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Abstract: This scientific paper highlights the critical significance of energy in driving sustainable
development and explores the transformative potential of Artificial Intelligence (AI) tools in shaping
the future of energy systems. As the world faces mounting challenges in meeting growing energy
demands while minimizing environmental impact, there is a pressing need for innovative solutions
that can optimize energy generation, distribution, and consumption. AI tools, with their ability to
analyse vast amounts of data and make intelligent decisions, have emerged as a promising avenue
for advancing energy systems towards greater efficiency, reliability, and sustainability. This paper
underscores the importance of energy in sustainable development and investigates how AI tools can
catalyse the next phase of human civilization. This paper presents a comprehensive review of the
Collaborative Energy Optimization Platform (CEOP), an innovative model that utilizes AI algorithms
in an integrated manner. The review of the CEOP model is based on an in-depth analysis of existing
literature, research papers, and industry reports. The methodology encompasses a systematic review
of the model’s key features, including collaboration, data-sharing, and AI algorithm integration.
The conducted research demonstrates the effectiveness of applying MCDM methods, specifically
fuzzy AHP and TOPSIS, in evaluating and ranking the performance of five Collaborative Energy
Optimization Platforms (CEOP models) across 20 sub-criteria. The findings emphasize the need
for a comprehensive and holistic approach in assessing AI-based energy optimization systems. The
research provides valuable insights for decision-makers and researchers in the field, fostering the
development and implementation of more efficient and sustainable AI-powered energy systems.
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1. Introduction

Energy is an indispensable component of modern civilization, playing a vital role
in propelling economic growth, enabling social development, and fuelling technological
advancements [1]. The diverse range of energy applications, from industrial processes and
transportation to residential electricity consumption, demonstrates its pervasive influence
across various sectors [2]. Nevertheless, the escalating global energy demand, coupled
with the pressing need to mitigate climate change and environmental deterioration, has
intensified the pursuit of sustainable energy solutions [3]. This imperative has driven the
exploration of alternative energy sources, energy efficiency enhancements, and innovative
energy management approaches to ensure a sustainable future for humanity [4].

The relentless growth of population, urbanization, and industrialization has signifi-
cantly increased energy consumption, placing immense strain on finite fossil fuel reserves
and intensifying carbon dioxide emissions, leading to detrimental climate consequences [5].
To address these challenges, the focus has shifted towards renewable energy sources such
as solar, wind, hydro, and geothermal power, which offer cleaner and more sustainable
alternatives [6]. Furthermore, improving energy efficiency in various sectors has become
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paramount for curbing energy waste and reducing greenhouse gas emissions [7]. Embrac-
ing energy-efficient technologies, adopting energy management systems, and promoting
behavioural changes are crucial steps towards achieving sustainable energy consumption
patterns [8].

In the quest for sustainable energy solutions, the integration of advanced technologies,
particularly Artificial Intelligence (AI), has emerged as a promising avenue for revolutioniz-
ing energy systems [9]. AI encompasses a suite of techniques, including machine learning,
optimization algorithms, and data analytics, which enable intelligent decision-making and
improved energy management [10]. By harnessing the power of AI, energy systems can
enhance grid operations, optimize energy distribution, and facilitate demand response
mechanisms. AI tools can analyse vast amounts of energy data, identify consumption
patterns, and make accurate predictions, thereby facilitating informed decision-making for
energy policymakers, grid operators, and consumers [11]. The adoption of AI in energy
systems holds the potential to unlock significant benefits in terms of energy efficiency,
reduced costs, enhanced grid stability, and the integration of renewable energy sources,
propelling society towards a sustainable and prosperous future [12].

The aim of this article is to explore the intersection of artificial intelligence (AI) and
energy, highlighting the potential for AI to revolutionize the way we generate, distribute,
and consume energy. By analysing vast amounts of data, optimizing systems, and enabling
intelligent decision-making, AI has the potential to enhance energy efficiency, reduce waste,
and promote sustainable practices. This paper presents various ideas and applications
where AI can be leveraged to address energy challenges and contribute to a cleaner and
more sustainable future.

2. Literature Review

The development of energy systems has undergone a significant transformation,
progressing from the traditional power grid to the smart grid and now towards the concept
of the energy internet [13]. The power grid represents the conventional energy supply
system, while the smart grid builds upon it by integrating information collection, control,
and regulation, as well as incorporating new energy sources [14]. However, the energy
internet represents a more advanced stage, characterized by energy optimization decisions
and widespread coordination facilitated by the convergence of smart grid technologies, AI,
cloud computing, Internet of Things, big data, and mobile internet. It embodies a deep
fusion of information, physics, and societal aspects [15].

Compared to the traditional power system, the energy internet enables comprehensive
coordination among various aspects such as energy sources, transmission networks, loads,
and energy storage. It embraces the concept of multi-energy complementarity, facilitating
the efficient utilization and integration of diverse energy resources [16]. With the evolution
of the energy system, the energy unit has also progressed from the traditional user to the
prosumer, energy cell, and now to the concept of we-energy [17].

The prosumer represents an energy unit that not only consumes energy but also pro-
duces it, thereby engaging in a half-duplex model. Energy cell refers to either an individual
consumer or a group of entities that consist of local generation units, storage devices, and
controllable loads. This concept also operates on a half-duplex model, accommodating
multiple energy carriers [18]. On the other hand, we-energy embodies a full-duplex model,
considering the coupling of multiple energy forms and the ability to exchange energy
with other entities through advanced automatic control, electrical power conversion, and
communication technologies [19]. We-energy possesses self-learning and self-adaptive
capabilities, enabling it to optimize its energy usage based on dynamic conditions and
evolving energy demands (Figure 1) [20].
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Figure 1. The development of energy systems and energy units. Source: own elaboration.

