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A B S T R A C T

This article is to study the system structure scheme based on Zigbee wireless transmission, and complete
the overall design of the system scheme on this basis. Human motion capture systems are widely used in
the creation of film and television works, motion analysis, video games, rehabilitation medicine and other
fields. This article discusses the design and implementation of a human motion capture system based on
MEMS sensors and Zigbee networks. The system can be installed on the human body Multiple sensor nodes
in various parts obtain the movement information of the human body, and use sensor network technology to
aggregate these data and upload them to the host computer. First, this article introduces the characteristics
of angular velocity sensors, acceleration sensors, magneto resistive sensors and Zigbee networks. Then, this
article explains the overall structure of the system, and from a theoretical point of view, explains how the
system uses angular velocity sensors, acceleration sensors, magneto resistive sensors and Zigbee networks to
achieve human motion capture. This part focuses on including vector observation methods and angular velocity
Two posture capture methods including the integration method, and their advantages and disadvantages are
analyzed. To achieve the complementary advantages of the two algorithms, a data fusion algorithm based on
complementary filtering is introduced and optimized appropriately. In addition, this article also introduces
the networking principles and optimization schemes of the Zigbee network in this section. After this, this
article explains in detail the system hardware structure, chip selection scheme, circuit design scheme, software
workflow and implementation of core programs Method. Finally, this article shows the effect of the actual
work of the system, and compares it with the theory to verify the feasibility of the theory. Based on the
research of MEMS sensor measurement unit and algorithm, a Zigbee-based wireless transmission test system
was established. LabVIEW software with functions of data reception, attitude angle calculation, trajectory
calculation, eigenvalue extraction, BP neural network recognition, display and data saving was designed and
tested the whole system functions. The test results show that the wireless data transmission of Zigbee network
is normal, the data detection and processing programs of the host computer are stable, and the correct
identification of the human body’s motion state can be realized. The results show that compared with the
existing research, our research has increased its efficiency by 10%, and its accuracy has increased by nearly
15%.

1. Introduction

With the rapid development of computer technology, intelligent
frameworks, and pervasive computing, and an efficient way of human–
computer interaction, play an increasingly important role in our lives.
The study of gesture recognition has a very important position in
human–computer interaction. Pose recognition is a process in which
the user makes a pose that can be perceived and reconstructed by the
receiver. A pose is a meaningful body movement, including physical
movements of the fingers, head, face, or body [1,2]. These physical
movements not only convey meaningful information but also interact
with the environment. Currently, human body posture recognition has
a wide range of applications in the smart home, smart medical, and
gaming interactions [3]. In the smart home, many smart appliances
need to be controlled by human postures, such as controlling the
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music volume, light, and darkness of the home through gestures. In
smart healthcare, diagnostic and therapeutic support for healthcare and
rehabilitation training can be provided by tracking patient behavior
and analyzing patient movement data [4]. Posture recognition can also
monitor abnormal patient behaviors such as falls and unconsciousness
to enable medical personnel to take timely action in crises. In many
virtual reality game products, human posture needs to be displayed
in the virtual world of the game to enhance the user experience
by increasing the interaction between the computer and the human
body [5]. Deep learning has made breakthroughs in speech recognition,
image recognition and other fields. The full name of deep learning
is deep neural network, which is essentially a multi-level artificial
neural network algorithm, which simulates the operating mechanism
of the human brain from the structure, and simulates the operating
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mechanism of the human brain from the most basic unit. Deep learning
has begun to make breakthroughs in the fields of computer vision,
speech recognition, and natural language understanding. In the field
of speech recognition, in 2010, the recognition error rate of speech
recognition using deep neural network models was reduced by more
than 20% compared with the traditional Gaussian mixture model. All
current commercial speech recognition algorithms are based on deep
learning. In the field of image classification, the classification accuracy
of the current algorithm for the ImageNet data set has reached more
than 95%, which is comparable to the resolution ability of humans.
Deep learning has also made breakthrough progress in the fields of face
recognition, general object detection, image semantic segmentation,
and natural language understanding.

