far as the 

target and drive the grasshoppers towards it with the hope of im- 

proving its accuracy or finding a better one in the search space. 

Considering the simulations, results, discussion, and analyses of 

this paper, we believe that GOA is able to solve many optimisa- 

tion problems effectively. GOA considers a given optimisation prob- 

lem as a black box, so it does not need gradient information of 

the search space. Therefore, this algorithm can be applied to any 

optimisation problem in different fields subject to proper problem 

formulation. 

5. Conclusion 

This work proposed an optimisation algorithm called the 

Grasshopper Optimisation Algorithm. The proposed algorithm 

mathematically modelled and mimicked the swarming behaviour 

of grasshoppers in nature for solving optimisation problems. A 

mathematical model was proposed to simulate repulsion and at- 

traction forces between the grasshoppers. Repulsion forces allow 

grasshoppers to explore the search space, whereas attraction forces 

encouraged them to exploit promising regions. To balance between 

exploration and exploitation, GOA was equipped with a coefficient 

that adaptively decreases the comfort zone of the grasshoppers. Fi- 

nally, the best solution obtained so far by the swarm was consid- 

ered as a target to be chased and improved by the grasshoppers. 

In order to benchmark the performance of the proposed algo- 

rithm, a series of tests was conducted. Firstly, a set of 2D test func- 

tions was solved by the GOA to observe its performance qualita- 

tively. This experiment and relevant discussions support the fol- 

lowing conclusions: 

• Grasshoppers effectively discover the promising regions of a 

given search space. 
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Fig. 13. Structure of a 52-bar truss. 

• Grasshoppers face abrupt, large-scale changes in the initial 

steps of optimisation, which assist them to search globally. 
• Grasshoppers tend to move locally in the final steps of optimi- 

sation, which allows them to exploit the search space. 
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Table 10 

Available cross-section areas of the AISC norm (valid values for the parameters). 

No. in. 2 mm 

2 No. in. 2 mm 

2 

1 0.111 71 .613 33 3 .84 2477.414 

2 0.141 90 .968 34 3 .87 2496.769 

3 0.196 126 .451 35 3 .88 2503.221 

4 0.25 161 .29 36 4 .18 2696.769 

5 0.307 198 .064 37 4 .22 2722.575 

6 0.391 252 .258 38 4 .49 2896.768 

7 0.442 285 .161 39 4 .59 2961.284 

8 0.563 363 .225 40 4 .8 3096.768 

9 0.602 388 .386 41 4 .97 3206.445 

10 0.766 494 .193 42 5 .12 3303.219 

11 0.785 506 .451 43 5 .74 3703.218 

12 0.994 641 .289 44 7 .22 4658.055 

13 1 645 .16 45 7 .97 5141.925 

14 1.228 792 .256 46 8 .53 5503.215 

15 1.266 816 .773 47 9 .3 5999.988 

16 1.457 939 .998 48 10 .85 6999.986 

17 1.563 1008 .385 49 11 .5 7419.34 

18 1.62 1045 .159 50 13 .5 8709.66 

19 1.8 1161 .288 51 13 .9 8967.724 

20 1.99 1283 .868 52 14 .2 9161.272 

21 2.13 1374 .191 53 15 .5 9999.98 

22 2.38 1535 .481 54 16 10,322.56 

23 2.62 1690 .319 55 16 .9 10,903.2 

24 2.63 1696 .771 56 18 .8 12,129.01 

25 2.88 1858 .061 57 19 .9 12,838.68 

26 2.93 1890 .319 58 22 14,193.52 

27 3.09 1993 .544 59 22 .9 14,774.16 

28 3.13 2019 .351 60 24 .5 15,806.42 

29 3.38 2180 .641 61 26 .5 17,096.74 

30 3.47 2238 .705 62 28 18,064.48 

31 3.55 2290 .318 63 30 19,354.8 

32 3.63 2341 .931 64 33 .5 21,612.86 

• The varying comfort zone coefficient requires grasshoppers to 

gradually balance exploration and exploitation, which helps 

GOA not to become trapped in local optima and find an accu- 

rate approximation of the global optimum. 
• The GOA algorithm enhances the average fitness of grasshop- 

pers, which shows that this algorithm is able to effectively im- 

prove the initial random population of grasshoppers. 
• The fitness of target is improved over the course of iterations, 

which shows that the approximation of the global optimum be- 

comes more accurate proportional to the number of iterations. 

