
Improvement of protein binding sites prediction by selecting amino acid
residues’ features

Georgina Mirceva ⇑, Andrea Kulakov
Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia

a r t i c l e i n f o

Article history:
Received 17 April 2014
Received in revised form 30 August 2014
Accepted 23 November 2014
Available online 3 December 2014

Keywords:
Protein binding site
Protein function
Protein interaction
Feature selection technique (FST)
Feature transformation technique

a b s t r a c t

One of the main focuses of bioinformatics community is the study of the relationship between the struc-
ture of the protein molecules and their functions. In the literature, there are various methods that con-
sider different protein-derived information for predicting protein functions. In our research, we focus
on predicting the protein binding sites, which could be used to functionally annotate the protein struc-
tures. In this paper we consider a set of sixteen amino acid residues’ features, and by applying various
feature selection techniques we estimate their significance. Although the number of features in our case
is not high, we perform feature selection in order to improve the prediction power and time complexity of
the prediction models. The results show that by applying proper feature selection technique, the predic-
tive performance of the classification algorithms is improved, i.e., by considering the most relevant fea-
tures we induce more accurate models than if we consider the entire set of features. Furthermore, the
model complexity, as well as the training and testing times are decreased by performing feature selec-
tion. We also compare our approach with several existing methods for protein binding sites prediction.
The results demonstrate that the existing methods considered in this research are specific and applicable
to the group of proteins for which the model was developed, while our approach is more generic and can
be applied to a wider class of proteins.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Protein molecules constitute an important part of the cells in
living organism due to their involvement in various essential pro-
cesses in the cells. Each protein has particular functions in a cell.
High-throughput technologies provide vast amount of data stored
in protein databases. This data could be used to annotate proteins
whose functions are not discovered yet. Various methods could be
used for annotating protein structures in experimental manner.
However, these methods are labour intensive, expensive and
time-consuming. Subsequently, protein annotation could not be
performed at a speed comparable to that of discovery of new pro-
tein structures.

Since many research groups work on protein function predic-
tion, it was necessary to define a standard for unified representa-
tion of the knowledge about proteins’ annotations, thus Gene
Ontology (GO) (The Gene Ontology Consortium, 2008) was

introduced. GO is a controlled and structured vocabulary of the
protein annotation terms, which are divided in three groups:
molecular function, biological process and cellular component.
For each annotation an evidence code is stored, which indicates
the manner in which the annotation was discovered. In Du
Plessis et al. (2011), an analysis of the evidence codes from GO is
performed. This analysis shows that as of April 2010, 98.08% of
the annotations are computationally discovered and are not
curated, 0.7% are computationally inferred and are curated, while
only 0.61% of the annotations are experimentally discovered. From
this fact, the importance of computational methods in predicting
protein functions is understandable.

In the literature, there is a range of computational methods for
annotating protein structures. We categorize the computational
methods for annotating protein structures into six main groups.
The first group of methods inspects the homology in protein
sequences, since homologous proteins are more likely to share
common functions. Therefore, comparison of a query sequence
with the known protein sequences (Altschul et al., 1990) can be
performed in order to identify homologous proteins. Nevertheless,
some newly discovered sequences will not have a homolog among
the known proteins, thus other approaches are often required. The
second group of methods (Sigrist et al., 2010) annotates protein
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structures based on signatures (motifs) found in their sequences.
The third group of methods determines protein annotations based
on structure similarity. Protein structures have higher conserva-
tion than sequences, so structurally similar proteins are more
likely to have similar functions. There are many methods for pro-
tein structure retrieval, like the methods proposed in Holm and
Sander (1993), Shindyalov and Bourne (1998), Ye and Godzik
(2004), etc. The fourth group of methods annotates protein struc-
tures by detecting the protein binding sites (Tuncbag et al., 2009)
based on the amino acids residues’ features. A recent publication
(Lu et al., 2013) presents the most widely used features for binding
sites prediction, and reviews the latest methods for binding sites
prediction. The fifth group of methods (Panchenko et al., 2004)
annotates protein structures based on the conserved parts of the
sequences/structures that do not change throughout evolution.
Protein Interactions by Structural Matching (PRISM) method
(Keskin et al., 2008) considers both sequence and structure conser-
vation to identify the binding sites of the template structures.
Then, the binding sites of the query are determined by structural
matching with the template structures. The sixth group of methods
annotates protein structures using protein–protein interaction
networks (Sharan et al., 2007).