In the era of big data, with the continuous development of science
and technology, many exciting results have been obtained in the re-
search of human motion and posture [6,7]. This direction has become
a highly comprehensive cross research topic, and has been widely used
in daily life and cutting-edge military field. In recent years, researchers
have carried out in-depth research on the collection of human mo-
tion characteristic information, such as human voice, acceleration, iris
characteristics, myoelectric voltage and other characteristic signals, and
analyzed and preprocessed the characteristic signals through existing
technical means to obtain motion parameters and carry out motion
recognition [8,9]. With the development of MEMS inertial sensors,
and the growing maturity of embedded technology and wireless sensor
network technology, it is possible to capture and detect human motion
based on inertial sensors. The human motion capture and detection
system based on inertial sensor has little interference to the wearer’s
motion, which makes the movement closer to the normal situation and
the detected data more real and reliable. Therefore, the human motion
capture and detection method based on MEMS wearable inertial sensor
has become an important direction of current application development.
However, the MEMS gyroscope has drift error, and the attitude Angle
will have a large cumulative error when used for a long time. Because
of these problems, the current human motion capture and detection
methods based on MEMS wearable inertial sensors have such problems
as low recognition rate and large error. Based on this, this paper intends
to combine MEMS inertial sensor technology with Zigbee wireless
network technology to study high-precision attitude Angle calculation
method and detection system, in order to achieve efficient recognition
of human motion state. The main contributions of this paper are as
follows:

(1) We introduce two attitude capture methods: vector observa-
tion method and angular velocity method, and analyze their
advantages and disadvantages.

(2) We introduce a data fusion algorithm based on complementary
filtering and optimize the algorithm appropriately.

(3) This paper studies a human motion capture system based on
MEMS sensor and Zigbee network. The system can be installed
in multiple sensor nodes in each part of the human body to
obtain human movement information, and use sensor network
technology to aggregate these data and upload to the upper
computer.

(4) This paper shows the actual working effect of the system and
verifies the feasibility of the theory by comparing it with the
theory.

The rest of the paper is organized as follows: In Section 2, references
related to MEMS sensors, Zigbee networks and human motion state
recognition have been analyzed; In Section 3, we focus on MEMS
Sensors and Zigbee Networks for Human Motion Design; In Section 4,
we devote to the analysis of system performance and the results human
motion state recognition; In Section 4, we summarize and forecast the
work in this paper.

2. Related work

Also, posture recognition can be applied to developing hearing
aids for the hearing impaired, recognizing sign language, lie detection,
distance learning, and distance learning assistance [10,11]. MEMS
contains sensors, mechanical structures, signal processing, and control
circuits, and other modules, it uses the material is mainly semiconduc-
tor. MEMS includes not only a variety of disciplines such as medicine,
chemistry, physics, optics, and materials science, but also a variety of
engineering technologies such as electrical engineering, bioengineer-
ing, information engineering, and mechanical engineering. As people
are increasingly concerned about their health, the medical industry will
gain tremendous growth, and the combination of ZigBee technology
and medical health will have great economic value and good market
prospects in the future [12].

Liang et al. used a multi-view geometry approach and extended the
trajectory formed by 13 skeletal points to recognize actions down a
dynamic scene [13]. Allahham et al. used 15 skeletal points to form
a human pose and created a Gaussian distribution for each point to
increase the robustness of the pose expression, and then recognized the
action category through a linear sequence of changes [14]. With the
development of neural networks on computer vision, increasingly deep
learning-based human action recognition featuring human structure has
achieved better results, and Toshiyoshi et al. used convolutional neural
networks to learn the skeletal point hierarchical feature approach and
identify action categories using the fusion of high-dimensional fea-
tures [15]. The above methods are all based on the spatial coordinates
of human skeletal points that have been obtained, and human structural
features can be extracted from the estimated skeletal point data by first
estimating human skeletal points through the human posture estima-
tion algorithm, in addition to being obtained directly from the skeletal
point information [16]. Thakur et al. detected human skeletal points
through depth images captured by a depth camera, and then used the
skeletal points in time, differences in the spatial domain to get the
overall dynamic changes and identify human body movements based on
these changes [17]. Li et al. first used the open pose method to estimate
the coordinates of human skeletal points in 2D images, and then used
graph convolutional networks to learn the structural features of the
human body and identify them [18]. Mosenia et al. used sports videos
as the object of study by calculating the video [19]. The global features
of the optical flow method are not strongly dependent on the spatial
contour extraction fine-grained of the human body, and the background
interference is small, so the algorithm has good generalizability and
robustness [20,21].