The development of the energy internet and the concept of we-energy signify a
paradigm shift in energy systems, moving towards a more intelligent, interconnected,
and flexible framework. This transformation enables the seamless integration of diverse
energy sources, efficient energy management, and enhanced control and coordination
capabilities [21–24]. By leveraging AI technologies, such as advanced control algorithms,
predictive analytics, and intelligent decision-making systems, the energy internet can
achieve optimal energy utilization, facilitate energy exchange, and contribute to the devel-
opment of a sustainable and resilient energy landscape [25,26].

The Collaborative Energy Optimization Platform (CEOP) is an innovative model that
leverages AI algorithms in an integrated manner, enabling energy distribution companies,
policymakers, and consumers to benefit from increased energy efficiency, reduced costs,
and improved grid stability. CEOP focuses on collaboration and data-sharing among
stakeholders to optimize energy management and foster sustainable practices (Figure 2).
These are the key components and benefits of this model:

• Data Integration and Sharing: CEOP facilitates the integration and sharing of data
among energy distribution companies, policymakers, and consumers. This includes
real-time energy consumption data, renewable energy generation data, weather fore-
casts, and grid infrastructure information. By pooling and analysing this data using AI
algorithms, CEOP gains valuable insights into energy demand and supply dynamics,
enabling optimized decision-making.

• AI-Driven Energy Optimization: CEOP utilizes advanced AI algorithms to optimize
energy distribution and consumption across the system. AI algorithms analyse real-
time data, including energy consumption patterns, generation capacity, and grid load,
to predict energy demand, identify potential inefficiencies, and optimize energy flows.
The algorithms also consider factors such as weather conditions, consumer preferences,
and policy goals to generate optimal energy management strategies.

• Demand Response and Consumer Engagement: CEOP encourages consumer partici-
pation and engagement through demand response programs. By providing consumers
with personalized recommendations, real-time energy pricing information, and in-
centives, CEOP motivates them to adjust their energy usage during peak demand
periods. Consumers can actively contribute to grid stability by voluntarily shifting or
reducing their energy consumption, thereby reducing costs and the need for additional
generation capacity.

• Grid Stability and Resilience: CEOP focuses on ensuring grid stability and resilience
through intelligent grid management. AI algorithms continuously monitor and anal-
yse data on power quality, grid load, renewable energy generation, and other relevant
parameters. In case of anomalies or potential disruptions, the algorithms take preven-
tive measures such as load balancing, optimal power flow adjustments, and proactive
maintenance, reducing the likelihood of grid failures and improving overall reliability.

• Policy and Decision Support: CEOP provides policymakers and energy distribution
companies with AI-driven decision support tools. These tools incorporate policy goals,
environmental targets, and economic considerations to assist in planning and imple-
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menting sustainable energy strategies. For policymakers, CEOP offers simulations and
scenario analysis capabilities, allowing them to assess the impact of different policies
and regulations on energy efficiency, grid stability, and cost-effectiveness.

• Continuous Learning and Improvement: CEOP continuously learns and adapts to
changing energy patterns and consumer behaviour. AI algorithms in the platform
refine their models based on new data and feedback, making increasingly accurate
predictions and recommendations over time. This iterative learning process helps
identify new opportunities for energy optimization, enhance forecasting accuracy, and
uncover potential inefficiencies or system bottlenecks.
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One of the key benefits of implementing AI algorithms in intelligent energy man-
agement systems, such as the CEOP, is the significant increase in energy efficiency. By
leveraging real-time data and predictive analytics, AI algorithms can optimize energy
distribution and consumption patterns. This leads to a reduction in energy waste and
promotes more efficient use of resources throughout the system. By identifying areas of
improvement and suggesting energy-saving strategies, CEOP empowers energy consumers
and distribution companies to make informed decisions that maximize energy efficiency.

The integration of AI algorithms in CEOP holds immense potential for transforming
the energy landscape by promoting sustainability and empowering energy consumers.
As AI technologies continue to advance and evolve, the benefits of CEOP are expected
to further increase. By embracing AI as a key tool in energy management, stakeholders
in the energy sector can unlock significant advantages, contributing to a more efficient,
sustainable, and consumer-centric energy system. Here are other benefits of CEOP:

• Reduced Costs: CEOP helps identify cost-saving opportunities, such as load balancing,
demand response, and optimized generation scheduling, leading to reduced energy
costs for consumers and distribution companies.

• Improved Grid Stability: Through AI-driven grid management, CEOP enhances
grid stability, minimizes the risk of disruptions, and ensures reliable energy supply
to consumers.

• Enhanced Sustainability: CEOP supports the integration of renewable energy sources
by optimizing their utilization, enabling a smoother transition to a sustainable and
low-carbon energy system.
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• Consumer Empowerment: CEOP engages consumers in energy management, provid-
ing them with information, incentives, and control over their energy usage, fostering a
sense of ownership and environmental responsibility.

While the Collaborative Energy Optimization Platform (CEOP) offers several ad-
vantages, it is important to consider potential disadvantages as well. Here are some
disadvantages that should be taken into account:

• Data Privacy and Security Risks: CEOP relies on the integration and sharing of
sensitive energy consumption data. This raises concerns about data privacy and
security, as the platform requires robust measures to protect against unauthorized
access, breaches, or misuse of data. Safeguarding privacy and ensuring secure data
handling practices are crucial to maintain trust among stakeholders.

• Complexity and Implementation Challenges: Implementing CEOP requires significant
technical expertise and investment in infrastructure, including data collection systems,
AI algorithms, and communication networks. Coordinating and integrating various
stakeholders, such as energy distribution companies, policymakers, and consumers,
can be challenging due to differing priorities, standards, and protocols.

• Algorithmic Bias and Fairness: The AI algorithms employed in CEOP may inherit
biases present in the data used for training. These biases can lead to unfair outcomes
and unequal distribution of benefits. Careful attention must be paid to ensure that the
algorithms are designed to be fair, transparent, and inclusive, accounting for diverse
consumer needs and social equity considerations.

