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Abstract: This paper proposed an improved Grey Wolf Optimizer (GWO) to resolve the problem of
instability and convergence accuracy when GWO is used as a meta-heuristic algorithm with strong
optimal search capability in the path planning for mobile robots. We improved chaotic tent mapping
to initialize the wolves to enhance the global search ability and used a nonlinear convergence factor
based on the Gaussian distribution change curve to balance the global and local searchability. In
addition, an improved dynamic proportional weighting strategy is proposed that can update the
positions of grey wolves so that the convergence of this algorithm can be accelerated. The proposed
improved GWO algorithm results are compared with the other eight algorithms through several
benchmark function test experiments and path planning experiments. The experimental results show
that the improved GWO has higher accuracy and faster convergence speed.

Keywords: Grey Wolf Optimizer; tent mapping; convergence factor; path planning

1. Introduction

Path planning is widely used in mobile robot navigation, which of the aim is to find
an optimal trajectory that connects the starting point with the target point while avoiding
collisions with obstacles [1,2]. There are many commonly used algorithms, such as A*
algorithm [3], particle swarm algorithm (PSO) [4,5], genetic algorithm (GA) [6], and grey
wolf algorithm (GWO) [7–9].

GWO is a new pack intelligence optimization algorithm that is widely used in many
significant fields. It mainly imitates the grey wolf race pack’s hierarchical pattern and hunt-
ing behavior and achieves optimization through the wolf pack’s tracking, encircling, and
pouncing behaviors. Compared with traditional optimization algorithms such as PSO and
GA, GWO has the advantages of fewer parameters, simple principles, and implementing
easily. However, GWO has the disadvantages of slow convergence speed, low solution
accuracy, and easy to fall into the local optimum. For this reason, many scholars have made
many improvements. Yang Zhang [10] proposed MGWO, which introduced an exponential
regular convergence factor strategy, an adaptive update strategy, and a dynamic weighting
strategy to improve the GWO search capability. Min Wang [11] proposed NGWO, which
used reverse learning of the initial racial group and introduced a nonlinear convergence
factor to improve the algorithm search capability. Luis Rodriguez [12] proposed the Grey
Wolf algorithm (GWO-fuzzy) based on a fuzzy hierarchical operator and compared two
proportional weighting strategies. Saremi [13] proposed the grey Wolf Algorithm for Evolu-
tionary Population Dynamics (GWO-EPD), which focuses on the location change of poorly
adapted grey wolf individuals to improve search accuracy. Qiuping Wang [14] proposed an
improved grey wolf algorithm (CGWO), which uses the cosine law to vary the convergence
factor to improve the searchability, and introduces a proportional weight based on the
step Euclidean distance to update the position of the grey wolf to speed up the conver-
gence speed. Shipeng Wang [15] proposed a new hybrid algorithm (FWGWO), which
combines the advantages of both algorithms and effectively achieves the global optimum.
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In order to effectively improve the coverage of a wireless sensor network in the monitor-
ing area, a coverage optimization algorithm for wireless sensor networks with a Virtual
Force-Lévy-embedded Grey Wolf Optimization (VFLGWO) algorithm is proposed [16].

Although the GWO algorithm has been widely used in various engineering problems,
such as numerical simulation and stability domains [17,18], classification of data sets,
feature acquiring selection, etc., it has been less applied in mobile robot path planning. The
research object is the path planning of mobile robots. The shortest path is the objective
function, the environment is the constraint condition, and the grey wolf optimization
algorithm applies to the path planning of mobile robots to avoid obstacles. To address
the defects of the gray wolf optimization algorithm in solving the path planning problem
of mobile robots, such as falling into local extremes, poor stability, and poor local search
capability. Summarizing the above research results, we know that there are three factors
determining the performance of the grey wolf algorithm in finding the best path: the
initialized wolf pack, the convergence factor, and the proportional weighting strategy.
In this paper, we mainly improve these three aspects of GWO. First, initialize the wolf
pack position using improved chaotic tent mapping. The second is applying a nonlinear
convergence factor based on the Gaussian distribution variation to improve the search
capability. Finally, a dynamic weighting strategy is introduced to speed up the convergence.
Several benchmark functions are simulated and compared with various improved GWO
and classical intelligent optimization algorithms to show the effectiveness of the improved
algorithms. The improved GWO has been tested on mobile robot path planning to verify
the algorithm’s practicality.

The contributions of this paper are:

1. An improved GWO algorithm based on a multi-strategy hybrid is proposed.
2. The improved GWO algorithm is applied to the path planning of mobile robot.
3. The performance of the proposed approach is compared with standard GWO, Sparrow

Search Algorithm (SSA), Mayfly Algorithm (MA), Modified Grey Wolf Optimization
Algorithm (MGWO) [10], Novel Grey Wolf Optimization Algorithm (NGWO) [11], A
Fuzzy Hierarchical Operator in the Grey Wolf Optimizer Algorithm (GWO-fuzzy) [12],
and Evolutionary population dynamics and grey wolf optimizer (GWO-EPD) [13].

The remainder of this paper is structured as follows. Section 2 summarizes the related
work. Section 3 describes the deployment scheme of this paper to improve the gray
wolf algorithm. The experimental results are discussed in Section 4. Section 5 concludes
the paper.

2. Related Work
2.1. Research Situation

Path planning is a typical complex multi-aim optimization problem that finds a work-
able or optimal path from the starting point to the goal point under careful consideration of
various environmental conditions. Intelligent algorithms are widely used in such problems
as path planning because of their better robustness.

Research on solving path planning problems using swarm intelligence algorithms is
gradually increasing. For example, Yin Ling [19] fused the improved grey wolf algorithm
with the artificial potential field method to solve the problem of unreachable target points
because of the influence of dynamic obstacles in path planning. Dazhang You [20] combined
GWO with particle swarm algorithm to reduce the cost consumption of path planning by
introducing cooperative quantitative optimization of the grey wolf population. Kumar
R [21] introduced a new technique named modified grey wolf optimization (MGWO)
algorithm to solve the path planning problem for multi-robots. Ge Fawei [22] proposed
the grey wolf fruit fly optimization algorithm (GWFOA), which combines the fruit fly
optimization algorithm (FOA) with GWO for the Unmanned Aerial Vehicle (UAV) path
planning problem in oil field inspection, resulting in a satisfactory solution for UAV in
complex environments. One more powerful algorithm named variable weight grey wolf
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optimization (VW-GWO) was recently proposed by Kumar [23] to obtain an optimal
solution for the path planning problem of mobile robots.

