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Abstract: Dilated cardiomyopathy (DCM), a heterogeneous cardiomyopathy, is a major cause of 

heart failure and heart transplant. Currently, immunotherapy is believed to be an effective treatment 

method for DCM. However, individual differences are so obvious that the clinical effect is not sat-

isfactory. In order to find immune-related biomarkers of DCM to guide treatment and improve clin-

ical efficacy, we downloaded a GSE120895 dataset from the Gene Expression Omnibus (GEO) data-

base using CIBERSORT and WGCNA algorithms in RStudio and visualizing the protein–protein 

interaction (PPI) network for key modules by Cytoscape, and finally obtained six hub genes. A 

GSE17800 dataset was downloaded from the GEO dataset to verify the diagnostic values of hub 

genes, MYG1, FLOT1, and ATG13, which were excellent. Our study revealed unpublished potential 

immune mechanisms, biomarkers, and therapeutic targets of DCM. 
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1. Introduction 

Heart failure (HF) is a clinical syndrome with typical symptoms, such as breathless-

ness and ankle swelling, resulting from cardiovascular or noncardiovascular disease [1]. 

There are approximately 64.3 million people worldwide suffering from HF, which plays 

a vital role in the global burden of diseases, and a trend of younger HF patients needs our 

attention [2]. The authors of [3] found that although the age-specific mortality was de-

creased, the absolute number of deaths increased owing to population growth and aging 

based on mortality data from the Global Burden of Disease Study 2013. 

Dilated cardiomyopathies (DCMs), one of the leading causes of HF, are a hetero-

genous heart muscle disease without ischemia characterized by systolic dysfunction and 

ventricular dilatation, which has a rising prevalence reaching 1/250 but with a poor prog-

nosis [4]. Failure of the heart is the most important pathway of DCM identified by inge-

nuity pathway analysis (IPA) in a meta-analysis [5]. The pathophysiology of HF in DCM 

is complicated, and immune activation in the myocardium after virus infection is consid-

ered to be the main reason for this [6]. Barth [7] studied the identification of a common 

gene expression signature in DCM across two different studies, showing that the most 

obvious downregulation was the immune response process in both microarray types. Ad-

ditionally, a number of autoantibodies against different cardiomyocyte proteins in DCM 

have been found [8]. Owing to the disorder of the immune system in DCM, immunother-

apy relying on precision medicine came into being, including immunosuppressants and 

immunoadsorption [9]. However, an increase in antibodies and a decrease in contractility 

were observed in DCM 12 months after immunoadsorption therapy and subsequent IgG 
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replacement (IA/IgG) treatment [10]. The effectiveness of immunotherapy needs to be fur-

ther evaluated. Moreover, it is worth exploring which kind of patients can reap the maxi-

mum benefit from immunotherapy. 

In recent years, the vigorous development of high-throughput biological analysis 

technology has promoted the explosive growth of genomic biological data, and the appli-

cation of informatics in biomedical research has been increasing [11]. The systematic 

method in biology breaks the traditional analysis of a single gene or multiple genes at a 

time, giving rise to a totally new level of gene research, with which we can identify the 

gene expression profiles of complex diseases [12]. Gene expression provides a key link in 

the prognosis of disease. Laura [13] proposed, for the first time, that it was possible to 

judge the efficacy of adjuvant systemic therapy in breast cancer patients by analyzing 

DNA microarrays, patients who would benefit from which could be selected for treat-

ment, greatly improving the efficiency and reducing the cost of treatment. CIBERSORT is 

an analytical tool of immune infiltration developed by the Stanford University research 

team and published in the Nature Methods in 2015 using a deconvolution algorithm to es-

timate the composition and abundance of the immune cells in the mixed cells based on 

transcriptome data [14]. Weighted gene coexpression network analysis (WGCNA) is an-

other biological method performing relevant network analysis on the dataset to obtain 

biomarkers or therapeutic targets [15]. Based on the above methods, we aimed to use gene 

expression data from the Gene Expression Omnibus (GEO) dataset to reveal immune-re-

lated biomarkers of DCM and provide assistance in assessing the effectiveness of immu-

notherapy in individuals (Figure 1). 

 

Figure 1. Study flowchart (GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of 

Genes and Genomes; MAD, median absolute deviation; DEGs, differentially expressed genes; 

WGCNA, weighted gene coexpression network analysis; PPI, protein–protein interaction; ROC, re-

ceiver operating characteristic). 