In our research we focus on developing methods for protein
binding site prediction. There are various methods used for this
purpose, like distance-based methods (Mihel et al., 2008; Ofran
and Rost, 2003; PRINT, 2013), methods that examine the sequence
and/or structure conservation (Aytuna et al., 2005; Capra and
Singh, 2007; Jones and Thornton, 1997), methods based on identi-
fying pockets (An et al., 2005; Hendlich et al., 1997; Laskowski,
1995), etc. Also, there are methods that combine various informa-
tion. For example, ConCavity (Capra et al., 2009) considers both
sequence conservation and 3D structure to make more accurate
predictions.

Accessible Surface Area (ASA) (Shrake and Rupley, 1973), Rela-
tive ASA (RASA), depth index (DPX) (Pintar et al., 2003), protrusion
index (CX) (Pintar et al., 2002) and hydrophobicity (Kyte and
Doolittle, 1982) are the most widely used amino acid residues’ fea-
tures. Since an amino acid residue is constituted of several atoms,
we can extract several features regarding ASA and RASA by sum-
ming the characteristics over different sets of atoms (all atoms,
backbone atoms, side-chain atoms, polar atoms or non-polar
atoms), as in Mihel et al. (2008). Also, DPX and CX of an amino acid
residue could be calculated as an average, maximum or minimum
of the DPXs or CXs of the atoms that constitute the residue (Mihel
et al., 2008).

In Mirceva and Kulakov (2012a,b), the models for protein bind-
ing sites prediction are induced by considering only total ASA,
average DPX, average CX and hydrophobicity. Besides these four
features, we can consider some additional features of the amino
acid residues, and then by using an appropriate technique we
can select the most valuable set of features. Although the number
of features is not very high, the number of samples (amino acid res-
idues) that would be used is huge, thus reducing the dimensional-
ity of the dataset is an important issue. By applying appropriate
feature selection and transformation techniques, besides decreas-
ing model’s complexity and reducing training and testing times,
also the prediction power of the models could be increased due
to elimination of the irrelevant features. Furthermore, the models
with lower complexity are more easily interpretable.

From the feature transformation techniques, we apply Principal
component analysis (PCA) (Abdi and Williams, 2010; Pearson,
1901) to transform the original features into new ones, and then
we perform reduction. The feature selection techniques (FSTs) gen-
erally can be divided as filter and wrapper techniques (Kohavi and
John, 1997). The former are not related to the model induction
method and do not optimize the final criterion, while in wrapper

techniques the induction method is used to build models using dif-
ferent subsets of features, and the optimal subset is chosen to max-
imize the final criterion. There are embedded schemes where the
induction algorithm has embedded FSTs. In this research we focus
on the filter and wrapper techniques. From the filter FSTs, in this
research we consider several techniques that independently rank
the features (Hunt et al., 1966; Kira and Rendell, 1992; Liu and
Setiono, 1995; Quinlan, 1993), and then we consider the features
with highest ranks. However, considering the top n features do
not mean that the optimal subset of n features is chosen. Namely,
the top ranked features could have high dependency with the class
attribute, but may also have high dependency between themselves
too. Therefore, we can use techniques that evaluate subsets of fea-
tures. We identify three categories of these techniques, i.e., expo-
nential, sequential and randomized. We consider the exhaustive
search, which is an exponential method. This methodology is, how-
ever, time intensive and could be used if the number of features is
not high, as in our case. In order to avoid examination of all subsets
of features, a heuristic approach (Pearl, 1984) could be used. We
use several sequential techniques that sequentially add or remove
features, but they can get stuck in a local minima. Using randomi-
zation, with genetic algorithms (Goldberg, 1989) we can escape
local minima. Another popular method is the minimal-Redun-
dancy-Maximal-Relevance (mRMR) technique (Peng et al., 2005),
which was recently used for feature selection in protein disulphide
bond prediction (Niu et al., 2013) and protein–protein interaction
prediction (Liu et al., 2013). From the filter techniques, we also
use the technique given in (Guyon et al., 2002).