2.2. GWO Algorithm

In 2014, inspired by the predatory behavior of grey wolf packs, Seyedali Mirjalili et al.
proposed the grey wolf algorithm (GWO) [7]. The algorithm simulates the unique hunting
and prey-seeking characteristics of the grey wolf. Grey wolves belong to the group of living
canines. Each wolf plays a different role in the group and accomplishes tasks through
cooperation between wolves. The GWO divided the grey wolf population into four levels
of social hierarchy (Figure 1). The first rank is wolf α, responsible for deciding on activities
such as hunting. The second rank is wolf β, subordinate to wolf α and helps make decisions
with wolf α, also the best candidate for wolf α. The third rank is wolf δ, subordinate to wolf
α and wolf β, responsible for tasks such as scouting and hunting. The fourth rank is wolf ω,
the lowest rank, responsible for maintaining the wolf pack. Grey wolf hunting is divided
into tracking, chasing, and attacking prey.
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During the GWO operation, the positions of wolf α, wolf β, and wolf δ are
continuously updated at each iteration, whose mathematical model is described as:
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Equation (1) is the distance between the grey wolf and the prey, where t is the
number of current iterations, and Xp(t) and X(t) are the prey’s locations and the grey
wolf’s location at t iterations, respectively. Equation (2) is the formula for updating the
location of the grey wolf. A and C are the coefficient vectors, which are calculated by the
following equations:
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where r1, r2 are random vectors between [0, 1], and the primary role is to increase the
randomness of the grey wolf movement. ɑ represents the convergence factor, which will
decay linearly from 2 to 0 as the algorithm progresses, and the linear relationship defines
GWO:

max/22 Tta  (5)

where t is the current number of iterations and Tmax is the maximum number of
iterations of the algorithm.

Figure 1. Grey wolf class system.

During the GWO operation, the positions of wolf α, wolf β, and wolf δ are continuously
updated at each iteration, whose mathematical model is described as:

D =
∣∣C•Xp(t)− X(t)

∣∣ω (1)

X(t + 1) = Xp(t)− A•D (2)

Equation (1) is the distance between the grey wolf and the prey, where t is the number
of current iterations, and Xp(t) and X(t) are the prey’s locations and the grey wolf’s location
at t iterations, respectively. Equation (2) is the formula for updating the location of the grey
wolf. A and C are the coefficient vectors, which are calculated by the following equations:

A = 2a•r1 − a (3)

C = 2•r2 (4)

where r1, r2 are random vectors between [0, 1], and the primary role is to increase the
randomness of the grey wolf movement. a represents the convergence factor, which will
decay linearly from 2 to 0 as the algorithm progresses, and the linear relationship defines
GWO:

a = 2− 2t/Tmax (5)

where t is the current number of iterations and Tmax is the maximum number of iterations
of the algorithm.

Predating in abstract space and accurately identifying the location of prey is impossible.
GWO simulated hunting behavior. Based on the fitness value, wolf α, wolf β, and wolf δ
were selected to find the prey using the relationship between the three positions and guide
the other wolves to move toward the prey, as in Figure 2.
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GWO algorithms, and chaotic sequences have characteristics such as nonlinearity,
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decade, chaotic mapping has been widely used to help optimize more dynamic and
global search spaces for intelligent algorithms. There are over ten mappings: logistic
mapping, piecewise-linear chaotic system mapping(pwlcm), singer mapping, and tent
mapping. These mappings can choose the initial value of any number [0, 1] (or
according to the chaotic mapping range). Among them, logistic mapping and tent
mapping are most commonly used, but logistic mapping is less ergodic than tent
mapping, and the sensitivity of initial parameters leads to the high density of mapped
points at the edges and less density in the middle region, which is not conducive to
optimal path planning. Compared with logistic mapping, tent mapping is more suitable
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By iterating several times until the location of the prey is reached, the mathematical
model is as follows: 

Da =|C1•Xα − X|
Dβ =

∣∣C2•Xβ − X
∣∣

Dδ =|C3•Xδ − X|
(6)


X1 =|Xα − A1•Dα|
X2 =

∣∣Xβ − A2•Dβ

∣∣
X3 =|Xδ − A3•Dδ|

(7)

X(t + 1) = (X1 + X2 + X3)/3 (8)

where: Da is the distance between wolf pack w and a wolf, DB is the distance between wolf
pack w and β wolf, and Dδ is the distance between wolf pack w and wolf δ. The Equation (7)
presents the location of the new generation of wolves after the update.

3. Improved GWO Algorithm
3.1. Wolf Pack Initialization

Since the initialized grey wolf population determines whether the optimal path can be
found and the convergence speed, a diversity of initialized populations can help improve
the algorithm’s performance in finding the optimal path. Traditional GWO randomly
initializes wolf pack positions, which primarily affects the search efficiency of the algorithm,
so the initialized populations need to be distributed as evenly as possible in the initial space.