2. Materials and Methods 

2.1. Data Processing and Analysis 
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We downloaded the GSE120895 [16] and GSE17800 [17] datasets from GEO 

(URL:https://www.ncbi.nlm.nih.gov/geo/ (accessed on 15 February 2022)) using RStudio 

4.1.1 software (URL: https://www.r-project.org/ (accessed on 2 September 2021)). Subse-

quent data processing and analysis were all performed in RStudio. The GSE120895 dataset 

(GPL570 platform), which was updated in 2021, was used for transcriptome analyses of 

the endocardium myocardia of 47 DCM patients and 8 individuals with normal left ven-

tricular ejection fraction (LVEF). The GSE17800 dataset (GPL570 platform) found 40 en-

docardial samples from DCM and 8 normal control endocardial samples. Both GSE120895 

and GSE17800 comprised DCM patients with left ventricular systolic dysfunction (LVEF 

< 45%) and symptoms of HF according to New York Heart Association (NYHA) classifi-

cations Ⅱ and Ⅲ. Gene expression values were log2 transformed and normalized by 

“limma” package [18]. We used the “hgu133plus2” package to convert to gene symbols 

and finally obtained a gene expression profile containing 12412 genes from 55 samples of 

GSE120895. Differentially expressed genes (DEGs) were filtered by |Log2 fold change| > 

mean plus twice the standard deviation and p-value < 0.05. 

2.2. Functional Enrichment Analysis 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis 

for all expression data was performed by gene set enrichment analysis (GSEA) with the 

“clusterProfiler [19]” and “DOSE” packages [20] in RStudio, setting the p-value to less 

than 0.05 and the number of permutations to 1000. 

2.3. CIBERSORT 

In order to determine the differences in the composition of immune cells between 

DCM with HF and normal individual controls, CIBERSORT was used to analyze DEGs. 

We used the LM22 signature and 1000 permutations in RStudio to obtain the proportion 

of each type of immune cell in the samples of two groups [21]. We visualized the results 

obtained above using the “ggplot2”, “ggpubr”, and “heatmap” packages in RStudio. 

2.4. WGCNA 

WGCNA in RStudio was introduced to construct a coexpression network (undirected 

weighted gene networks [15]) with the top 5000 genes with the highest median absolute 

deviation [22]. We constructed the adjacency matrix with a suitable soft threshold (ß = 17) 

when R2 reached 0.85 after calculating the Pearson correlation coefficient between any two 

genes in the immune cells. We combined similar modules (modules are clusters of highly 

interconnected genes [15]) with a similarity of 0.85 and then identified modules related to 

immune cells. 

2.5. Protein–Protein Interaction (PPI) Network Analysis and Obtained Hub Genes 

Cytoscape (v3.8.2, URL: https://cytoscape.org/ (accessed on 4 September 2021)) was 

used to visualize the PPI network (a tool to describe a biological system according to pro-

teins and the relationships [23]) of the top 300 genes with a weight value of the key mod-

ules. Hub genes (highly connected genes [15]) were selected through the Cytoscape plugin 

cytoHubba [24], and we chose 3 hub genes from each module according to the largest 

degree. 

2.6. Validation of Hub Genes 

For the identification of hub genes, we used the “pROC” package to draw receiver 

operating characteristic (ROC) curves and calculated the area under the ROC curve (AUC) 

in GSE17800 [25]. AUC > 0.7 indicated that the gene had a good fitting effect, and p < 0.05 

indicated statistical significance. We further confirmed the expression values of hub genes 

in each group. 
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3. Results 

3.1. Identification of DEGs 

GSE120895 from the GEO dataset contained 12412 genes in 55 samples of endocar-

dium myocardium from 47 DCM patients with HFrEF and 8 individuals with normal 

LVEF. A total of 473 genes were identified as DEGs in GSE120895, among which 268 genes 

were upregulated and 205 genes were downregulated, which is shown in a volcano plot 

(Figure 2A). A heatmap was used to visualize the top 25 genes of DEGs (Figure 2B). 

 

Figure 2. Volcano plot and heatmap for differentially expressed genes identified in the GSE120895 

dataset; red indicates upregulated genes, and blue indicates downregulated genes. (A) The volcano 

plot shows up- and downregulated genes. (B) The heatmap shows the expression of the 25 most 

differentiated genes in individuals. 