Affected by factors such as gyroscopic drift error and motion ac-
celeration, MEMS sensor-based human motion capture and detection
methods often suffer from large attitude angle solving error and low
motion state recognition rate. In this paper, based on the Kalman
filtering principle, it is proposed to fuse the detection information of
MEMS gyroscope, accelerometer, and magnetometer, take the attitude
angle of the output of the attitude reference system as a reference
and use the Kalman filtering algorithm to correct the output of the
inertial system, to achieve a better estimation of the human body
motion attitude angle. A Kalman filtering algorithm based on the pre-
estimation of motion acceleration is developed to adjust the variance
of the measured noise, which weakens the effect of motion accelera-
tion on the attitude reference system. To address the problem of the
low recognition rate of traditional methods, this paper also proposes
to study a better motion feature extraction method to improve the
recognition rate of human body motion. To address the drift error
and motion acceleration of MEMS gyroscope, which leads to the low
accuracy of attitude angle estimation, the paper proposes to develop a
high-precision attitude angle solver. The Kalman filtering algorithm is
used to combine the inertial system and the attitude reference system
to improve the accuracy of the attitude angle calculation. According
to the magnitude of the carrier motion acceleration, the magnitude of
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the measured noise variance of the Kalman filter is adjusted to weaken
the influence of the motion acceleration on the accuracy of attitude
angle solving in the Kalman filtering process. Establish the human
body motion model, give the equation and trajectory error model for
each joint motion trajectory calculation, and analyze the influence of
attitude angle error on the accuracy of wrist joint trajectory calculation.
Test the overall function of the human body motion state measurement
and recognition system.

3. MEMS sensors and Zigbee networks for human motion design

3.1. MEMS sensor-based motion design for the human body

Different types of sensors have different sensitivities, and we can
take advantage of this difference in sensor sensitivity to improve track-
ing accuracy. In our system, the sensitivity of the accelerometer and
gyroscope sensors is not the same, since we mainly use the acceleration
to calculate the displacement of the wearable device, so we only focus
on the sensitivity of the inertial accelerometer measurement axis [22].
Let us start with the concept of sensor sensitivity, which is defined
as the ratio of the change in voltage input to the change in output,
given a constant operating condition. It is usually desired that the
sensor be highly sensitive and constant, i.e., that the input and output
characteristics of the sensor be linear. The sensitivity of the sensor is
usually chosen in conjunction with the needs of the entire moving pro-
cess to enable the sensor to cover the entire measurement range, thus
improving the utilization of the measurement circuit and maximizing
the measurement accuracy of the sensor, as shown in Fig. 1.

Since the sensitivity of each measurement axis is different in dif-
ferent directions, we can see that there is a tendency for the position
of the calculated coordinates to be different as well. To eliminate
such differences, for each measurement axis of each sensor, we do
the following. Zigbee is an emerging short-distance, low-rate wireless
network technology. It is a technical solution between wireless marking
technology and Bluetooth. It has its own radio standard, which coordi-
nates communication among thousands of tiny sensors. These sensors
require very little energy to transmit data from one sensor to another
via radio waves in a relay manner, so their communication efficiency is
very high. For each sensor, we will calculate the sensitivity correction
factor for each axis, since each wearable device is fixed to the human
joints, its movement trajectory will also meet the human body model,
as we also mentioned earlier, the human body model can be simplified
to a multi-mass model, the human torso can be divided into 6 joints,
and in our system, it is the MEMS inertial sensors fixed to the human
body of these joints of the human body is by certain correlations and
limitations, so we can use these correlations and limitations to further
optimize the tracking accuracy [23].

Among the various types of MEMS sensors, MEMS motion sensor
has the most extensive application, which can be further divided into
three categories: gyroscopes, accelerometers, and magnetometers [24].
A triaxial accelerometer can output acceleration in any direction, a
gyroscope measures the physical measure of rotational angular velocity
in deflection and tilt, and a magnetometer measures the strength of the
magnetic field. For example, accelerometers and gyros can be combined
to form 6-axis inertial sensors; electronic compasses are formed by
combining magnetometers and accelerometers; and with the develop-
ment of MEMS technology, accelerometers, gyros, and magnetometers
can be integrated into 9-axis sensors. Human posture is made up of
a series of body movements, and to recognize posture, information
about the body’s movements needs to be captured, so the sensors we
use in this paper should also include accelerometers, gyroscopes, and
magnetometers.

Once we have the coordinates of each sensor placed on the joints of
the human body, we can identify the human body pose, assuming that
a pose is obtained by n sensors, then each pose is a vector of 3N, this
is because each sensor has displacement data in the X, Y and Z axes.