In optimization, chaotic mappings positively impact the convergence speed of GWO
algorithms, and chaotic sequences have characteristics such as nonlinearity, ergodicity,
and preventing algorithms from falling into local optimality. In the last decade, chaotic
mapping has been widely used to help optimize more dynamic and global search spaces
for intelligent algorithms. There are over ten mappings: logistic mapping, piecewise-linear
chaotic system mapping(pwlcm), singer mapping, and tent mapping. These mappings can
choose the initial value of any number [0, 1] (or according to the chaotic mapping range).
Among them, logistic mapping and tent mapping are most commonly used, but logistic
mapping is less ergodic than tent mapping, and the sensitivity of initial parameters leads
to the high density of mapped points at the edges and less density in the middle region,
which is not conducive to optimal path planning. Compared with logistic mapping, tent
mapping is more suitable for GWO, but it is a small period. Therefore, a random variable
rand()/N is added to the tent mapping.

yi,j+1 =

{
υ•yi,j + rand()/N, 0 ≤ yi,j+1 ≤ 0.5

υ•(1− yi,j) + rand()/N, 0.5 < yi,j+1 ≤ 1
(9)

where: i is the grey wolf pack size, j is the chaotic sequence number, rand() belongs to [0, 1],
v belongs to [0, 2], N is the population number. Introducing rand()/N can maintain the
ergodicity and regularity of tent mapping and effectively solve the tent falling into small
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and unstable periodic points during iteration. Figure 3 shows the change curves of two
Tent chaotic mappings. The tent mapping has significantly improved reversibility and
uniform distribution compared with the tent. Improved tent mapping steps:

1. Produce random initial values y0 in (0, 1) with i = 0.
2. Calculate iteratively using Equation (9) to produce the sequence.
3. Stop iterating when the iteration reaches the maximum value and saves the sequence.
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When |A| < 1, the grey wolf pack wants to surround and attack the prey, and the local
ability also determines the convergence speed, so the convergence factor has a
significant role. The convergence factor used in traditional GWO is a linear decreasing
factor, decreasing from 2 to 0. However, it is found that the actual is not a linear change,
and nonlinearity is more applicable to GWO. in addition, the first stage of GWO is
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Finally, map it to the grey Wolf Pack search space.

xi,j = lb + yi,j•(ub− lb) (10)

where lb and ub are the upper and lower limits of the grey wolf position, respectively, intro-
ducing random variables in the tent mapping can effectively avoid the shortage of minor
cycle points and limit the random values to a set range. Improving tent mapping enables
the GWO initialized wolf pack positions to be uniformly distributed in the search space.

3.2. Nonlinear Convergence Factor

In GWO, the excellent or lousy convergence factor affects the algorithm’s global
search ability and local exploitation ability. The global search ability is the search of the
grey wolf pack to other unopened areas to prevent the wolf pack from falling into local
optimal solutions. Equation (3) |A| > 1, the grey wolf pack needs to search the prey in the
entire space. The local exploitation ability represents the accuracy in a small area. When
|A| < 1, the grey wolf pack wants to surround and attack the prey, and the local ability also
determines the convergence speed, so the convergence factor has a significant role. The
convergence factor used in traditional GWO is a linear decreasing factor, decreasing from 2
to 0. However, it is found that the actual is not a linear change, and nonlinearity is more
applicable to GWO. in addition, the first stage of GWO is mainly for a global search for
optimal solutions, and the middle and later stages are for local development, with different
needs for convergence factors.

Therefore, this paper uses a convergence factor based on the Gaussian distribution
change curve. 

a = φ• 1√
2π(Tmax/3)

e
t2

2(Tmax/3)2 , t ≤ ∂Tmax

a = ϕ• 1√
2π(Tmax/3)

e
t2

2(Tmax/3)2 , ∂Tmax ≤ t < Tmax

(11)

where Ø, ϕ is the decreasing function, changes with the number of iterations, and ∂ is the
cut-off. Figure 4 compares the convergence factors of GWO, Improved Gray Wolf Optimizer
Algorithm (MGWO) in literature [10], and improved GWO proposed in this paper.
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The convergence factor of GWO is linearly decreasing, which does not apply to the
application of the algorithm in practice. The convergence factor of MGWO is based on
the exponential law, which does not guarantee the accuracy of the local search at the late
stage of the search. The improved convergence factor is a curve decaying according to the
nonlinear normal distribution, and the convergence factor is more significant and decays
slower at the beginning of the iteration so that the population can better search for the
optimal solution to the unknown global region, thus improving the global searchability in
the early stage and preventing it from falling into the local optimum. The convergence factor
is more minor and decays more at the later iteration stage to improve the algorithm’s local
search accuracy and convergence speed. The convergence factor is more minor and decays
more in the later iterations, thus improving the local search accuracy and convergence
speed. Therefore, the improved convergence factor can better balance GWO global search
and local search ability.

3.3. Dynamic Proportional Weighting Strategy

The traditional GWO uses Equation (8) as the formula for wolf position update, but
the effect is not good. The [24] proposed two methods to improve the position update
formula by increasing the weights.

X(t + 1) =
5X1 + 3X2 + 2X3

10
(12)

Wa =
fa + fβ + fω

fa
, Wβ =

fa + fβ + fω

fβ
,

Wω =
fa + fβ + fω

fω

X(t + 1) =
X1•Wa + X2•Wβ + X3•Wω

Wa + Wβ + Wω

(13)

Equations (12) and (13) set α, β, and w with different coefficients to highlight their
importance, and Equation (12) increases the coefficient 5 for α, 3 for β, and 2 for w according
to the importance. W in Equation (13) denotes the weight of the three wolves, and f denotes
the current adaptation degree of the three wolves and increases the weight of the wolves
according to the adaptation degree.
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Inspired by the above, a proportional weighting strategy based on fitness and location
is proposed to make the grey wolf pack find the optimal solution more precisely:

Wa =
fa + fβ + fω

fa
, Wβ =

fa + fβ + fω

fβ
,

Wω =
fa + fβ + fω

fω

V1 = |X1| + |X2| + |X3|
|X1|

, V2 = |X1| + |X2| + |X3|
|X2|

,

V3 = |X1| + |X2| + |X3|
|X3|

,

X(t + 1) =
V1•Wa + V2•Wβ + V3•Wω

3

(14)

The complexity of the traditional GWO algorithm is O (N× d× Tmax). The complexity
of the GWO-EPD algorithm is O (2N × d × Tmax), which is mainly between GWO and
EPD. the complexity of the NGWO algorithm is O (3N × d × Tmax). The complexity of
the MGWO algorithm is O (N × d × Tmax), which shows the number of subgroups in the
operation process. The improved GWO algorithm of this paper uses chaotic tent mapping,
which is based on the nonlinear convergence factor of the normal distribution, and the
complexity of this algorithm is O (N2 × d × Tmax). The algorithm complexity shows that
the algorithm complexity of the improved GWO is higher, but the comparison of the above
benchmark test function shows that the solution accuracy and convergence speed are better
than the other algorithms.