• Reliance on Accurate Data and Models: The effectiveness of CEOP heavily relies on
accurate and up-to-date data, as well as reliable predictive models. Inaccurate or
incomplete data, unreliable forecasts, or faulty algorithms can lead to suboptimal
energy management decisions and potential disruptions to the grid.

• Limited Consumer Engagement and Adoption: While CEOP aims to engage con-
sumers in energy management, the success of demand response programs and con-
sumer participation relies on their willingness to actively adjust their energy consump-
tion patterns. Lack of awareness, resistance to change, or insufficient incentives may
limit consumer engagement and impact the overall effectiveness of the platform.

• Regulatory and Policy Challenges: Implementing CEOP requires alignment with
existing regulations and policies, which may not always be adaptable to the dynamic
nature of the platform. Regulatory barriers, bureaucratic processes, and conflicting
interests among different stakeholders can impede the widespread adoption and
smooth operation of CEOP.

• Technological Dependence and Reliability: CEOP relies on advanced AI algorithms
and technological infrastructure. Dependence on these technologies introduces risks
associated with system failures, malfunctions, or technical glitches. Ensuring the
reliability, resilience, and robustness of the platform is crucial to avoid disruptions in
energy management processes.

It is important to address these disadvantages through careful planning, robust gover-
nance, ongoing monitoring and evaluation, and stakeholder engagement to ensure that the
benefits of CEOP outweigh its limitations.

3. Research Design and Methodology

The objective of this article is to assess key criteria and sub-criteria for the analysis
of AI integration with energy management systems, such as CEOP. This study utilizes
a combination of 20 selected factors and empirical approaches employing heuristic and
multiple criteria methods. This research model comprises five key steps (Figure 3):

1. Literature review of similar studies.
2. The verification of selected criteria and sub-criteria is carried out using the experts

panel method [27].
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3. Weights are determined for the selected dimensions (criteria) and their corresponding
determinants (sub-criteria) using the fuzzy AHP method [28].

4. Five different variants of CEOP are proposed by experts and the collected data and
the TOPSIS method are used to analyse and rank selected variants [29].

5. Results interpretation and development recommendations are introduced.
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In this study, a panel of fourteen experts, comprising four experts specializing in
artificial intelligence (AI), seven experts with expertise in energy management systems,
and three experts in sustainable development, was surveyed to identify and prioritize the
criteria for investigation. The survey was conducted in February 2023, and the insights
obtained from these experts played a crucial role in shaping the research direction.

To establish a comprehensive understanding of the research area, five criteria were
selected for investigation. Within each criterion, four sub-criteria were identified to provide
a more nuanced analysis. These criteria were determined based on the consensus among
the panel experts and their expertise in the respective domains of AI, energy management
systems, and sustainable development.

The subsequent stage of the present research involves the calculation of weights
for the selected criteria and sub-criteria, utilizing the fuzzy Analytic Hierarchy Process
(fuzzy AHP) [30]. The fuzzy AHP method is a decision-making technique that allows
for the incorporation of uncertainty and ambiguity in expert judgments. It extends the
traditional AHP method by introducing fuzzy logic to handle linguistic terms and subjective
opinions. In this study, the fuzzy AHP method was used to facilitate the ranking and
prioritization of criteria and sub-criteria based on the assessments provided by the panel of
fourteen experts. The experts were asked to provide pairwise comparisons between the
criteria and sub-criteria, expressing their preferences and judgments using linguistic terms.
These comparisons were then transformed into fuzzy linguistic variables to capture the
uncertainty inherent in the experts’ assessments.
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The subsequent stage of the present research involves the calculation of weights
for the selected criteria and sub-criteria, utilizing the fuzzy Analytic Hierarchy Process
(fuzzy AHP) [30]. AHP represents one of the multiple-criteria decision making techniques,
designed to tackle complex problems across various fields [31]. The fundamental principle
of the AHP method involves decomposing the decision problem into a hierarchical structure
and identifying the optimal solution under given conditions, based on the adopted criteria
(and sub-criteria) [32]. This approach enables the evaluation of multiple criteria and the
consideration of their relative importance, leading to more informed and effective decision-
making. The use of fuzzy logic and linguistic variables in the AHP method enhances its
flexibility and ability to handle imprecision and uncertainty in expert judgments.

The principal constraint of the AHP method lies in its incapacity to account for
the ambiguities or inaccuracies inherent in group decision-making. In response to this
inadequacy, the integration of AHP and fuzzy theory has been proposed (FAHP), enabling
researchers to more precisely evaluate the problem and incorporate incomplete or imprecise
information [33]. The combination of AHP and fuzzy theory enables the representation
of qualitative and quantitative data in a common framework, allowing decision-makers
to incorporate subjective judgments and linguistic expressions into the decision-making
process [34]. FAHP enhances the flexibility and applicability of the AHP method, making
it a more effective tool for handling complex problems in a wide range of domains. The
integration of AHP and fuzzy theory has been widely used in decision-making, especially
in cases where precise data is lacking or uncertain [35].

The most important step in FAHP is creating a pair-wise comparison matrix, where
crisp numeric values are converted into fuzzy numbers, using a selected membership
function (the most used is the triangular membership function, Formula (1)), according to
Saaty’s fundamental scale (scale of relative importance) shown in Table 1.

Ã = (l, m, u) (1)

The purpose of pairwise comparisons is to evaluate how many times one element
outweighs another in terms of their relative importance. If element A is favoured very

strongly over B, the fuzzy number is Ã = (6, 7, 8) and the fuzzy reciprocal value is Ã
−1

=(
1
8 , 1

7 , 1
6

)
, according to Formula (2).

Ã
−1

= (u, m, l)−1 (2)

The integration of AHP and fuzzy theory has been widely used in decision-making,
especially in cases where precise data is lacking or uncertain [28,36].