After the first experiment, four sets of challenging test func- 

tions were employed. The test functions were unimodal, multi- 

modal, composite, and CEC2005. The GOA algorithm managed 

to outperform several algorithms in the literature. The findings 

and discussions of the second experiment support the following 

conclusions: 

• Exploitation of the GOA is satisfactory on problems involving 

unimodal test functions. 
• Exploration of the GOA is intrinsically high for multi-modal test 

functions. 
• GOA properly balances exploration and exploitation when solv- 

ing challenging problems involving composite test functions. 
• GOA has the potential to significantly outperform several cur- 

rent algorithms when solving a range of current or new opti- 

misation problems. 

The last experiment was performed on three real problems in 

the field of structural design. All the problems were successfully 

solved, which demonstrates the practical merits of the proposed 

algorithm. From the results, findings, and discussions of the real 

applications, the following conclusions can be drawn: 

• GOA is able to improve the initial random population for a real 

problem. 
• The target is improved over the course of iterations, so the ap- 

proximation of the global optimum become more accurate pro- 

portional to the number of iterations. 
• GOA is able to solve real problems with unknown search 

spaces. 

GOA is only able to solve single-objective problems with con- 

tentious variables. For future work, binary and multi-objective ver- 

sions of this algorithm may be developed to solve discrete and 

multi-objective problems. The comfort zone parameter is an impor- 

tant coefficient in GOA, so it is worth investigating the impacts of 

different comfort zone functions on the performance of the algo- 

rithm. Solving optimisation problems in different fields could also 

be a valuable contribution. Tuning the main controlling parameters 

of GOA may also be beneficial. 

Appendix 

Tables 12 –15 

Table 11 

Comparison of GOA optimisation results with literature for the 52-bar truss design problem. 

Variables ( mm 

2 ) PSO [64] PSOPC [64] HPSO [64] DHPSACO [65] MBA [66] SOS [63] GOA 

A1 - A4 4658.055 5999.988 4658.055 4658.055 4658.055 4658.055 4658.055 

A5 - A10 1374.19 1008.38 1161.288 1161.288 1161.288 1161.288 1161.288 

A11 - A13 1858.06 2696.77 363.225 494.193 494.193 494.193 494.193 

A14 - A17 3206.44 3206.44 3303.219 3303.219 3303.219 3303.219 3303.219 

A18 - A23 1283.87 1161.29 940 1008.385 940 940 940 

A24 - A26 252.26 729.03 494.193 285.161 494.193 494.193 494.193 

A27 - A30 3303.22 2238.71 2238.705 2290.318 2238.705 2238.705 2238.705 

A31 - A36 1045.16 1008.38 1008.385 1008.385 1008.385 1008.385 1008.385 

A37 - A39 126.45 494.19 388.386 388.386 494.193 494.193 494.193 

A40 - A43 2341.93 1283.87 1283.868 1283.868 1283.868 1283.868 1283.868 

A44 - A49 1008.38 1161.29 1161.288 1161.288 1161.288 1161.288 1161.288 

A50 - A52 1045.16 494.19 792.256 506.451 494.193 494.193 494.193 

Optimal weight ( kg ) 2230.16 2146.63 1905.495 1904.83 1902.605 1902.605 1902.605 

No. of analyses 150,0 0 0 150,0 0 0 5300 11,100 5450 2350 2300 
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Table 12 

Unimodal benchmark functions. 