The improved GWO algorithm pseudo-code is shown in Algorithm 1.

Algorithm 1: Pseudo Code of Improved GWO

1 Initialize (Xi (i = 1, 2 . . . , n)) t, Tmax, a, A, C
2 Initialize Tent map x0
3 Calculate the fitness of each wolf
4 Xa = best wolf. Xβ = second wolf. Xw = third wolf.
5 While t < Tmax
6 Sort fitness of each wolf
7 Update chaotic number, a
8 for each search agent
9 Update position current wolf using
10 end
11 Calculate fitness of each wolf
12 Update Xa, Xβ, Xw
13 t = t + 1
14 end

4. Result

In order to verify the performance of the improved algorithm, 15 international standard
benchmark test functions are selected for simulation experiments. For the fairness of the
results, the relevant parameters of all compared algorithms are configured in Tables 1 and 2
shows the benchmark test functions. GWO, MGWO [10], NGWO [11], GWO-fuzzy [12],
GWO-EPD [13], and the improved GWO in this paper were selected for comparison of
simulation experiments. Simulation experiments were conducted using Matlab on a Lenovo
R7000P, containing a 2020H, 2.90 GHz processor. Table 3 shows the comparison of the mean
and standard deviation of the results of 30 independent runs of the algorithms, and the best
results of the compared algorithms are in bold in the Tables 3 and 4. Furthermore, Figure 5
shows the convergence curves of the six algorithms on some of the tested functions.
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Table 1. Parameter Configuration.

Parameter Symbols Meaning Take Value

N Population size 30
Tmax Maximum Iteration 500

a1 Initial value of convergence factor 2
a2 Final value of convergence factor 0

Table 2. Benchmark functions.

Function Dim Scope Solution

f1 =
n

∑
i=1

x2
i 30 [−100, 100] 0

f2 =
n

∑
i=1

xi +
n

∏
i=1
|xi| 30 [−10, 10] 0

f3 =
n

∑
i=1

(
i

∑
j−1

xj)

2

30 [−100, 100] 0

f4 = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

f5 = ∑n−1

i=1
[100(xi+1 − x2

i )
2
+ (xi − 1)2] 30 [−30, 30] 0

f6 = ∑d
i=1

(bxi + 0.5c)2
30 [−100, 100] 0

f7 =
n

∑
i=1

ix4
i + random[0, 1) 30 [−1.28, 1.28] 0

f8 =
n

∑
i=1

[x2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0

f9 = −20 exp(−0.2
√

1
n ∑n

i=1
x2

i )

− exp( 1
n ∑n

i=1
cos(2πxi) + 20 + e) 30 [−32, 32] 0

f10 = 1
4000

n

∑
i=1

x2
i −∏d

i=1
cos( xi√

i
) + 1] 30 [−600, 600] 0

f11 = π
n {10 sin(πy1) +

D−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2}

+
D
∑

i=1
u(xi, 5, 100, 4)

30 [−50, 50] 0.398

f12 = 0.1{10 sin(3πx1) +
D−1
∑

i=1
(xi − 1)2[1 + 10 sin2(3πxi+1)] + (xn − 1)2}

+
D
∑

i=1
u(xi, 5, 100, 4)

30 [−50, 50] 3

f13 =
D

∑
i=1

∣∣xi sin(xi) + 0.1xi
∣∣ 30 [−10, 10] 0

f14 = 0.5 + ((sin(
D

∑
i=1

x2
i ))

2

− 0.5) · (1 + 0.001(
D

∑
i=1

x2
i ))

−2

30 [−100, 100] 0

f15 = (
D

∑
i=1

[x2
i + 2x2

i+1 − 0.3 cos(3πxi)− 0.4 cos(4πxi+1) + 0.7] 30 [−15, 15] 0
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Table 3. Test functions results.

Function Algorithm Average Value Standard Deviation

f1

GWO 4.389 × 10−27 1.056 × 10−27

Improved GWO 0 0

MGWO 5.996 × 10−199 0

NGWO 9.939 × 10−49 4.754 × 10−48

GWO-fuzzy 9.887 × 10−40 4.977 × 10−40

GWO-EPD 1.501 × 10−31 2.289 × 10−30

f2

GWO 2.167 × 10−5 3.958 × 10−6

Improved GWO 0 0

MGWO 1.617 × 10−102 2.154 × 10−102

NGWO 2.133 × 10−26 1.143 × 10−26

GWO-fuzzy 1.572 × 10−24 1.374 × 10−23

GWO-EPD 1.893 × 10−19 2.358 × 10−20

f3

GWO 1.115 × 10−7 3.463 × 10−5

Improved GWO 0 0

MGWO 6.982 × 10−166 0

NGWO 1.015 × 10−33 3.789 × 10−31

GWO-fuzzy 5.981 × 10−8 3.753 × 10−7

GWO-EPD 4.505 × 10−8 2.456 × 10−6

f4

GWO 8.423 × 10−7 4.583 × 10−7

Improved GWO 0 0

MGWO 5.368 × 10−90 9.664 × 10−89

NGWO 4.414 × 10−20 1.104 × 10−19

GWO-fuzzy 4.995 × 10−9 8.259 × 10−7

GWO-EPD 3.395 × 10−7 7.652 × 10−6

f5

GWO 2.706 × 101 6.824 × 10−1

Improved GWO 2.867 × 101 2.611 × 10−2

MGWO 2.761 × 101 3.917 × 10−1

NGWO 2.719 × 101 5.836 × 10−1

GWO-fuzzy 2.855 × 101 8.518 × 10−1

GWO-EPD 2.818 × 101 8.075 × 10−1

f6

GWO 1.013 2.816 × 10−1

Improved GWO 6.533 × 10−1 2.860 × 10−1

MGWO 5.261 6.381 × 10−1

NGWO 1.829 3.763 × 10−1

GWO-fuzzy 2.324 5.052 × 10−1

GWO-EPD 1.238 4.725 × 10−1
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Table 3. Cont.