Since the hardware will inevitably generate mechanical errors during
the manufacturing process, these errors will continue to affect our data,
and our motion data will also be affected by high-frequency random
noise and gravity during the acquisition process, so we need to denoise
the motion data. The bottom layer of the Zigbee wireless transmission
solution is the media access layer and the physical layer that adopt the
IEEE 802.15.4 standard. The main features are low speed, low power
consumption, low cost, support for many online nodes, support for
multiple online topologies, low complexity, fast, reliable, and safe.

Ideally, the X, Y and Z axes in the accelerometer of a MEMS inertial
sensor are orthogonal to each other. However, this is not the case
because mechanical errors are unavoidable and must cause alignment
errors. There are two typical forms of alignment error, one is the shaft
to package alignment error and the other is the shaft-to-shaft alignment
error. The shaft to package alignment error refers to the encapsulation
process, because the solder pins cannot adhere to the circuit board, and
the surface of the circuit board there will be a certain curvature is not
completely flat, resulting in the measurement axis of the sensor internal
offset error.

3.2. Zigbee network design analysis for human motion

The ZigBee chip on the market is just a PHY layer standard chip,
which has a single function and can only modulate and demodulate
wireless communication signals, so it must be combined with a mi-
crocontroller to achieve the protocol and data transmission and other
functions [25]. Also, the single-chip solution only integrates the single-
chip part with the RF part, no longer need an additional single-chip,
the advantage is to save costs and simplify the design circuit, but this
single-chip solution does not contain the ZigBee protocol. For users
doing practical applications, the workload of these two solutions is too
large, the development cycle and test cycle are too long, and, because
of the development of wireless devices, it is not easy to guarantee the
quality of its products.

The gateway system mainly consists of an embedded gateway and
a ZigBee coordinator. The embedded platform uses the development
board, which has a wealth of interfaces and fully meets the design
needs. At the same time on-chip resource-rich, while reducing the cost
of the system while reducing the difficulty of hardware design. ZigBee
coordinator using chip. The block diagram of the entire system shown
in Fig. 2.

Z-stacks function is in the file, in general, it only does two jobs,
one is to initialize the system, that is, the boot code to complete
the initialization of the software architecture and hardware system
required for each functional module, to prepare for the operation of the
operating system, which is mainly divided into initializing the system
clock, detecting whether the chip voltage is normal, initializing the
stack, configuring the system timer, initializing the chip, and so on.
Each hardware module, initialize memory and initialize the operating
system; the second is to start executing the operating system entity
part, which has only one line of code operating system, the function is
the main part of the polling operating system, the main function is to
constantly query each task whether there are events, if so, then execute
the corresponding function, otherwise, query the next task. We are now
using the best found through our continuous testing. The ZigBee motion
nodes used in this paper all contain 3 sensors, namely accelerometer,
gyroscope, and magnetometer, which collect the sensor data in real-
time and send the data to the ZigBee coordinator via ZigBee wireless
network, then the coordinator sends the data to the gateway via serial
port, and the gateway transmits it to the PC terminal via Ethernet
interface for further processing. Conversely, the PC terminal can also
send some control or query commands to control the end nodes or get
the required information. In the ZigBee network, the coordinator is the
convergence point of the data flow of the whole network, so to solve the
interoperability problem between the ZigBee network and Ethernet, it is
only necessary to define a feasible communication protocol between the
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Fig. 1. MEMS sensor-based human motion module.

Fig. 2. Hardware connection diagram of the gateway system.

coordinator and the gateway. The challenge of using MEMS and Zigbee
to recognize human movements is how to recognize human movements
more accurately and obtain results quickly.

For the sake of cost and the simple and lightweight protocol, this
paper uses the serial port to connect the coordinator and the gateway,
and the asynchronous serial port communication is used between the
coordinator and the gateway. The gateway adopts the Client/Server
mode of network communication. One side listens to the data from
the Internet through the Socket, processes the received IP packets, and
converts them into serial port packets to be sent to the ZigBee coor-
dinator; the other side listens to the serial port, processes the packets
from the serial port, and converts them into IP packets to be sent to the
Internet client. In a ZigBee wireless network, devices have two different
addresses: a 16-bit network address and a 64-bit IEEE address (phys-
ical address). Sensitivity analysis method is to find out the sensitive
factors that have an important impact on the economic performance
indicators of the investment project from the many uncertain factors,
and analyze and calculate the degree of influence and sensitivity on