Function Dim Range f min 

f 1 (x ) = 

∑ n 
i =1 x 

2 
i 

30 [ −100,100] 0 

f 2 (x ) = 

∑ n 
i =1 | x i | + 

∏ n 
i =1 | x i | 30 [ −10,10] 0 

f 3 (x ) = 

∑ i 
i =1 ( 

∑ i 
j−1 x j ) 

2 
30 [ −100,100] 0 

f 4 (x ) = max 
i 

{ | x i | , 1 ≤ i ≤ n } 30 [ −100,100] 0 

f 5 (x ) = 

∑ n −1 
i =1 [ 100 ( x i +1 − x 2 

i 
) 
2 + ( x i − 1 ) 

2 
] 30 [ −30,30] 0 

f 6 (x ) = 

∑ n 
i =1 ( [ x i + 0 . 5 ] ) 

2 
30 [ −100,100] 0 

f 7 (x ) = 

∑ n 
i =1 ix 

4 
i 

+ random [ 0 , 1 ) 30 [ −1.28,1.28] 0 

Table 13 

Multimodal benchmark functions. 

Function Dim Range f min 

F 8 (x ) = 

∑ n 
i =1 −x i sin ( 

√ | x i | ) 30 [ −50 0,50 0] −418.9829 ×Dim 

F 9 (x ) = 

∑ n 
i =1 [ x 

2 
i 

− 10 cos ( 2 πx i ) + 10 ] 30 [ −5.12,5.12] 0 

F 10 (x ) = −20 exp( −0 . 2 
√ 

1 
n 

∑ n 
i =1 x 

2 
i 
) − exp( 1 

n 

∑ n 
i =1 cos ( 2 πx i ) ) + 20 + e 30 [ −32,32] 0 

F 11 (x ) = 

1 
40 0 0 

∑ n 
i =1 x 

2 
i 

− ∏ n 
i =1 cos ( 

x i √ 
i 
) + 1 30 [ −60 0,60 0] 0 

F 12 (x ) = 

π
n 
{ 10 sin ( πy 1 ) + 

∑ n −1 
i =1 ( y i − 1 ) 

2 
[ 1 + 10 si n 2 ( πy i +1 ) ] + ( y n − 1 ) 

2 } + 

∑ n 
i =1 u ( x i , 10 , 100 , 4 ) + 

n ∑ 

i =1 

u ( x i , 10 , 100 , 4 ) 

y i = 1 + 

x i +1 
4 

u ( x i , a, k, m ) = 

{ k ( x i − a ) 
m 

x i > a 

0 − a < x i < a 

k ( −x i − a ) 
m 

x i < −a 

30 [ −50,50] 0 

F 13 (x ) = 0 . 1 { si n 2 ( 3 πx 1 ) + 

∑ n 
i =1 ( x i − 1 ) 

2 
[ 1 + si n 2 ( 3 πx i + 1 ) ] + ( x n − 1 ) 

2 
[ 1 + si n 2 ( 2 πx n ) ] } + 

∑ n 
i =1 u ( x i , 5 , 100 , 4 ) 30 [ −50,50] 0 

Table 14 

Composite benchmark functions. 

Function Dim Range f min 

F 14 (CF1): 30 [ −5,5] 0 

f 1 , f 2 , f 3 , …, f 10 =Sphere Function 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [1 , 1 , 1 , .., 1] 

[ λ1 , λ2 , λ3 …, λ10 ] = [5/100, 5/100, 5/100, .., 5/100] 

F 15 (CF2): 30 [ −5,5] 0 

f 1 , f 2 , f 3 , . . . , f 10 = Griewank ’ s F unction 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [1 , 1 , 1 , .., 1] 

[ λ1 , λ2 , λ3 , …, λ10 ] = [5/100, 5/100, 5/100, .., 5/100] 

F 16 (CF3): 30 [ −5,5] 0 

f 1 , f 2 , f 3 , . . . , f 10 = Griewank ’ s F unction 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [1 , 1 , 1 , .., 1] 

[ λ1 , λ2 , λ3 , …, λ10 ] = [1, 1, 1, .., 1] 

f 17 (CF4): 30 [ −5,5] 0 

f 1 , f 2 = Ackley ’ sFunction 

f 3 , f 4 = Rastrigin ’ s Function 

f 5 , f 6 =Weierstrass Function 

f 7 , f 8 = Griewank ’ s Function 

f 9 , f 10 =Sphere Function 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [1 , 1 , 1 , .., 1] 