Function Algorithm Average Value Standard Deviation

f7

GWO 1.154 × 10−3 1.226 × 10−3

Improved GWO 2.961 × 10−7 2.373 × 10−7

MGWO 1.914 × 10−4 1.369 × 10−4

NGWO 1.347 × 10−3 2.747 × 10−4

GWO-fuzzy 1.744 × 10−3 1.047 × 10−3

GWO-EPD 1.646 × 10−3 1.031 × 10−3

f8

GWO 6.934 × 10−12 4.701

Improved GWO 0 0

MGWO 0 0

NGWO 5.684 × 10−14 2.017 × 10−1

GWO-fuzzy 6.130 × 10−1 1.657 × 10−1

GWO-EPD 1.715 × 10−13 3.852

f9

GWO 1.103 × 10−13 1.633 × 10−14

Improved GWO 8.811 × 10−16 1.164 × 10−16

MGWO 4.440 × 10−15 6.486 × 10−15

NGWO 2.930 × 10−14 2.420 × 10−15

GWO-fuzzy 2.930 × 10−14 3.923 × 10−15

GWO-EPD 4.352 × 10−14 6.4963 × 10−15

f10

GWO 7.558 × 10−3 1.412 × 10−2

Improved GWO 0 0

MGWO 0 0

NGWO 0 0

GWO-fuzzy 7.2159 × 10−4 3.0047 × 10−3

GWO-EPD 5.6751 × 10−3 5.7892 × 10−3

f11

GWO 3.8124 × 10−1 6.7824 × 10−2

Improved GWO 2.1331 × 10−3 6.8945 × 10−3

MGWO 5.3122 × 10−1 3.1121 × 10−2

NGWO 1.1021 × 101 3.0031

GWO-fuzzy 1.3811 8.3221

GWO-EPD 1.2254 × 10−2 4.2214 × 10−1

f12

GWO 7.3712 4.1077 × 10−1

Improved GWO 1.2922 × 10−2 7.6012 × 10−2

MGWO 8.3211 3.2454 × 10−1

NGWO 1.6722 × 101 3.1207

GWO-fuzzy 6.1545 × 10−1 4.5512

GWO-EPD 8.21475 × 102 8.1542 × 102
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Table 3. Cont.

Function Algorithm Average Value Standard Deviation

f13

GWO 4.5214 × 10−3 2.5784 × 10−3

Improved GWO 2.4457 × 10−6 6.3641 × 10−6

MGWO 7.7541 × 10−5 8.2231 × 10−4

NGWO 2.1441 × 101 8.1601

GWO-fuzzy 1.2215 × 101 2.2232 × 101

GWO-EPD 1.2014 × 10−2 1.2424 × 101

f14

GWO 1.4125 × 10−2 2.3622 × 10−3

Improved GWO 3.1337 × 10−3 1.1184 × 10−3

MGWO 4.3221 × 10−3 1.4752 × 10−3

NGWO 4.8842 × 10−1 2.4821 × 10−3

GWO-fuzzy 1.3315 × 10−2 2.4774 × 10−1

GWO-EPD 3.9454 × 10−1 1.7424 × 10−1

f15

GWO 1.2547 × 10−10 7.2242 × 10−11

Improved GWO 2.4467 × 10−13 1.0871 × 10−14

MGWO 7.2101 × 10−4 7.9945 × 10−5

NGWO 1.5547 × 101 9.0141

GWO-fuzzy 2.4875 × 10−13 1.0401 × 101

GWO-EPD 7.2154 × 102 9.4012 × 101

Table 4. Test functions results.

Function Algorithm Average Value Standard Deviation

f1

Improved GWO 0 0

PSO 3.125 × 10−2 2.716 × 10−2

SSA 1.891 × 10−257 0

MA 1.711 × 10−43 4.254 × 10−43

f2

Improved GWO 0 0

PSO 1.416 × 10−1 3.581−1

SSA 1.435 × 10−93 8.487 × 10−93

MA 2.255 × 102 8.183 × 102

f3

Improved GWO 0 0

PSO 7.225 × 10−2 5.331 × 10−1

SSA 2.821 × 10−180 0

MA 7.318 × 10−5 5149 × 10−4

f4

Improved GWO 0 0

PSO 9.225 × 10−2 1.153 × 10−1

SSA 1.354 × 10−93 6.81 × 10−93

MA 8.154 × 10−7 6.518 × 10−5
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Table 4. Cont.

Function Algorithm Average Value Standard Deviation

f5

Improved GWO 2.867 × 101 2.611 × 10−2

PSO 1.314 × 102 1.795 × 102

SSA 2.327 × 10−3 2.189 × 10−3

MA 4.501 × 10−1 5.587 × 10−1

f6

Improved GWO 6.533 2.801 × 10−1

PSO 8.792 × 105 9.782 × 105

SSA 1.047 × 101 4.772

MA 3.128 × 101 8.791 × 102

f7

Improved GWO 2.961 × 10−7 2.373 × 10−7

PSO 2.561 × 10−1 7.844 × 10−1

SSA 1.144 × 10−4 3.581 × 10−3

MA 3.254 × 10−2 4.358 × 10−1

f8

Improved GWO 0 0

PSO 3.015 2.641

SSA 8.161 × 10−185 1.254 × 10−186

MA 2.271 × 10−45 5.174 × 10−44

f9

Improved GWO 8.881 × 10−16 1.604 × 10−16

PSO 3.712 × 10−2 2.816 × 10−1

SSA 8.881 × 10−16 0

MA 4.213 × 10−10 1.576 × 10−9

f10

Improved GWO 0 0

PSO 5.001 × 10−3 2.655 × 10−1

SSA 4.114 × 10−210 3.241 × 10−211

MA 5.260 × 10−140 0

f11

Improved GWO 2.1331 × 10−3 6.8945 × 10−3

PSO 1.8741 4.4411

SSA 1.496 × 10−2 2.106 × 10−2

MA 2.714 × 10−1 1.954 × 10−17

f12

Improved GWO 1.292 × 10−2 7.6012 × 10−2

PSO 8.4152 8.3372

SSA 7.346 × 10−1 1.355 × 10−2

MA 8.214 1.245 × 10−2

f13

Improved GWO 2.4457 × 10−6 6.3641 × 10−6

PSO 1.052 × 102 1.2362

SSA 1.232 × 10−3 1.571 × 10−4

MA 3.247 × 10−3 5.014 × 10−3

f14

Improved GWO 3.1337 × 10−3 1.1184 × 10−3

PSO 3.958 × 10−1 1.541 × 10−2

SSA 9.001 × 10−2 0

MA 3.971 × 10−1 6.051 × 10−1
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Table 4. Cont.