The second step in the FAHP involves verifying the consistency ratio (C.R.). It is
generally accepted that the value of C.R. for a 3 × 3 or 4 × 4 matrix should be less
than or equal to 5% and 8%, respectively, while for larger matrices, it should not exceed
10% (C.R. ≤ 10%). If the C.R. is within this limit, the comparisons made are considered
consistent. However, if the C.R. exceeds 10%, the criteria evaluation must be repeated
to eliminate the inconsistency of pairwise comparisons. In this stage, the FAHP method
involves calculating a defuzzified, normalized matrix for the selected criteria and the
largest eigenvalue of the matrix (λmax). The author of the method has shown that pairwise
comparisons are more consistent when the λmax value is close to the number of matrix
elements, n. Based on this, the C.I. consistency index is calculated according to Formula (3).

C.I. =
λmax − n

n− 1
(3)

and consistency ratio C.R. according to Formula (4),

C.R. =
100% ∗C.I.

R.I.
(4)
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where R.I. is a random consistency index, generated from several thousand matrices and
proposed by the author in the form of Table 2.

Table 1. The fundamental scale for pairwise comparisons (l—lower fuzzy number, m—middle fuzzy
number, u—upper fuzzy number).

Intensity of
Importance Explanation AHP FAHP (l, m, u)

Equal importance Element a and b contribute equally
to the objective 1 (1, 1, 1)

Moderate importance
of one over another Slightly favour element A over B 3 (2, 3, 4)

Essential importance Strongly favour element A over B 5 (4, 5, 6)

Demonstrated
importance

Element A is favoured very strongly
over B 7 (6, 7, 8)

Absolute importance
The evidence favouring element A

over B is of the highest possible
order of importance

9 (9, 9, 9)

Intermediate values
between the two

adjacent judgments

When compromise is needed. For
example, 4 can be used for the

intermediate value between 3 and 5
2, 4, 6, 8

(1, 2, 3)
(3, 4, 5)
(5, 6, 7)
(7, 8, 9)

Source: [37].

Table 2. Consistency indices for a randomly generated matrix.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R.I. 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.52 1.54 1.56 1.58 1.59

Source: [37].

After performing a consistency check on the experts’ opinions and ensuring their
agreement, the fuzzy geometric mean r̃i (as given by Formula (5)) and the fuzzy weights
w̃i for all the criteria (as given by Formula (6)) were computed.

r̃i =

(
n

∏
i=1
{l})

1
n

, (
n

∏
i=1
{m})

1
n

, (
n

∏
i=1
{u})

1
n

 (5)

w̃i = r̃i ⊗ (̃r1 ⊕ r̃2 ⊕ . . .⊕ r̃n)
−1 (6)

Subsequently, the fuzzy weights were transformed into crisp values wi using the
centre of area method (as given by Formula (7)) and then normalized into wi-norm values
using Formula (8).

wi =
(li + mi + ui)

3
(7)

wi-norm =
wi

∑n
i=1 wi

(8)

In conclusion, utilizing the geometric mean, the results from fourteen experts were
amalgamated to derive the final weights for the five criteria, which are presented in
Table 3. The subsequent phase of the FAHP analysis entailed applying the same analytical
technique (Formulas (1)–(8)) to all sub-criteria. In the research model presented, the analysis
encompassed five groups of criteria, involving the comparison of all sub-criteria within
each criteria group, and was conducted by fourteen experts, leading to the generation of
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seventy tables. Owing to the extensive empirical data, the article provides only partial
results of this computation in Tables 3 and 4.

Table 3. Fuzzy AHP pairwise comparison of five criteria and weight calculation by Expert 1—part 1.

E S EI EI2 PR

E 1.00 1.00 1.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 3.00 4.00 5.00

S 0.33 0.50 1.00 1.00 1.00 1.00 0.33 0.50 1.00 1.00 2.00 3.00 1.00 2.00 3.00

EI 0.33 0.50 1.00 1.00 2.00 3.00 1.00 1.00 1.00 1.00 2.00 3.00 1.00 1.00 1.00

EI2 0.33 0.50 1.00 0.33 0.50 1.00 0.33 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PR 0.20 0.25 0.33 0.33 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Source: Own elaboration.

Table 4. Fuzzy AHP pairwise comparison of five criteria and weight calculation by Expert 1—part 2
(l—lower fuzzy number, m—middle fuzzy number, u—upper fuzzy number, COA—centre of area).

Geometric Mean Fuzzy Weight Centre of
Area

Weight
l m u l m u

0.70 0.87 1.15 0.10 0.15 0.25 0.17 15.70%

1.32 1.58 1.78 0.19 0.27 0.38 0.28 26.71%

1.43 1.89 2.27 0.21 0.33 0.49 0.34 32.16%

0.92 1.08 1.32 0.13 0.19 0.28 0.20 19.04%

0.29 0.35 0.46 0.04 0.06 0.10 0.07 6.38%

Sum 4.66 5.78 6.98 Sum 1.06 100.00%

Reciprocal 0.14 0.17 0.21

Source: Own elaboration.

After accepting (FAHP consistency test, CR ≤ 10%) and combining (geometric mean)
the fourteen experts’ assessments for all pairwise comparisons (criteria and sub-criteria),
the results (in Table 5) were obtained for:

• weights for five criteria,
• local weights for twenty sub-criteria,
• global weights for twenty sub-criteria (product of criteria weight and local sub-

criteria weight).

Table 5. Global weight determination.

Criteria Weight Local Weight Global Weight

26.50% 42.70% 11.32%

26.50% 28.80% 7.63%

26.50% 12.90% 3.42%

26.50% 15.60% 4.13%

17.70% 27.40% 4.85%

17.70% 24.80% 4.39%

17.70% 21.20% 3.75%

17.70% 26.60% 4.71%

23.40% 27.40% 6.41%
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Table 5. Cont.