In this paper, we induce models for protein binding sites predic-
tion in three steps. In the first step, we extract several features for
each amino acid residue. In the second step, a range of FSTs are
used to identify the most valuable features. Finally, in the third
step, prediction models are induced by using several classification
methods (Freund and Mason, 1999; Friedman et al., 1997; Gama,
2004; Huang et al., 2008; John and Langley, 1995; Kohavi, 1996;
Quinlan, 1993; Senge and Hüllermeier, 2011). With applying
appropriate FSTs we expect that the prediction models would be
improved. Also, we make comparison with several existing meth-
ods for protein binding site prediction that are proposed in An
et al. (2005), Aytuna et al. (2005), Capra et al. (2009), Capra and
Singh (2007), Hendlich et al. (1997), Jones and Thornton (1997),
Keskin et al. (2008), Laskowski (1995), Mihel et al. (2008), Ofran
and Rost (2003), PRINT (2013).

The rest of this paper is organized as follows. In Section 2, we
present our approach for protein binding sites prediction. Section 3
shows some results of the evaluation of our approach. Also, we
compare our approach with several existing methods for protein
binding sites prediction. Finally, in Section 4 we conclude the paper
and point out possibilities for further improvements.

2. Materials and methods

2.1. Extraction of the amino acid residues’ features

Protein chains are constructed from amino acid residues that
contain several atoms. First, we extract several features for each
atom, and then we calculate the features for each residue based
on the features of its atoms. We consider the following features:
Accessible Surface Area (ASA) (Shrake and Rupley, 1973), Relative
ASA (RASA), depth index (DPX) (Pintar et al., 2003), protrusion
index (CX) (Pintar et al., 2002) and hydrophobicity (Kyte and
Doolittle, 1982). We use the Protein Structure and Interaction Ana-
lyzer (PSAIA) software (Mihel et al., 2008) for extracting these fea-
tures of the amino acid residues.
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ASA is introduced in Lee and Richards (1971), and is calculated
using the rolling ball algorithm (Shrake and Rupley, 1973) where a
probe sphere with a predefined radius (typically 1.4 Å) is used to
estimate the surface of an atom that is accessible to the probe
sphere. For each amino acid residue we calculate its total ASA,
main-chain ASA, side-chain ASA, polar ASA and non-polar ASA,
by summing ASA over various set of atoms (Mihel et al., 2008).

Many residues are hidden in the protein interior and could not
be reached by the probe sphere. These residues could not be part of
a binding site, so we filter only the surface amino acid residues. We
consider that a given residue is at the protein surface if at least 5%
of its surface is accessible by the probe sphere (Chothia, 1976).

Different amino acids have different number of atoms, thus ASA
would be higher for some amino acids. Therefore, RASA could be
used, which is a ratio between the ASA of a residue and the stan-
dard ASA (Hubbard and Thornton, 1993) of the corresponding
amino acid. As for ASA, we extract the total RASA, main-chain
RASA, side-chain RASA, polar RASA and non-polar RASA (Mihel
et al., 2008).

DPX (Pintar et al., 2003) of an atom shows how far the atom is
from its nearby atom that is accessible to the probe sphere. The
depth index of the atoms that are accessible to the probe sphere
is zero, and is greater than zero for the other atoms.

CX is introduced in Pintar et al. (2002), and it indicates the den-
sity of the region where a given atom is located. The number of
non-hydrogen atoms Natom within a sphere of radius R = 10 Å
around the atom is calculated. The volume around the atom occu-
pied by the protein is estimated as Vint = Natom * Vatom, where Vatom

is the mean volume of an atom (20.1 Å3). The difference between
the entire volume of the sphere and the volume occupied by the
protein is denoted as Vext. Finally, the protrusion index is
calculated as Vext/Vint.

For each amino acid residue we calculate the average, minimum
and maximum of the DPXs and CXs of its atoms. Minimum DPX is
zero for all surface residues, so we discard this feature.

Hydrophobicity (Kyte and Doolittle, 1982) indicates the hydro-
phobic properties of the amino acids. Namely, hydrophobic amino
acids are more commonly found in the protein interior, and hydro-
philic amino acids are typically located near the protein surface.
We consider the hydrophobicity scale introduced by Kyte and
Doolittle (1982).