Function Algorithm Average Value Standard Deviation

f15

Improved GWO 2.4467 × 10−13 1.0871 × 10−14

PSO 7.1522 9.142 × 101

SSA 4.701 × 10−7 3.147 × 10−8

MA 5.445 × 10−2 4.401 × 10−2
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fairness of the results, the relevant parameters of all compared algorithms are
configured in Tables 1 and 2 shows the benchmark test functions. GWO, MGWO [10],
NGWO [11], GWO-fuzzy [12], GWO-EPD [13], and the improved GWO in this paper
were selected for comparison of simulation experiments. Simulation experiments were
conducted using Matlab on a Lenovo R7000P, containing a 2020H, 2.90 GHz processor.
Table 3 shows the comparison of the mean and standard deviation of the results of 30
independent runs of the algorithms, and the best results of the compared algorithms are
in bold in the Table3 and Table4. Furthermore, Figure 5 shows the convergence curves of
the six algorithms on some of the tested functions.
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Figure 5. Convergence curves of algorithms on test function. (a) f1 function; (b) f2 function; (c) f3
function; (d) f4 function; (e) f5 function; (f) f7 function; (g) f8 function; (h) f9 function; (i) f10
function; (j) f11 function; (k) f12 function; (l) f14 function.

Table 1. Parameter Configuration.

Parameter Symbols Meaning Take Value
N Population size 30

Tmax Maximum Iteration 500
a1 Initial value of convergence factor 2
a2 Final value of convergence factor 0

Figure 5. Convergence curves of algorithms on test function. (a) f1 function; (b) f2 function; (c) f3
function; (d) f4 function; (e) f5 function; (f) f7 function; (g) f8 function; (h) f9 function; (i) f10 function;
(j) f11 function; (k) f12 function; (l) f14 function.

4.1. Comparison with GWO and Other Improvement GWO
4.1.1. Convergence Accuracy Analysis

From the traditional GWO principle, it is known that the exploration ability of the
algorithm depends mainly on the convergence factor, and in practical experiments, it can
be observed that the convergence factor decays not linearly from 2 to 0 but with the number
of iterations [10]. MGWO convergence factor uses a nonlinear exponential convergence
factor, which will work well compared to the linear convergence factor, which illustrates
the effectiveness of a nonlinear convergence factor.

The results in Table 3 show that the improved GWO algorithm outperforms several
other improved algorithms tested under 15 sets of test functions because the initial set
number of iterations is satisfied. The single-peak test function is mainly used to test the
development capability of the algorithm. For f1, f2, f3, and f4, it can be found the theoretical
optimal value of 0 in terms of the stability of the search and the accuracy of the search. In
solving f7, although the effect is not very obvious after using the improved algorithm, the
mean and standard deviation are still better than the other algorithms and for functions f5
and f6, although the improved GWO does not show the superiority of the algorithm, the
difference with the other algorithms is not much. The improved GWO outperforms the
other algorithms in terms of superiority-seeking ability and stability for the single-peak test
function. The multi-peak test function is mainly used to test the exploration performance
of the algorithm. The test results show that the improved GWO algorithm can reach the
theoretical optimal value on f8 and f10, and f9. Although it cannot reach the optimal value,
it is still better than other improved algorithms.

In summary, the improved GWO algorithm improves the performance of the 15 bench-
mark functions, and it is stable and robust, especially in f1–f4, f8, and f10. The improved
algorithm can improve by several orders of magnitude, which is very obvious. The conver-
gence speed of the improved GWO algorithm is also better than other improved algorithms,
and during the experiment, it was found that the improved algorithm has excellent real-
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time performance and can effectively avoid the trap of local optimum in real-time, which
proves the feasibility and superiority of the improved GWO algorithm compared with
other improved algorithms.

4.1.2. Convergence Speed Analysis

In order to visualize the convergence speed and search accuracy of the improved
algorithm, the convergence curves of the analyzed 15 benchmark functions (d = 30) are
shown in Figure 5. Figure 5a–e show the single-peak convergence curve, and (f–l) show the
multi-peak convergence curve. Compared with several other algorithms, the convergence
speed and search accuracy of the improved GWO algorithm is improved. The convergence
curve verifies that the improved GWO algorithm solves single-peak and multi-peak func-
tions. The improved algorithm in this paper can basically converge to the optimal value
under the test of the benchmark function, and the last result is closer to the optimal value
without acquired the best quality.

Moreover, it is found in the simulation process that the algorithm has good stability
and a high success rate. The improved algorithm proposed in this paper has fewer iterations
and higher optimal search accuracy than MGWO and NGWO, although they all can reach
the optimal solution. Chaotic tent mapping, nonlinear convergence factor, and dynamic
weighting strategy are combined in improved GWO, so that the problem of the algorithm
falling into local optimum has been effectively solved and the convergence speed has been
greatly improved. In summary, the improved algorithm can acquire a higher mean and
standard deviation, which shows that the improved algorithm has higher solution accuracy
and stability in most of the tested functions.

4.2. Comparison with Other Intelligent Optimization Algorithms

To further demonstrate the effectiveness of the improved algorithm, the improved
algorithm is compared with the classical optimization algorithms Particle Swarm Optimiza-
tion (PSO) algorithm, Sparrow Search Algorithm (SSA), and Mayfly Algorithm (MA) on
15 benchmark functions. The comparison results are shown in Table 4.