3.2. Functional Correlation Analysis 

The results of KEGG from GSEA (Figure 3B) showed that the KEGG pathways were 

enriched in human papillomavirus infection, focal adhesion, the PI3K-Akt signaling path-

way, the cGMP-PKG signaling pathway, viral carcinogenesis, Epstein–Barr virus infec-

tion, and herpes simplex virus 1 infection, participating in the process of viral infection 

and immunity. Most of them were at the top (Figure 3A). 
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Figure 3. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway enrichment analysis for GSE120895. (A) GSEA revealed the genes were enriched 

at the top. (B) The top terms of the KEGG pathway analysis for GSE120895. The significant pathways 

are represented by the negative decimal logarithm of the p-value. 

3.3. Immune Cell Infiltration 

There was a significant difference between the DCM with HF and controls in the 

composition of immune cells (Figure 4). CD4 memory resting T cells (p = 0.035), CD8 T 

cells (p = 0.05), CD4 naive T cells (p = 0.015), plasma cells (p = 0.0047), macrophages M0 (p 

= 0.059), and NK resting cells (p = 0.017) were significantly higher in the DCM with HF. 

Otherwise, B cells naive (p = 0.015), B cells memory (p = 0.0074), T cells follicular helper (p 

= 7.1 × 10−7), and CD4 memory activated T cells (p = 1.3 × 10−6) were much lower in the 

DCM patients with HF. 
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Figure 4. Immune infiltration analysis for GSE120895. (A) Bar charts of 22 immune cell proportions 

in DCM and control tissues. (B) Differential expression of immune cells in two groups. * p < 0.05, ** 

p < 0.01, **** p < 0.0001. 

3.4. Construction of Weighted Coexpression Network and Identification of Immune-Corrected 

Modules 

In this study, after filtering an outlier (Figure 5A), ß = 17 (scale-free R2, 0.85) was cho-

sen as the soft threshold to construct a scale-free network, while the network topology 

with 1–30 threshold weights was analyzed (Figure 5B). We merged the modules with sim-

ilarity greater than 0.85 and finally obtained six modules (Figure 5C). The correlation be-

tween the modules and 22 kinds of immune cells was shown in a network heatmap (Fig-

ure 5D), which indicated that the blue and black modules were the key modules. Correla-

tion analysis was performed between module eigengenes (MEs, the first principal compo-

nent of a module [15]) and immune cells. Blue and black modules significantly correlated 

with NK resting cells and B cells (Figure 5E), which were further validated by the scatter 

plot (Figure 6). 
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Figure 5. Weighted gene coexpression network analysis (WGCNA) for GSE120895. (A) The sample 

clustering to detect an outlier. (B) Analysis of the scale-free index (left) and mean connectivity (right) 

for various threshold powers. ß = 17 (scale-free R2, 0.85) was chosen as the soft threshold. (C) Clus-

tering dendrogram of genes, together with assigned module colors. Merge modules with a similar-

ity of 0.85. (D) Network heatmap plot in the coexpression modules. Light color represents higher 

overlap. (E) Module–trait relationships; the numbers in the cell represent the correlation coefficient 

and corresponding p-value. The correlation coefficient is between −1 and +1, and the larger the ab-

solute value, the stronger the association. 
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Figure 6. The scatter plots of module membership and gene significance for B cells and NK cells in 

the key modules. One dot represents one gene. (A) ROC curves of MYG1. (B) ROC curves of FLOT1. 

(C) ROC curves of GPX1. (D) ROC curves of LINC00520. (E) ROC curves of ZNF548. (F) ROC curves 

of ATG13. AUC > 0.7 indicates good effect. 

3.5. PPI Network Construction and Identification of Hub Genes 

The top 300 genes with weight values of the key modules were introduced into Cy-

toscape to establish PPI networks, and 10 hub genes are shown in different colors (Figure 

7). We selected six hub genes according to the highest degree: MYG1 (degree = 104) and 

FLOT1 (degree = 104) with GPX1 (degree = 47) in the black module, and LINC00520 (de-

gree = 59), ZNF548 (degree = 52), and ATG13 (degree = 36) in the blue module. 
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Figure 7. Key modules that contain hub genes of the PPI network. Hub genes are shown in different 

colors (the darker the gene, the higher the score). (A) PPI network for black module. (B) PPI network 

for blue module. MYG1 (degree = 104), FLOT1 (degree = 104), GPX1 (degree = 47), LINC00520 (de-

gree = 59), ZNF548 (degree = 52), and ATG13 (degree = 36) were selected as hub genes. 