Criteria Weight Local Weight Global Weight

23.40% 32.40% 7.58%

23.40% 22.50% 5.27%

23.40% 17.70% 4.14%

23.90% 25.40% 6.07%

23.90% 38.20% 9.13%

23.90% 19.10% 4.56%

23.90% 17.30% 4.13%

8.50% 23.50% 2.00%

8.50% 34.80% 2.96%

8.50% 18.40% 1.56%

8.50% 23.30% 1.98%
Source: Own elaboration.

The subsequent stage of the research implemented the TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution) method [38], entailing the determination of the
distance of the analysed object or phenomenon from the ideal and anti-ideal solutions,
resulting in a comprehensive indicator permitting the creation of a ranking of tested
objectives (CEOP models). The optimal model in the context of the selected sub-criteria
is the one exhibiting the smallest distance from the ideal solution and simultaneously
the greatest distance from the anti-ideal solution [39]. The TOPSIS method includes the
following steps:

1. The initial step involves the creation of a normalized data matrix in accordance with a
given formula:

zij =
xij√

∑m
i=1 x2

ij

(9)

where i = 1, 2, . . . , m and j = 1, 2, . . . , n.

2. Subsequently, the Analytical Hierarchy Process (AHP) weights are applied based on
the formula vij = wj ⊗ zij

3. The next stage encompasses determining the vector value of the ideal solution a+ and
anti-ideal solution a− (positive ideal solution, negative ideal solution)

a+ =
(
a+1 , a+2 , . . . , a+n

)
:=
{(

maxvij
i = 1, ., m

|j ∈ JQ

)
,
(

minvij
i = 1, ., m

|j ∈ Jc

)}
(10)

a− =
(
a−1 , a−2 , . . . , a−n

)
:=
{(

minvij
i = 1, ., m

|j ∈ JQ

)
,
(

maxvij
i = 1, ., m

|j ∈ Jc

)}
(11)

where JQ is a beneficial criteria and Jc is a non-beneficial (cost) criteria.

4. The Euclidean distance of the tested models from the ideal and anti-ideal solutions is
then calculated:

S+i =

√√√√ n

∑
j=1

(
vij − a+j

)2
(12)

S−i =

√√√√ n

∑
j=1

(
vij − a−j

)2
(13)

where i = 1, 2,..., m and j = 1, 2,..., n
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5. Finally, the performance score Ri for the examined CEOP models is computed using
the given formula [40]:

Ri =
S−i

S+i + S−i
(14)

The CEOP model exhibiting the highest performance score Ri represents the optimal
solution for the given problem of ranking in the context of the selected sub-criteria (Table 6).

Table 6. Ranking of CEOP models.

Ranking CEOP Model S+ S− Ri

1 OAV 0.0203 0.0523 0.7206

2 CSV 0.0266 0.0468 0.6376

3 IRES 0.0295 0.0452 0.6048

4 IDSV 0.0435 0.0389 0.4719

5 CAC 0.0510 0.0218 0.2993
Source: Own elaboration.

4. Results

It is important to note that a detailed description of the AHP method, including the
mathematical calculations and procedures involved, is provided in the research design and
methodology section of this research paper. Below is a list of criteria and sub-criteria along
with the weights obtained using the AHP method and fuzzy logic:

1. Effectiveness (weight 26.5%):

• Energy Efficiency Metrics (42.7%): Investigate the specific metrics used to evalu-
ate the effectiveness of CEOP in improving energy efficiency. This could include
factors such as energy savings, reduction in carbon emissions, or increased uti-
lization of renewable energy sources.

• Performance Comparison (28.8%): Compare the performance of different AI
algorithms and techniques used in CEOP, considering factors such as accuracy,
computational efficiency, and adaptability to dynamic energy system conditions.

• Case Studies (12.9%): Analyse real-world case studies where CEOP has been
implemented, focusing on the outcomes and benefits achieved in terms of energy
efficiency, cost reduction, and grid stability improvements.

• User Feedback (15.6%): Gather feedback from end-users of CEOP, such as energy
consumers and distribution companies, to understand their perceptions of the
effectiveness of the system and its impact on their energy management practices.

2. Scalability (17.7%):

• Compatibility with Different Grid Types (27.4%): Investigate how well CEOP
algorithms can be adapted to various types of energy grids, including centralized,
decentralized, and microgrid systems.

• Data Management (24.8%): Assess the scalability of CEOP in handling large-
scale data, considering factors such as data acquisition, processing, storage,
and analysis.

• Integration with Distributed Energy Resources (21.2%): Investigate the integra-
tion capabilities of CEOP with distributed energy resources, such as rooftop solar
panels or wind turbines, to determine its scalability in accommodating diverse
energy sources.

• Interoperability (26.6%): Explore the ability of CEOP to integrate with existing
energy infrastructure, including compatibility with different communication
protocols and standards, to ensure smooth interoperability.

3. Economic Impact (23.4%):
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• Cost-Benefit Analysis (27.4%): Conduct a comprehensive cost-benefit analysis
to quantify the economic benefits of implementing CEOP, including factors
such as energy cost savings, reduction in operational expenses, and potential
revenue streams.

• Return on Investment (32.4%): Evaluate the return on investment (ROI) for
different stakeholders, such as energy consumers and distribution companies, by
assessing the financial gains achieved through CEOP implementation.

• Market Analysis (22.5%): Study the market potential and market dynamics of AI-
enabled energy management systems, including market size, growth projections,
and key players, to understand the economic viability and competitive landscape.

• Economic Policy Implications (17.7%): Examine the policy implications of CEOP
on energy markets and regulatory frameworks, considering factors such as pric-
ing mechanisms, incentive programs, and potential impacts on market dynamics
and competition.

4. Environmental Impact (23.9%):

• Life Cycle Assessment (25.4%): Conduct a life cycle assessment of CEOP to eval-
uate its environmental footprint, considering factors such as embodied energy,
carbon emissions, and potential impacts on water resources or land use.