As can be seen from the results in Table 4, under the condition that the number of
iterations is 500, compared with the other three classical algorithms, the improved GWO
can reach the theoretical optimal value of 0 for the single-peaked benchmark functions
f(1)–f(4), f(8), and f(10). In addition, the standard deviations and mean values got on the
other benchmark functions have better performance, showing that the improved algorithm
is practical and workable. The convergence curves are not put into the text due to length
limitation. It is found that the improved algorithm has higher convergence accuracy and
faster convergence speed by comparing the convergence curves with other intelligent
algorithms.

Comparing algorithms based on mean and standard deviation values is not enough.
Wilcoxon’s nonparametric statistical test is conducted at the 5% significance level to deter-
mine whether the improved GWO provides a significant improvement compared to other
algorithms. The different algorithms on the benchmark function were employed to test the
Wilcoxon rank-sum, and P and R values were obtained as a significant level indicator. If the
p value is less than 0.05, the null hypothesis is rejected, and the two algorithms tested are
considered significantly different. Conversely, the two algorithms tested are considered not
to be significantly different. R result of ”+”, “−“, and “=“ represent, respectively, improved
GWO performance better than, worse than, and equivalent to the comparison algorithm. If
the p value is NaN, it means that the data is invalid, that is, the experimental results of the
improved algorithm are similar to those of the compared algorithm, and their performance
is similar.

This paper tests the Wilcoxon rank-sum with 30 repeated experiments on 15 benchmark
functions by the improved GWO algorithm and other algorithms. The test results are shown
in Table 5. In the most cases, the R values of the test results are “+”, except that the results
p values for SSA, MA, and improved GWO on f5 are greater than 0.05 and the R values
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are “−”, and the results p values for MGWO and Improved GWO on f8 and f10 are NaN
and the R values are “=”. This means the optimization efficiency of Improved GWO and
MGWO is similar in f8 and f10. The results show that the Improved GWO algorithm’s
performance is significantly improved compared with other algorithms in most cases.

Table 5. Wilcoxon’s rank test of Improved GWO and other algorithms on 15 benchmark functions.

Function GWO MGWO NGWO GWO-
Fuzzy GWO-EPD SSA MA PSO

f1
P 6.52 × 10−12 8.78 × 10−8 5.05 × 10−12 6.52 × 10−12 6.52 × 10−12 6.01 × 10−5 6.52 × 10−12 6.52 × 10−12

R + + + + + + + +

f2
P 2.07 × 10−11 1.40 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11

R + + + + + + + +

f3
P 3.77 × 10−10 6.52 × 10−12 6.52 × 10−12 6.52 × 10−12 6.52 × 10−12 3.77 × 10−10 6.52 × 10−12 6.52 × 10−12

R + + + + + + + +

f4
P 6.52 × 10−12 5.05 × 10−11 6.52 × 10−12 6.52 × 10−12 6.52 × 10−12 3.77 × 10−11 6.52 × 10−12 6.52 × 10−12

R + + + + + + + +

f5
P 4.60 × 10−3 1.20 × 10−5 6.01 × 10−3 1.09 × 10−2 1.68 × 10−4 2.05 × 10−2 4.23 × 10−1 1.20 × 10−6

R + + + + + - - +

f6
P 2.07 × 10−11 1.41 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11

R + + + + + + + +

f7
P 3.01 × 10−11 5.24 × 10−9 3.01 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11

R + + + + + + + +

f8
P 6.52 × 10−12 NaN 6.52 × 10−12 6.52 × 10−12 6.52 × 10−12 2.07 × 10−11 6.52 × 10−12 6.52 × 10−12

R + = + + + + + +

f9
P 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 3.77 × 10−10 2.07 × 10−11 2.07 × 10−11

R + + + + + + + +

f10
P 6.52 × 10−12 NaN NaN 6.52 × 10−12 6.52 × 10−12 2.07 × 10−11 2.07 × 10−11 6.52 × 10−12

R + = = + + + + +

f11
P 6.52 × 10−12 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 6.52 × 10−12 2.07 × 10−11 2.07 × 10−11 6.52 × 10−12

R + + + + + + + +

f12
P 6.52 × 10−12 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 6.52 × 10−12 2.07 × 10−11 2.07 × 10−11 6.52 × 10−12

R + + + + + + + +

f13
P 6.52 × 10−12 1.20e−06 6.52 × 10−12 6.52 × 10−12 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 6.52 × 10−12

R + + + + + + + +

f14
P 6.52 × 10−12 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 2.07 × 10−11 6.52 × 10−12

R + + + + + + + +

f15
P 2.07 × 10−11 6.52 × 10−12 6.52 × 10−12 2.07 × 10−11 6.52 × 10−12 6.52 × 10−12 6.52 × 10−12 6.52 × 10−12

R + + + + + + + +

4.3. Path Planning Application
4.3.1. Problem Description

In path planning with obstacle avoidance for mobile robot, the mathematical model of
robot environment should be established firstly replacing the virtual environment. After
setting the start and end point of the mobile robot in the environment model, an intelligent
algorithm is used to find a continuous curve that satisfies a specific performance index,
which can avoid the obstacles in the environment.

The randomly generated individuals based on the intelligent optimization algorithm
do not conform to the search space. It is necessary to establish a suitable fitness function
consider various constraints, and then eliminate the individuals in the population who do
not meet the constraints to acquire the better individuals. The mobile robot has to consider
various factors in its actual operation. Therefore, it has the following main constraints.
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1. Maximum cornering angle constraint

When using the algorithm for mobile robot path planning, it is necessary to consider
the maximum steering angle constraint, which affects robot safety. This node is discarded if
the specific rotation angle is outside the maximum performance range that the robot should
withstand. If the rotation angle can satisfy the robot’s maneuverability, judge the other
constraints. The maximum turning angle is specified as 60◦ in the simulation experiment.

2. Threat area constraints

Mobile robot path planning makes the robot reach its destination in the shortest
distance while bypassing obstacles. The mathematical expression for the obstacle area can
be got. Assuming that the distance between the robot and the center of the obstacle is
dT, the damage to the robot caused by obstacle area, defined as Probability PT(dT), can be
calculated as:

PT(dT) =


0, dT > dTmax

1
dT

, dTmin ≤ dT ≤ dTmax

1, dT < dTmin

(15)

where dTmax indicates the maximum radius affected by the area, dTmin is the region where
the probability of robot collision is 1.