[ λ1 , λ2 , λ3 , …, λ10 ] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/10 0, 5/10 0, 5/10 0] 

f 18 (CF5): 30 [ −5,5] 0 

f 1 , f 2 = Rastrigin ’ s Function 

f 3 , f 4 =Weierstrass Function 

f 5 , f 6 = Griewank ’ s Function 

f 7 , f 8 = Ackley ’ sFunction 

f 9 , f 10 =Sphere Function 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [1 , 1 , 1 , .., 1] 

[ λ1 , λ2 , λ3 , …, λ10 ] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100] 

f 19 (CF6): 30 [ −5,5] 0 

f 1 , f 2 = Rastrigin ’ s Function 

f 3 , f 4 =Weierstrass Function 

f 5 , f 6 = Griewank ’ s Function 

f 7 , f 8 = Ackley ’ sFunction 

f 9 , f 10 =Sphere Function 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1] 

[ λ1 , λ2 , λ3 , …, λ10 ] = [0.1 ∗1/5, 0.2 ∗1/5, 0.3 ∗5/0.5, 0.4 ∗5/0.5, 0.5 ∗5/100, 
0.6 ∗ 5/100, 0.7 ∗5/32, 0.8 ∗ 5/32, 0.9 ∗5/100, 1 ∗5/100] 
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Table 15 

CEC2005 test functions. 

Function Dim Range f min 

F1_CEC2005: Shifted Sphere Function 30 [ −100,100] −450 

F2_CEC2005: Shifted Schwefel’s Problem 30 [ −100,100] −450 

F3_CEC2005:Shifted Rotated High Conditioned Elliptic Function 30 [ −100,100] −450 

F4_CEC2005: Shifted Schwefel’s Problem with Noise in Fitness 30 [ −100,100] −450 

F5_CEC2005: Schwefel’s Problem with Global Optimum on Bounds 30 [ −100,100] −310 

F6_CEC2005: Shifted Rosenbrock’s Function 30 [ −100,100] 390 

F7_CEC2005: Shifted Rotated Griewank’s Function without Bounds 30 [ −60 0, 60 0] −180 

F8_CEC2005: Shifted Rotated Ackley’s Function with Global Optimum on Bounds 30 [ −32,32] −140 

F9_CEC2005: Shifted Rastrigin’s Function 30 [ −5,5] −330 

F10_CEC2005: Shifted Rotated Rastrigin’s Function 30 [ −5,5] −330 

F11_CEC2005: Shifted Rotated Weierstrass Function 30 [ −0.5,0.5] 90 

F12_CEC2005: Schwefel’s Problem 30 [ −100,100] −460 

F13_CEC2005: Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2) 30 [ −3,1] −130 

F14_CEC2005: Expanded Rotated Extended Scaffe’s F6 30 [ −100,100] −300 

F15_CEC2005: Hybrid Composition Function 1 30 [ −5,5] 120 

F16_CEC2005: Rotated Hybrid Composition Function 1 30 [ −5,5] 120 

F17_CEC2005: Rotated Hybrid Composition Function 1 with Noise in Fitness 30 [ −5,5] 120 

F18_CEC2005: Rotated Hybrid Composition Function 2 30 [ −5,5] 10 

F19_CEC2005: Rotated Hybrid Composition Function 2 with a Narrow Basin for the Global Optimum 30 [ −5,5] 10 

F20_CEC2005: Rotated Hybrid Composition Function 2 with the Global Optimum on the Bounds 30 [ −5,5] 10 

F21_CEC2005: Rotated Hybrid Composition Function 3 30 [ −5,5] 360 

F22_CEC2005: Rotated Hybrid Composition Function 3 with High Condition Number Matrix 30 [ −5,5] 360 

F23_CEC2005: Non-Continuous Rotated Hybrid Composition Function 3 30 [ −5,5] 360 

F24_CEC2005: Rotated Hybrid Composition Function 4 30 [ −5,5] 260 

F25_CEC2005: Rotated Hybrid Composition Function 4 without Bounds 30 [ −5,5] 260 
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