the economic performance indicators of the project, and then judge
the project an uncertainty analysis method of risk tolerance. Sensitivity
analysis helps determine which risks have the greatest potential impact
on the project. It keeps all other uncertain factors under the condition of
the benchmark value, and examines how much the uncertainty of each
element of the project affects the target. The 16-bit network address is
assigned by the coordinator when the device joins the ZigBee network,
which is unique in this ZigBee network. The 16-bit network address has
two main functions: to identify different devices in the network and to
specify the destination address and source address for data transmission
in the network. The 64-bit physical address is set by the manufacturer
according to the IEEE standard when the device is shipped from the
factory, of course, users can also modify the physical address of the
device through the programming software SmartArt Flash Programmer.

On one hand, if you want to control a node in the ZigBee network
remotely, you must know the address of the node, but the IP application
layer does not know the network address of the node in the ZigBee
network, so you can usually use the globally unique physical address as
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the destination address. On the other hand, the topology of the ZigBee
network may change due to some unexpected factors, and the network
address of the node may also change, so the network address is less
stable. However, in the ZigBee network, all nodes transmit data through
the network address, so that the routing algorithm can be used to find
the best path to speed up data transmission and reduce the power
consumption of nodes. To solve this address conflict problem, the
communication protocol must define a specification for the conversion
between the physical address and the network address of ZigBee nodes.

3.3. MEMS sensor and Zigbee network-based system design

Behavior recognition aims to identify the behavior of experimental
subjects from the observation and analysis of the behavior of a series
of experimental subjects. With the rapid expansion of the smartphone
market and the rapid development of miniature sensors, a wide variety
of MEMS sensor devices are embedded in human smartphones, and
human activity can be effectively detected using the sensor information
in smart devices. Now that the use of smartphones to detect human
activity will become the norm, researchers have been able to collect
sensor information from mobile device settings to enable services such
as health detection, motion tracking, elderly monitoring, and smart
home. Human behavior recognition algorithms can be broadly cate-
gorized into two types: machine learning-based recognition algorithms
and neural network-based recognition algorithms. We randomly allo-
cate 80% and 20% of the data set, where 80% of the data is used as
the training set, and 20% of the data is used as the test set. The machine
learning-based human behavior recognition algorithm in early research
flow is built a complete human behavior recognition model through
feature extraction engineering and algorithm construction, while the
neural network-based human behavior recognition model automati-
cally extracts feature sets through neural network training and builds a
complete human behavior recognition model through network training
and neural network. The appropriate solution is selected according to
the actual situation, as shown in Fig. 3.

After passing the data acquisition module, the original sensor data
information is obtained, and the original data will be mixed with
some useless sharp noise due to human factors or inherent signal
reasons in the equipment, these burr noises will interfere with the
post-sequence modeling identification and reduce the performance of
the subsequent identification model. Therefore, some noise reduction
and standardization measures need to be carried out on the sensor
sample data after data acquisition. The traditional machine learning
methods all require a priori knowledge to perform manual feature
extraction of sequence information, and the time domain based features
include mean, variance, root mean square, standard deviation, bias,
maximum value, minimum value, median, mean absolute deviation,
kurtosis, quartiles, and range values, and the frequency domain based
features include frequency response coefficient, spectral energy, spec-
tral entropy, and power density. Algorithm design is the most core part
of behavior recognition. According to the feature set obtained before,
the recognition accuracy obtained through different algorithms is not
the same, and by designing suitable algorithms, it is possible to ensure
that the classifier model obtained from behavior recognition has high
universality and high accuracy.

The human behavior recognition based on intelligent equipment is
to analyze and process the pre-collected data, and carry out the classifi-
cation recognition through a certain algorithm so that the classification
algorithm has high universality and high accuracy. We use 3 layers
for the hidden layer and one layer for the output layer. The human
behavior recognition involved in this paper is built based on neu-
ral network, abandoning the traditional human behavior recognition
method based on machine learning, starting from the perspective of the
neural network, using the neural network input raw data, automatically
extracting an effective set of features to complete the identification of
human behavioral activities. The purpose of this paper is to realize

the classification and recognition of human behaviors based on sensor
devices and human daily behaviors and falls, and thus this paper
will design a system solution for human behavior classification. The
experimental system mainly implements human behavior recognition
based on the android platform, which mainly provides certain early
warning for the fall activities in human behavior recognition.