2.2. Dataset description

As a standard of truth, we use the Biomolecular Interaction Net-
work Database (BIND) (Bader et al., 2001) that holds knowledge
regarding the protein binding sites that are determined experi-
mentally. Since the number of known protein structures is huge
and there is a large redundancy among them, therefore usually
only the representative protein chains with low sequence similar-
ity are considered. The test dataset is formed by the residues of
3530 chains that have less than 10% sequence similarity between
themselves, using the criterion given in Chandonia et al. (2004).
Using the same criterion, the training dataset is formed by the res-
idues of 633 chains that are not previously used in forming the test
dataset and have less than 20% sequence similarity. Next, we filter
the surface residues as described before, and thus we obtain
115,579 residues in the training and 625,939 in the test dataset.
From the training residues, only 15,696 (around 13.58%) are part
of binding sites according to BIND (Bader et al., 2001), meaning
that the non-binding sites class is dominant. In order to prevent
inducing models that are biased toward the dominant class, we
balance the training dataset by down sampling the dataset to
27% of its original size without replacement of the samples and
by following uniform distribution of the class attribute. The test
dataset, named B3530, remains unbalanced, thus for evaluation

purposes some appropriate evaluation measure should be used.
After balancing, the features are normalized in the interval [0,1].
The test dataset B3530 is used for evaluation of our approach using
various FSTs combined with various classifiers. In Table 1 we pro-
vide summary statistics of the datasets used in this research.

We compare our approach with the methods proposed in An
et al. (2005), Aytuna et al. (2005), Capra et al. (2009), Capra and
Singh (2007), Hendlich et al. (1997), Jones and Thornton (1997),
Keskin et al. (2008), Laskowski (1995), Mihel et al. (2008), Ofran
and Rost (2003), PRINT (2013). For evaluation of the methods given
in Aytuna et al. (2005), Jones and Thornton (1997), Mihel et al.
(2008), Ofran and Rost (2003), we use the PSAIA software (Mihel
et al., 2008), while for the other methods we use the pre-calculated
predictions available at PRISM, PRINT and ConCavity websites. We
use two datasets in the comparison. B1549 test dataset is formed
by considering the chains from B3530 for which we obtained pre-
dictions by the methods given in Aytuna et al. (2005), Capra et al.
(2009), Capra and Singh (2007), Jones and Thornton (1997), Keskin
et al. (2008), Mihel et al. (2008), Ofran and Rost (2003), PRINT
(2013).

The other dataset used in the comparison includes the knowl-
edge stored in the LigASite v7.0 database (Dessailly et al., 2008),
which contains biologically relevant binding sites in proteins with
known apo-structures. This database contains both the redundant
and non-redundant (<25% sequence similarity) sets. In this
research we take into account only the chains in the non-redun-
dant set in order to consider the most representative chains that
are not homologous. The test dataset named L213 is obtained by
considering the residues of the 213 chains from the non-redundant
set for which we have predictions using all examined methods,
while the residues of the remaining 329 chains from the non-
redundant set are members of the training dataset. On this training
dataset, we perform balancing by down sampling the dataset to
20% of its original size without replacement of the samples and
by following uniform distribution of the class attribute. Also, we
perform normalization as described before. L213 test dataset is
used in the comparison with all examined methods.

2.3. Feature selection and transformation

In this paper we use several techniques for feature selection and
transformation in order to reduce the number of features. This task
is critical in our case since the number of samples is high, so reduc-
ing the dimensionality (complexity) of the problem is of high
importance. Furthermore, by selecting the most relevant features,
the predictive performances of the models could be improved,
and also the training and testing times as well as model complexity
could be decreased.

2.3.1. Feature transformation technique
In the literature, various feature transformation techniques are

provided. From this category, we use the Principal Component
Analysis (PCA) (Abdi and Williams, 2010; Pearson, 1901) in order

Table 1
Summary statistics of the datasets. For training datasets, we present the character-
istics before balancing.