• Resource Optimization (38.2%): Investigate how CEOP can contribute to resource
optimization, such as minimizing energy waste, optimizing renewable energy
utilization, and reducing the environmental impact associated with energy pro-
duction and consumption.

• Environmental Policy Alignment (19.1%): Assess the alignment of CEOP with en-
vironmental policies and sustainability goals, such as climate targets, renewable
energy integration, or circular economy principles.

• Environmental Decision Support (17.3%): Explore the potential of CEOP in pro-
viding decision support tools for energy stakeholders to make environmentally
conscious choices, such as load shifting to periods of higher renewable energy
availability or facilitating the integration of electric vehicles.

5. Policy and Regulation (8.5%):

• Legal and Regulatory Framework Analysis (23.5%): Examine the existing legal
and regulatory frameworks related to AI and energy, identifying any barri-
ers, gaps, or conflicts that may hinder the deployment of CEOP, and propose
policy recommendations.

• Privacy and Data Protection (34.8%): Investigate the privacy and data protection
implications of CEOP, exploring methods to ensure data security, compliance
with privacy regulations, and user consent mechanisms.

• Standardization and Interoperability (18.4%): Study the standardization needs
and interoperability requirements for CEOP, considering the compatibility of
AI algorithms, data formats, and communication protocols to enable seamless
integration and cooperation between different energy stakeholders.

• Policy and Governance Models (23.3%): Explore different policy and governance
models that can foster the responsible and ethical implementation of CEOP,
ensuring transparency, accountability, and fairness in decision-making processes.

The expert panel, consisting of esteemed professionals in the fields of AI and energy,
proposed five variations of CEOP configurations for evaluation and ranking. Drawing
upon their extensive knowledge and experience, the experts put forth these variations as
important considerations in exploring the potential impact and performance of CEOP in
different scenarios. Through their collective expertise, the panel identified these variations
as key scenarios that can significantly influence the effectiveness and outcomes of CEOP in
real-world energy systems:

• Optimization Algorithm Variation (OAV): Different optimization algorithms can be
employed within the CEOP framework. For example, one configuration could utilize
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a genetic algorithm, while another could use a particle swarm optimization algorithm.
These variations can lead to different optimization results and performance across the
weighted sub-criteria.

• Input Data Source Variation (IDSV): The CEOP model relies on input data to make
decisions and optimize energy systems. Different configurations can explore variations
in input data sources, such as using historical data, real-time data from sensors, or a
combination of both. The choice of data sources can impact the accuracy and reliability
of the optimization results.

• Control Strategy Variation (CSV): CEOP involves controlling and regulating energy
systems based on optimization results. Different control strategies can be employed,
such as model predictive control, rule-based control, or fuzzy logic control. Each
strategy has its strengths and limitations, which can result in variations in performance
across the weighted sub-criteria.

• Integration of Renewable Energy Sources (IRES): The CEOP model can be configured to
prioritize the integration and utilization of renewable energy sources. Variations can be
explored in terms of the percentage of renewable energy used, the types of renewable
sources included (e.g., solar, wind, hydro), and the management of intermittency and
uncertainty associated with renewables.

• Communication and Connectivity (CAC): CEOP can be configured with different com-
munication and connectivity options. Variations can include different communication
protocols, network architectures, and the level of connectivity with smart devices and
IoT platforms. These variations can impact the speed and reliability of data exchange,
which in turn affects the performance of the CEOP model.

The subsequent stage of the research implemented the TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution) method [38] to rank five proposed models.
The TOPSIS method is a multi-criteria decision-making technique used to determine the
relative performance and ranking of alternatives based on their proximity to the ideal
solution. It involved constructing a decision matrix that represents the performance of each
sub-criterion for all alternatives. The matrix consisted of numerical values reflecting the
evaluations or measurements of the sub-criteria for each alternative [41].

The TOPSIS method compares each alternative to the ideal solution (S+) and the worst
solution (S−) based on the values in the decision matrix. The ideal solution represents
the best performance across all sub-criteria, while the worst solution represents the worst
performance. The distance between each alternative and the ideal and worst solutions is
calculated, and a relative closeness coefficient (Ri) is obtained to determine the ranking of
the alternatives [42].

It is important to note that a detailed description of the TOPSIS method, including the
mathematical calculations and procedures involved, is provided in the research design and
methodology section of this research paper.

In the research conducted by the panel of experts, a Likert scale ranging from 1 to 5
was utilized to build the decision matrix. The Likert scale is a widely used measurement
scale that allows respondents to express their level of agreement or disagreement with a
particular statement or proposition. In this case, the experts used the Likert scale to assess
the relative importance or preference of each sub-criterion in relation to proposed CEOP
models. A rating of 1 on the Likert scale represented the lowest importance or preference,
while a rating of 5 indicated the highest importance or preference. The experts provided
their ratings independently based on their expertise and judgment in the field of AI and
energy. By aggregating the ratings provided by the experts, a normalized decision matrix
was constructed that captured the global weights or importance of sub-criteria (product of
criteria weight and local weight, sub-criteria weight within a group, Tables 7 and 8).
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Table 7. Normalized decision matrix (fuzzy AHP weights included) for CEOP model evaluation:
Effectiveness, Scalability, and Economic Impact.

Weight 11.32% 7.63% 3.42% 4.13% 4.85% 4.39% 3.75% 4.71% 6.41% 7.58% 5.27% 4.14%

CEOP
model E1 E2 E3 E4 S1 S2 S3 S4 EI1 EI2 EI3 EI4

OAV 0.056 0.046 0.013 0.019 0.024 0.022 0.021 0.022 0.032 0.031 0.024 0.019

IDSV 0.042 0.036 0.022 0.015 0.024 0.018 0.017 0.022 0.024 0.041 0.030 0.024

CSV 0.056 0.036 0.017 0.019 0.024 0.022 0.017 0.022 0.032 0.041 0.018 0.019

IRES 0.056 0.027 0.013 0.019 0.024 0.022 0.017 0.022 0.032 0.031 0.018 0.019

CAC 0.042 0.018 0.009 0.019 0.012 0.013 0.012 0.015 0.024 0.021 0.024 0.009

Max 0.056 0.046 0.022 0.019 0.024 0.022 0.021 0.022 0.032 0.041 0.030 0.024

min 0.042 0.018 0.009 0.015 0.012 0.013 0.012 0.015 0.024 0.021 0.018 0.009

Source: own elaboration.