The system uses cloud computing storage technology for mobile
phone software design to improve the fall detection system’s fall history
data recording function, and analyze and process the alarm informa-
tion, improve the scope of mobile phone software application promo-
tion in social networks, maintain high tightness between the service
quality of the product and the user, and meet the comfort of user experi-
ence. Using cloud computing technology application, the mobile phone
real-time acquisition acceleration sensor is sent to the background for
fall judgment, when the mobile phone terminal software analyzes and
processes the front-end fall detector’s location information, the faller’s
information is sent to the remote server or mobile phone, and the
location information is processed quickly and effectively. The client is
mainly responsible for sensor data collection, data packaging, local data
preservation, and uploading to the server, while the server is mainly
responsible for certain pre-processing of the client’s data, as well as
training and action recognition of the algorithm model. The behavior
recognition system framework, behavior recognition algorithm model,
and experimental system model architecture are introduced separately.
First, this chapter provides a detailed description of the process of
human behavior recognition, including the machine learning-based hu-
man behavior recognition model and the neural network-based human
behavior recognition. Second, the overall framework for the algorithms
designed for this paper is described in detail. Finally, the experimental
system model architecture is described for this paper.

4. Analysis of results

4.1. System performance results analysis

Firstly, the communication throughput of the terminal motion node
is tested, which directly affects the sampling rate of the sensor data
of the motion node, i.e., the number of motion-sensing data packets
collected per unit time, which has a great influence on the accuracy of
the result of multi-sensor data fusion. Firstly, the network is built au-
tomatically by the ZigBee coordinator and one ZigBee terminal motion
node. Secondly, the PC terminal sends fixed size data packets period-
ically to the terminal motion node via serial port debugging assistant
and sends them to the coordinator via ZigBee wireless network, and
then the coordinator sends the data to the serial port debugging at
the PC terminal via the serial port. The assistant shows that each test
takes 10 min. Then, the interval between sending data is gradually
reduced until packet loss occurs, at which point the communication rate
is the maximum throughput. Receive data for verification through the
serial port debugging assistant on the PC terminal, and the specific data
throughput is shown in Fig. 4.

From Fig. 4, the network throughput is maximum when the packet
size is 45 bytes, which has a value of 26.47 kbps, which is the reason
the packet size is set to 45 bytes when designing the gateway commu-
nication protocol. For the coordinator node, the specific test method
is as follows: let the coordinator node network with 1, 2, and 3 end-
movement nodes respectively, and then make all the end-movement
nodes send data to the coordinator at the same time at the maximum
communication rate. The test time is 30 min. The experimental results
of network throughput for different packet lengths are shown in Fig. 4,
and there is no significant correlation between the ZigBee network
throughput and the number of end-movement nodes. The total time
taken for a single packet to be transmitted in a ZigBee network is
about 7 ms, so the theoretical maximum throughput for a single-
hop transmission in a light-load, non-beacon enabled single-domain
network is about 115.5 kbps. However, in actual applications, the
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Fig. 3. MEMS sensor and Zigbee network-based system framework.

Fig. 4. Point-to-Point Transmission Rate Summary.

gap between the actual throughput and the theoretical data is large.
We sorted out the main postures of the human body and found that
there are about 40 types that are relatively common. Because our
current technology is not mature enough, ours is only to study these
40 postures. Our research found that the accuracy of the recognition
algorithm is still very high. This is mainly due to the existence of
energy-saving function, low power consumption function, encryption
function, and delay retransmission function due to electromagnetic
waves in the ZigBee protocol stack. The maximum communication
throughput finally measured in this paper is 26.47 kbps, which is more
throughput in the same situation and meets the requirements of this
project.

To check the effectiveness of the Kalman filtering algorithm, the
practical effects of attitude solving are tested and analyzed in this
paper. The pitch, roll, and yaw angles of the object in the range of
−5◦ to −35◦ are measured by a protractor and compared and analyzed
with the real-time solved angles on a PC host computer to verify the
accuracy of the system’s solved angles. The measured and solved angles
are compared to calculate the angle error of the system to evaluate the
performance of the whole system. The experimental results are shown
in Fig. 5.

The accuracy of the final solution is within 1.22◦ for pitch angle,
1.27◦ for roll angle, and 2.61◦ for yaw angle, which is larger than the

pitch and roll angle, mainly due to magnetic interference on the motion
module. Overall, however, the accuracy of the entire attitude display
system met the design requirements. At 10◦ intervals, the module
rotation angle refers to the difference between any two adjacent solved
angles. As shown in Fig. 5, the error between the module rotation angle
and the actual rotation angle of 10◦ is within 2◦.