3.6. ROC Curve Analysis of Hub Genes 

We drew the ROC curve of hub genes in RStudio so as to clarify the diagnostic value. 

The results showed MYG1 (AUC = 0.741), FLOT1 (AUC = 0.766), GPX1 (AUC = 0.672), 

LINC00520 (AUC = 0.716), ZNF548 (AUC = 0.706), and ATG13 (AUC = 0.806) in the 

GSE17800 validation set (Figure 8), out of which MYG1, FLOT1, and ATG13 (p < 0.05) had 

significant diagnostic values. The gene expression level provided further proof (Figure 9), 

showing that MYG1, FLOT1, and ATG13 were all upregulated. 
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Figure 8. Receiver operating characteristic (ROC) curves of hub genes in GSE17800. (A) ROC curves 

of MYG1. (B) ROC curves of FLOT1. (C) ROC curves of GPX1. (D) ROC curves of LINC00520. (E) 

ROC curves of ZNF548. (F) ROC curves of ATG13. AUC > 0.7 indicates good effect. 

 

Figure 9. GSE17800 was used to verify the expression levels of hub genes in DCM and control. (A) 

Gene expression values of MYG1 among samples. (B) Gene expression values of FLOT1 among sam-

ples. (C) Gene expression values of GPX1 among samples. (D) Gene expression values of LINC00520 

among samples. (E) Gene expression values of ZNF548 among samples. (F) Gene expression values 

of ATG13 among samples. 

4. Discussion 

The Prospective Urban Rural Epidemiology (PURE) cohort study [26] published in 

Lancet suggests that, among adults aged 35–70 around the world, cardiovascular disease 

is still the major cause of death, and heart failure is one of main events leading to mortality. 

While the global burden of HF is quite heavy with a stubbornly high prevalence and mor-

tality rate, targeted therapy (precision medicine) based on high-throughput molecular bi-

ology technology may provide a new direction [27]. 

Immune response as a defense mechanism results in long-term myocardial immune 

infiltration, which can cause ventricular remodeling in HF patients [28]. Evidence sug-

gests that HF is related to the infiltration of immune cells in the myocardium [29]. DCM 

is one of the most common causes of HF worldwide, with myocardial injury mediated by 

multiple factors, such as familial susceptibility, infection, immunity, toxicants, endocrine, 

and metabolic abnormalities [30]. Abnormalities of immune cells are considered to con-

nect with the outcome of DCM [31,32]. In addition, Staudt [33] found that the disturbance 

of humoral immunity might promote the development of HF, and it was identified that 

there were a number of autoantibodies against cardiac cell proteins in DCM, some of 

which were related to HF [34]. In a word, humoral and cellular immune disorders in DCM 

are gradually uncovered, playing an important role in the pathogenesis. With bioinfor-

matics algorithms and tools, we can explore the immune mechanism of DCM with HF 

and find immune markers of DCM. 
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In our study, the results of KEGG from GSEA suggested that the KEGG pathways 

were enriched in the process of viral infection and immunity. We attempted to determine 

the immune-related pathological process and marker genes in DCM with WGCNA and 

CIBERSORT algorithms based on the GSE120895 dataset from the GEO database. The 

composition of immune cells in two groups was totally different. The high expression of 

NK cells and CD8 T cells in DCM with HF indicated that the cellular immunity was active. 

CD4 memory-activated T cells, naive B cells, memory B cells, and follicular helper T cells 

were clearly reduced in DCM, while plasma cells significantly increased, which meant 

that the humoral immune system was abnormal in DCM. CD4 T cells are closely involved 

in the progression of cardiac insufficiency [35]. The authors of [36] found that the number 

of NK cells in DCM was significantly more than that in the control in the 1990s, and func-

tional abnormalities of NK cells might contribute to pathogenesis in DCM. Recently, im-

munoadsorption has become a new treatment option for DCM, but the clinical effect has 

not met expectations, and individual differences are obvious due to uncertain reasons [37]. 