Table 8. Normalized decision matrix (fuzzy AHP weights included) for CEOP model evaluation:
Environmental Impact, Policy, and Regulations.

Weight 6.07% 9.13% 4.56% 4.13% 2.00% 2.96% 1.56% 1.98%

CEOP
model EI2-1 EI2-2 EI2-3 EI2-4 PR1 PR2 PR3 PR4

OAV 0.029 0.047 0.031 0.020 0.008 0.012 0.005 0.005

IDSV 0.015 0.023 0.012 0.015 0.008 0.012 0.008 0.005

CSV 0.022 0.047 0.018 0.020 0.008 0.012 0.008 0.010

IRES 0.036 0.047 0.018 0.020 0.008 0.018 0.005 0.013

CAC 0.029 0.035 0.018 0.015 0.012 0.012 0.008 0.008

Max 0.036 0.047 0.031 0.020 0.012 0.018 0.008 0.013

min 0.015 0.023 0.012 0.015 0.008 0.012 0.005 0.005

Source: own elaboration.

The creation of a ranking for CEOP models, based on the adopted five criteria and
twenty sub-criteria, is achieved by computing the Ri index and subsequently sorting the
examined programs from the highest to the lowest value (Table 9).

Table 9. Ranking of the studied CEOP models.

Ranking CEOP Model S+ S− Ri

1 OAV 0.0203 0.0523 0.7206

2 CSV 0.0266 0.0468 0.6376

3 IRES 0.0295 0.0452 0.6048

4 IDSV 0.0435 0.0389 0.4719

5 CAC 0.0510 0.0218 0.2993
Source: own elaboration.

5. Discussion

The conducted research involved the analysis of five different CEOP models, each ex-
ploring variations in key aspects such as optimization algorithms, input data sources,
control strategies, integration of renewable energy sources, and communication and
connectivity. The analysis aimed to evaluate the performance of these models across
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twenty predefined sub-criteria (fuzzy AHP and TOPSIS methods) within the context of AI
and energy.

In terms of optimization algorithm variation, the research examined how different
algorithms, such as genetic algorithms and particle swarm optimization, influenced the
performance of CEOP. The analysis considered the impact of these variations on sub-criteria
such as energy efficiency, cost reduction, grid stability, and sustainability. It was found that
different algorithms yielded diverse optimization results, with certain algorithms excelling
in specific sub-criteria while others performed better in different areas.

The research also investigated the impact of input data source variation on CEOP
performance. By considering historical data, real-time data from sensors, or a combination
of both, the study evaluated how these variations affected sub-criteria such as accuracy,
reliability, and responsiveness. It was observed that using real-time data enhanced the
model’s ability to adapt to dynamic changes, leading to improved performance in sub-
criteria related to real-time decision-making and energy system optimization.

Regarding control strategy variation, the research explored the strengths and limi-
tations of different strategies, such as model predictive control, rule-based control, and
fuzzy logic control. Each strategy was assessed based on sub-criteria including stability,
response time, adaptability, and robustness. The findings indicated that different control
strategies exhibited varying levels of effectiveness across these sub-criteria, emphasizing
the importance of selecting the most suitable strategy for specific energy system contexts.

The integration of renewable energy sources was another key focus of the research.
By examining variations in the percentages and types of renewable sources utilized, as
well as the management of intermittency and uncertainty, this study evaluated the impact
on sub-criteria related to renewable energy utilization, grid stability, and environmental
sustainability. The analysis revealed that optimized integration of renewable sources led
to improved performance in these sub-criteria, highlighting the potential of CEOP in
facilitating the transition to a low-carbon energy system.

Lastly, the research considered communication and connectivity variations within the
CEOP models. Different communication protocols, network architectures, and levels of
connectivity with smart devices and IoT platforms were explored, assessing their impact
on sub-criteria such as data exchange speed and reliability. The findings indicated that
robust communication and connectivity options positively influenced the performance of
CEOP, enabling efficient decision-making and optimization.

In the conducted research, the fuzzy AHP method allowed for the incorporation of
expert opinions and the handling of uncertainty in decision-making. By using a Likert scale
ranging from 1 to 5, the experts assigned numerical values to indicate their preferences
or importance for each criterion and sub-criterion. The fuzzy AHP method then enabled
the calculation of priority weights for the criteria and sub-criteria, taking into account the
uncertainty and imprecision inherent in human judgment. These priority weights provided
a quantitative basis for comparing and evaluating the different CEOP models.

The TOPSIS method was employed to rank the CEOP models based on the weighted
sub-criteria. TOPSIS is a multi-criteria decision-making method that determines the similar-
ity of each alternative to the ideal solution and the negative ideal solution. By considering
both the positive and negative attributes of the alternatives, the TOPSIS method facilitated
the identification of the most favourable CEOP model. The weighted sub-criteria obtained
from the fuzzy AHP analysis were used as inputs in the TOPSIS method, enabling the
calculation of the closeness coefficient and the determination of the rank order of the
CEOP models.

As an alternative approach, one could consider incorporating other multi-criteria
decision-making methods such as ELECTRE (Elimination and Choice Translating Reality)
or PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation).
These methods offer different approaches to handling multiple criteria and alternatives,
allowing for more comprehensive evaluations. Additionally, incorporating machine learn-
ing techniques, such as neural networks or support vector machines, could enhance the
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analysis by learning patterns and relationships from the data to aid in the decision-making
process. These approaches could provide additional insights and complement the fuzzy
AHP and TOPSIS methods in evaluating the CEOP models.