4.3.2. Path Planning

The main steps of applying the improved grey wolf algorithm to path planning are
as follows:

1. Establish the search space according to the actual environment, and set the starting
point and target point.

2. Initialize the parameters of grey wolf algorithm, including the number of wolves,
the maximum number of iterations, tent mapping parameters, and upper and lower
bounds for parameter values.

3. Initialize the grey wolf’s position and objective function according to the utiliza-
tion mapping.

4. Calculate each grey wolf’s fitness and select the top three grey wolves as wolf α, wolf
β, and wolf w for the fitness ranking.

5. Compare with the objective function to update the position and the objective function.
6. Update the convergence factor at each iteration.
7. Calculate the next position of other wolves according to the positions of wolf α, wolf β,

and wolf w.
8. Reach the maximum number of iterations and output the optimal path.

To verify the performance of the improved GWO algorithm, the improved GWO
algorithm applies to the path planning of mobile robot for verification analysis. The robot’s
starting point is set as (0,0), and the target point is set as (100,100). The obstacles are
generated randomly. a1 = 2, a2 = 0, the initial number of grey wolves is 30, and the
maximum number of iterations is 500. the GWO, literature [10] MGWO, literature [11]
NGWO, literature [12] GWO-fuzzy, literature [13] GWO-EPD, and the improved GWO
algorithm in this paper, are applied to path planning for comparison. Figure 6a–e shows
the obstacle avoidance paths planned by each improved GWO, and Figure 6f shows the
convergence curves of the corresponding algorithms.

As shown in Figure 6a–e, except for MGWO, other improved algorithms find poorer
and more costly paths. Although the path length of MGWO is short, the planned path is
too close to the danger area, which is not conducive to the application of mobile robots.
In addition, it can be seen from Figure 6f that the algorithm in this paper has better
convergence compared with other improved algorithms. In summary, the improved
GWO proposed in this paper can stably plan a safe path with optimal cost and satisfying
constraints.
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7. Calculate the next position of other wolves according to the positions of wolf α, wolf

β, and wolf w.
8. Reach the maximum number of iterations and output the optimal path.

To verify the performance of the improved GWO algorithm, the improved GWO
algorithm applies to the path planning of mobile robot for verification analysis. The
robot’s starting point is set as (0,0), and the target point is set as (100,100). The obstacles
are generated randomly. a1 = 2, a2 = 0, the initial number of grey wolves is 30, and the
maximum number of iterations is 500. the GWO, literature [10] MGWO, literature [11]
NGWO, literature [12] GWO-fuzzy, literature [13] GWO-EPD, and the improved GWO
algorithm in this paper, are applied to path planning for comparison. Figure 6a–e shows
the obstacle avoidance paths planned by each improved GWO, and Figure 6f shows the
convergence curves of the corresponding algorithms.

(a) (b) (c)
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Figure 6. Path planning results. (a) Improved GWO; (b) MGWO; (c) NGWO; (d) GWO-fuzzy; (e)
GWO-EPD; (f) convergence curves.

As shown in Figure 6a – e, except for MGWO, other improved algorithms find
poorer and more costly paths. Although the path length of MGWO is short, the planned
path is too close to the danger area, which is not conducive to the application of mobile
robots. In addition, it can be seen from Figure 6f that the algorithm in this paper has
better convergence compared with other improved algorithms. In summary, the
improved GWO proposed in this paper can stably plan a safe path with optimal cost and
satisfying constraints.

5. Conclusions
This paper proposes and applies an improved GWO to the path planning of mobile

robot. First, an improved chaotic tent mapping is proposed, which is applied to the
initial stage of the algorithm to increase the diversity of population initialization and
improve the global search capability. Second, a nonlinear convergence factor based on
the change curve of Gaussian distribution is used to balance the algorithm’s global
search capability and local search capability. Finally, the traditional GWO is optimized
with an improved dynamic weighting strategy. In order to test the competence of the
improved GWO,15 well-known benchmark functions having a wide range of
dimensions and varied complexities are used in this paper. The results of the proposed
improved GWO are compared to eight other algorithms. The results show that the
improved GWO has better convergence speed and solution accuracy. In addition, the
improved GWO is applied to the mobile robot path planning. The test results show that
the improved GWO significantly improves cost consumption and convergence speed
compared with other algorithms.

The improved GWO algorithm proposed in this paper is applied to mobile robots’
obstacle avoidance path planning. The situation of falling into local extremes can be
avoided and the convergence speed and stability can be improved when the algorithm is
applied to obstacle avoidance path planning of mobile robot. In the next research, we
will continue to improve the algorithm and apply the improved algorithm to more
practical mobile robots.
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5. Conclusions

This paper proposes and applies an improved GWO to the path planning of mobile
robot. First, an improved chaotic tent mapping is proposed, which is applied to the initial
stage of the algorithm to increase the diversity of population initialization and improve the
global search capability. Second, a nonlinear convergence factor based on the change curve
of Gaussian distribution is used to balance the algorithm’s global search capability and local
search capability. Finally, the traditional GWO is optimized with an improved dynamic
weighting strategy. In order to test the competence of the improved GWO, 15 well-known
benchmark functions having a wide range of dimensions and varied complexities are
used in this paper. The results of the proposed improved GWO are compared to eight
other algorithms. The results show that the improved GWO has better convergence speed
and solution accuracy. In addition, the improved GWO is applied to the mobile robot
path planning. The test results show that the improved GWO significantly improves cost
consumption and convergence speed compared with other algorithms.

The improved GWO algorithm proposed in this paper is applied to mobile robots’
obstacle avoidance path planning. The situation of falling into local extremes can be
avoided and the convergence speed and stability can be improved when the algorithm is
applied to obstacle avoidance path planning of mobile robot. In the next research, we will
continue to improve the algorithm and apply the improved algorithm to more practical
mobile robots.
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