Bhardwaj [38] attempted to distinguish between DCM patients who responded and those 

who did not respond to immunoadsorption at the proteomics level, and they found that 

the proteins S100-A8, perilipin-4, and kininogen-1 had the potential to help stratify pa-

tients with immunoadsorption therapy. We aimed to identify DCM patients who may 

respond to immunotherapy at the genetic level so as to improve the effectiveness of im-

munotherapy and achieve precision medicine. 

We constructed six modules correlated with immune by WGCNA analysis, in which 

blue and black modules showed a strong correlation with NK resting cells, B cells, and 

plasma cells. We finally obtained six hub genes, MYG1, FLOT1, GPX1, LINC00520, 

ZNF548, and ATG13, from blue and black modules. MYG1, FLOT1, and ATG13 were ver-

ified in GSE17800 (AUC > 0.7, p < 0.05). 

MYG1 (melanocyte proliferating gene 1) located in the nucleus and mitochondria has 

exonuclease activity, mainly controlling mitochondria’s functions [39]. As a ubiquitously 

expressed and highly conserved factor, MYG1 is involved in immune regulation [40], 

which is not only associated with leukoplakia susceptibility, but also promoting the pro-

gression of lung adenocarcinoma and inhibiting autophagy [41]. Compared with the con-

trol, MYG1 was differentially expressed in DCM in our study. We suppose that the in-

volvement of MYG1 in DCM progressed to HF, which requires further research to con-

firm. 

FLOT1 (flotillin-1), another ubiquitously expressed and highly conserved raft-associ-

ated protein, maintains the membrane integrity of B and T lymphocytes [42], playing a 

role in T-cell activation [43]. Flotillin-1 was reported to be involved in cell adhesion, the 

overexpression of which enhanced cell spreading [44]. FLOT1, with a great diagnosis 

value shown by the ROC curve, was overexpressed in DCM with HF, and we also found 

that focal adhesion was one of the significant enrichment pathways in our study. Based 

on the above, we could make a hypothesis that FLOT1 has an effect on the development 

of DCM by activating T cells and speeding up cell spread. 

As a key component of ULK1 (unc-51 like autophagy activating kinase 1), ATG13 (au-

tophagy-related protein 13) is responsible for activating ULK1 kinase, which is closely asso-

ciated with autophagy, which may have a connection with inflammation [45]. Autophagy 

proteins participate in the development and homeostasis of the immune system, antigen 

presentation, and regulation of immune signals, playing an essential role in controlling 

inflammation [46]. Autophagy may take part in the development of HF in DCM [47]. ROC 

curve analysis showed that the AUC of ATG13 was greater than 80%, which, with in-

creased expression, could provide a sign of immune disorders in DCM. 

Ischemic cardiomyopathy (ICM), which is another disease causing inflammation in 

the heart, has some difference in the enriched pathway from DCM. The cytoskeletal and 

immune pathways belong to ICM, while the adhesion pathway is enriched in DCM [48]. 

Aiqing [49] found that upregulated DEGs in DCM or ICM were not associated with each 

other, and the hub genes in our study were not on the list of common regulated genes 
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from Aiqing’s study. ICM was excluded by angiography in GSE120895 and GSE17800 da-

tasets, so the hub genes in ICM may not be upregulated, while arrhythmogenic right ven-

tricular cardiomyopathy (ARVC), characterized by the fibrofatty replacement of myocar-

dium, has more active inflammatory signaling compared with DCM [50]. ARVC and 

DCM differ markedly at the transcriptomic level [51]. However, it cannot be ruled out that 

MYG1, FLOT1, and ATG13 are upregulated in ARVC. Further experiments can identify 

genetic changes in ICM and ARVC. 

Immune-related MYG1, FLOT1, and ATG13 had excellent diagnostic values. We may 

determine the success rate of immunotherapy by measuring the expression of these genes 

and increasing clinical effectiveness. 

5. Conclusions 

In summary, we used the WGCNA and CIBERSORT bioinformatics algorithms to 

identify immune biomarkers in DCM with HF, and obtained two key modules and six 

hub genes, out of which MYG1, FLOT1, and ATG13, with good diagnostic values, may be 

potential diagnostic biomarkers and therapeutic targets. We speculate that these genes 

have the ability to predict the success rate of immunotherapy, which needs to be con-

firmed by further experiments. 
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