To provide a more detailed mapping of AI implementation in achieving the objectives
of the Collaborative Energy Optimization Platform (CEOP), let us explore how AI can be
integrated within the model:

1. Data Analytics and Predictive Modelling:

• AI algorithms can be used to analyse large volumes of energy-related data, such
as consumption patterns, weather forecasts, and grid performance.

• Machine learning techniques can identify patterns, anomalies, and correlations in
the data, enabling insights into energy usage, demand forecasting, and potential
efficiency improvements.

• Predictive modelling algorithms can anticipate energy demand fluctuations,
optimize supply management, and support grid stability planning.

2. Optimization Techniques:

• AI algorithms, such as optimization algorithms, can be employed to optimize
energy management decisions, such as scheduling energy generation, storage,
and distribution.

• These algorithms can consider various factors, including real-time energy prices,
demand-response capabilities, renewable energy availability, and grid constraints.

• By utilizing optimization techniques, the CEOP model can identify the most
cost-effective and efficient energy distribution strategies.

3. Intelligent Energy Management:

• AI-based systems can provide intelligent energy management solutions by con-
tinuously monitoring energy usage, detecting inefficiencies, and suggesting
optimization measures.

• These systems can employ AI algorithms, such as reinforcement learning or
expert systems, to make real-time decisions on load balancing, energy storage
utilization, and demand response activation.

• AI can enable automated control systems that adjust energy distribution in
response to changing conditions, ensuring optimal utilization of resources and
grid stability.

4. Demand-Side Management and Consumer Engagement:

• AI can facilitate demand-side management by analysing consumer behaviour
and preferences.

• Smart home devices, equipped with AI algorithms, can learn user patterns, opti-
mize energy usage, and provide personalized recommendations to consumers
for energy efficiency improvements.

• AI-powered consumer engagement platforms can provide energy consumption
insights, real-time feedback, and incentivize sustainable energy practices, foster-
ing active consumer participation in energy optimization.

5. Decision Support Systems:

• AI can enhance decision-making processes for stakeholders by providing data-
driven insights, scenario analysis, and predictive simulations.

• Decision support systems powered by AI algorithms can help policymakers,
energy distribution companies, and consumers evaluate the potential impact of
various energy management strategies, policies, and investments.

• These systems enable stakeholders to make informed decisions, considering mul-
tiple factors such as cost-effectiveness, environmental impact, and grid stability.
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By integrating AI in these ways, the Collaborative Energy Optimization Platform
(CEOP) can leverage advanced analytics, optimization techniques, and intelligent decision-
making to achieve the objectives of enhanced energy efficiency, reduced costs, and improved
grid stability.

6. Conclusions

In the conducted research, five different CEOP models within the context of twenty
predefined sub-criteria related to AI and energy systems were analysed. The objective
was to evaluate and rank these models using multi-criteria decision-making (MCDM)
methods. Specifically, the fuzzy Analytic Hierarchy Process (AHP) and TOPSIS methods
were employed to assess the models based on their performance across the sub-criteria.

The application of the fuzzy AHP method allowed us to incorporate expert opinions
and handle uncertainties in the decision-making process. By assigning numerical values to
indicate preferences and importance using a Likert scale, we derived priority weights for
the criteria and sub-criteria. These weights provided a quantitative basis for comparing
and evaluating the CEOP models. The TOPSIS method, on the other hand, enabled us to
rank the models by considering their similarity to the ideal and negative ideal solutions
based on the weighted sub-criteria.

Through the analysis, valuable insights into the strengths and limitations of the CEOP
models were gained. We found that the models exhibited variations in their performance
across the sub-criteria, highlighting the importance of considering multiple aspects when
evaluating AI-based energy optimization systems. The MCDM methods provided a system-
atic and structured approach for assessing the models, enabling experts to make informed
decisions based on the weighted criteria and sub-criteria.

This research provides valuable insights for decision makers and researchers in the
field, promoting the development and implementation of more efficient and sustainable
AI-based energy systems by:

• The importance of collaboration: Decision makers will gain an understanding of the
significance of collaboration among energy distribution companies, policymakers,
and consumers. This insight emphasizes the need for cooperative efforts to optimize
energy management and achieve energy efficiency goals.

• The value of data-sharing: Decision makers will recognize the importance of ef-
ficient data-sharing among stakeholders. This insight highlights the role of data
exchange in facilitating informed decision-making and identifying opportunities for
energy optimization.

• The potential of AI algorithms: Decision makers will gain insights into the integration
of AI algorithms in energy systems. This insight emphasizes the power of AI for
advanced data analytics, predictive modelling, and optimization techniques, enabling
more effective decision-making and resource allocation.

• Implications for energy efficiency: Decision makers will understand how the CEOP
model can enhance energy efficiency. This insight emphasizes the identification of
energy wastage, the implementation of demand response strategies, and the overall
improvement of energy distribution system efficiency.

• Cost reduction strategies: Decision makers will learn about data-driven decision-
making and its role in reducing costs. This insight highlights how optimal resource
allocation and operational planning, facilitated by the CEOP model, can lead to
cost savings.

• Grid stability enhancement: Decision makers will gain insights into how the CEOP
model contributes to improved grid stability. This insight emphasizes the model’s
ability to address supply-demand imbalances and support the integration of renewable
energy sources, ultimately leading to a more stable and reliable grid.
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The results of this research contribute to the advancement of AI and energy systems
by providing a comprehensive evaluation framework for CEOP models. The findings can
aid decision-makers, energy practitioners, and researchers in selecting the most suitable
CEOP model for specific contexts. Furthermore, this research highlights the significance of
considering various factors, such as optimization algorithms, input data sources, control
strategies, integration of renewable energy sources, communication, and connectivity in
designing and implementing effective CEOP systems.
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