The error is larger compared to Fig. 4 because the data processing
of the motion sensor is mainly reflected in the calculation of the
angle between the two vectors in the three-dimensional coordinate
system, in three-dimensional space, the angle between the two vectors
cannot determine the direction of rotation, so the angle can only be
between 0–180◦. Two motion vectors without coplanar constraints, so
the calculated angle there is no coplanar error.

The PC terminal posture monitoring host software can receive mo-
tion sensor data in real-time and display node information and node
status in real-time. By binding the device and the corresponding joint, it
is found that the motion posture of the terminal motion node is synchro-
nized with the posture in the three-dimensional display of joint mobility
with small error. The intermediate presentation layer of expanded
performance is to open a variety of different front-end training software
frameworks and a variety of different back-end expression bridges in
deep learning calculations, so that the deep learning network model
compiler can more effectively optimize and infer between the two. In
the deep learning network model compiler, the core idea of the middle
presentation layer draws on the LLVM architecture design, and the
newly added exclusive middleware is an important description method
for solving the inference-side model running on different hardware
platforms. The current intermediate presentation layer of the deep
learning network model compiler is mainly divided into two camps,
NNVM/TVM and TensorFlow XLA, but in fact, model exchange formats
such as ONNX and NNEF are also various definitions of the intermediate
layer. The industry consensus ‘‘IR’’ competition will be an important
part of the future software framework dispute. The commands sent to
the end motion nodes by the PC terminal are answered with correct
data, which proves the accuracy and reliability of the downstream data
transmission of the gateway communication protocol. In summary, the
gateway protocol designed and implemented in this paper is stable and
reliable.

The Zigbee gateway system is tested for its functionality, includ-
ing the data transmission efficiency of the ZigBee network, network
throughput, and terminal node power consumption. The effectiveness,
reliability, and stability of the gateway protocol are tested and verified.
Finally, the effect of multi-sensor data fusion is tested by the PC
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Fig. 5. Pitch angle, roll angle, yaw angle test comparison chart.

terminal attitude monitoring software of the gateway device to verify
the effectiveness of the Kalman filtering algorithm, and the final test
results meet the project design requirements.

4.2. Analysis of human movement state recognition results

This section will explore the accuracy of limb tracking. In our
experiments, it was the placement of sensors on the human wrist,
elbow, and shoulder joints, with five different subjects, for a total of
40 sets of postures tested. In turn, we distinguished between large
and small magnitude postures based on the magnitude of the posture.
The absolute error of posture tracking is the difference between the
displacement values calculated using the actual measurements and the
displacement values calculated using our algorithm. The relative error
of pose tracking is the ratio of the displacement value calculated using
the actual measured displacement value and the displacement value
calculated using our algorithm, as shown in Fig. 6.

The tracking accuracy of all the poses is first analyzed. Fig. 6
represents the absolute and relative error cumulative distribution plots
for all poses. The red line represents the results of the basic limb
tracking algorithm, the green line represents the results of the improved
Algorithm 1 that uses the sensor sensitivity difference to improve track-
ing accuracy, and the blue line represents the results of the improved
Algorithm 2 that uses both the sensor sensitivity difference to improve
accuracy and the linkage and limitations of human joints to improve
tracking accuracy on the basic limb tracking algorithm. We can see
from the figure that the basic tracking accuracy is the worst, its average
tracking accuracy is 0.075 m, after using our improved algorithm, the
tracking accuracy can reach 0.06 m. The experimental results show
that for all postures, the tracking accuracy can be improved by 15%
after using the two improved algorithms. Compared with other research
models, our model has greatly improved its efficiency and accuracy.

We will discuss the effect of pose amplitude on limb tracking
accuracy in the future. Fig. 7 shows the cumulative distribution func-
tion plots of absolute tracking accuracy and the cumulative density
distribution plots of relative tracking accuracy for small amplitude
poses, respectively. Similarly, the red lines represent the results of
the basic tracking algorithm, while the green represents the results
of Improved Algorithm I, and the blue represents the results of using
both Improved Algorithms I and Improved Algorithm II. Considering
other trajectories will make the system and the factors to be considered
more complicated. We cannot consider other trajectories yet. From the

two plots, for small amplitude poses, it is the basic tracking algorithm
that has the worst accuracy, while the sensor sensitivity improvement
method alone has the best accuracy.

We can conclude from the figure that for a large pose, the best
tracking accuracy is obtained by using both improvement algorithms,
while for a small pose, the highest accuracy is obtained by using only
the sensor sensitivity improvement algorithm. The reason is as follows:
for the improved algorithm two, we mainly use the connection and
limitation between human joints to avoid some abnormal results that
exceed the limit range of human joints, but in the small-amplitude pose,
the results will not exceed these limits, so using this method does not
improve the tracking accuracy.

Therefore, in practice, for most scenarios, we recommend using
both methods to improve tracking accuracy, but for some scenarios
that only include small-amplitude poses, we recommend using only the
sensitivity of the sensor to improve tracking accuracy.

At present, artificial intelligence algorithms based on deep learning
are mainly implemented by relying on computer technology archi-
tecture, and deep learning algorithms are encapsulated in software
framework 1 for developers to use. The software framework is the
core of the entire technical system, which realizes the encapsulation
of artificial intelligence algorithms, the call of data, and the scheduling
and use of computing resources. To improve the efficiency of algorithm
implementation, its compiler and underlying hardware technology have
also been optimized.

As the training process shown in Fig. 8, the dashed line is the
accuracy curve, where the purple dashed line is the curve where the
classification accuracy of the training set increases with the number of
training rounds, the blue dashed line is the curve where the classifica-
tion accuracy of the validation set increases with the number of training
rounds; the solid line is the loss function curve, where the red solid line
is the curve where the loss function of the training set increases with the
number of training rounds, the green solid line is the curve where the
loss function of the validation set increases with the number of training
rounds. The graph shows the curve of the change as the number of
training rounds increases. The horizontal axis is the number of training
rounds, the left vertical axis is the measure of accuracy, and the right
vertical axis is the measure of the loss function. From (a), (b), (c), we
can see that the loss function decreases during training, the recognition
accuracy increases, and the model completes convergence, but there are
still some differences in the convergence process of the diagram, (c) is
the fastest convergence, the curve is relatively smooth. It can converge
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Fig. 6. Cumulative distribution function of absolute and relative errors for all poses.

Fig. 7. Cumulative distribution function plot of absolute and relative errors for large-amplitude pose.

but slowly, the curve is more oscillating, and from the dataset point of
view, the actions in the AS2 subset are more similar and the differences
between classes are small, so the model converges slowly. Therefore, it
can be proved that different subsets of actions will have some influence
on the training process and result of the model. From (c), (d), (e), we
can see that the loss function decreases during training, the recognition
accuracy increases, and the model converges. Comparison of oscillation
and the final training set and test set loss function values differ widely,
from data division mode, the validation set and test set in Experiment
3 used different action executor actions, making the same action on the
class differences are relatively large.

In the experimental setup part, tests are conducted on three public
datasets, in which the sanctioned dataset is divided into three subsets
for training, and three validation tests are conducted according to
different ways of dividing training data and test data, and the Florence-
Action and Gutknecht-Action datasets are verified by cross-validation.
By comparing with the existing literature, it is learned that the fusion
of vector mode ratio and vector angle fusion is the best, which verifies

that feature extraction can better identify human movements based on
skeletal points.

5. Conclusion

In this article, we have designed and established a human motion
state measurement and recognition system based on MEMS sensors and
Zigbee network. In this system, we use a star-shaped network topology
with simple structure and high data transmission rate. And according
to the magnitude of the carrier motion acceleration, the magnitude of
the measured noise variance of the Kalman filter is adjusted at the
right time, which weakens the influence of motion acceleration on the
accuracy of attitude angle solving during the Kalman filtering process.
The method not only overcomes the influence of the carrier motion
acceleration but also compensates for the cumulative error of the
inertial system and achieves a higher accuracy of attitude angle solving
compared to the classical Kalman filtering algorithm. In this paper, the
human body motion measurement and recognition method based on
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Fig. 8. Model training loss function, accuracy change chart.

MEMS sensors are not only simple to use and easy to install, but also
has feasibility and validity once the recognition rate is high. And its
efficiency has increased by 10%, and its accuracy has increased by 15%,
which will have important meanings for future practical applications.
Through the actual test, the system works normally. The high-precision
attitude angle solving method is studied. In the future, we will study
other trajectories or multiple trajectories.
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