Training dataset BIND LigASite

#Chains 633 329
#Samples 115,579 67,522
Binding samples 13.58% 9.72%

Test dataset B3530 B1549 L213

#Chains 3530 1549 213
#Samples 625,939 277,735 37,886
Binding samples 14.74% 16.42% 11.30%
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to reduce the number of features. PCA transforms the original cor-
related features into novel features that are not correlated, and
they correspond to the eigenvectors of the covariance matrix.
The features’ reduction is performed by considering the eigenvec-
tors with highest eigenvalues. In this way we do not apply classical
feature ranking, but we make ranking and reduction of the features
obtained with the PCA transformation. We made tests by consider-
ing eight and four eigenvectors to cover 97% and 85% of the vari-
ance of the original samples.

2.3.2. Feature selection techniques
Instead of transforming the original features into novel features

and reducing the number of features by filtering the novel features
with highest relevance, we may apply some feature selection tech-
nique (FSTs) where the selection process is performed over the ori-
ginal features. In the literature, a range of FSTs are provided, and in
this paper we take into account the techniques that are most com-
monly used. In Table A.1 given in the Appendix these techniques
are systematically categorized.

The feature selection techniques (FSTs) could be divided into fil-
ter and wrapper techniques (Kohavi and John, 1997). Wrapper
techniques consider some classification method for model induc-
tion in order to identify the most appropriate set of features by
maximizing the final objective function (ex. classification accu-
racy), while filter techniques optimize some other objective func-
tion (ex. correlation between the features and the class
attribute). Further, the filter techniques could be categorized into
techniques that rank the features independently and techniques
that evaluate subsets of features. The former category aims to find
the features that have highest dependency with the class attribute,
while the later additionally inspects the redundancy among the
features in the subset of features. Next, we give a short description
of FSTs used in this research.

2.3.2.1. Filter techniques that individually rank the features. We use
several techniques to individually rank the features by using differ-
ent measures. First, we use the Chi-Square test (Liu and Setiono,
1995) to measure the dependency between the inspected feature
and the class attribute. Chi-Square test could be used for discrete
features, so we apply discretization by using the criterion proposed
in Fayyad and Irani (1993). The discretized data is also used for the
other FSTs that require discrete attributes.

We also use the information gain (Hunt et al., 1966; Quinlan,
1993) and gain ratio (Quinlan, 1993) to rank the features. The
information gain indicates the drop of the entropy after selecting
a feature, but it favors the features with higher number of values.
Therefore, in the gain ratio, the information gain is normalized
by dividing it with the entropy of the feature.

We also use the Relief technique (Kira and Rendell, 1992),
where instance based learning is used to estimate the features’
weights (ranks). The procedure presented in Kira and Rendell
(1992) could be used for binary problems, and considers one
nearest neighbor from each class. We use the procedure given
in Kononenko (1994) that considers k-nearest neighbors from
each class, and could be used for multi-class problems. Using this
technique, the distances with the neighbors within the same class
are penalized, while the distances with the neighbors of the other
classes are favored. Additionally, these distances could be
weighed by using weights exp(�(j/r)2), where j is the rank of
the neighbor. In this research we use r = 2. We consider 10 near-
est neighbors from each class, and we apply feature selection
with and without weighting.

2.3.2.2. Filter techniques that evaluate subsets of features. Previous
techniques independently rank the features and aim to maximize
the relevance of the features, but do not inspect their redundancy.

Other filter techniques evaluate subsets of features by using some
measure. In the techniques described below, the Pearson’s correla-
tion coefficient (PCC) (Hall, 1999) is used to evaluate the subsets of
features. Since the class attribute is nominal, a separate binary
attribute is formed for each value of the class attribute, and the
correlation is calculated by averaging the correlations between
the inspected feature and these binary attributes.

We identify three categories of filter techniques that evaluate
subsets of features, i.e., exponential, sequential and randomized.
We use the exhaustive search, where all subsets of features are
examined. This search belongs to the first category because the
number of subsets increases exponentially as the number of fea-
tures increases.

To avoid brute-force examination of all subsets, a heuristic
search (Pearl, 1984) could be used. Therefore, we use the greedy
stepwise approach that belongs to the sequential techniques
because it adds or removes the features sequentially. This search
could be performed in a forward or backward direction. In a for-
ward selection, the initial subset is initialized to an empty set.
The superset that provides the highest increase in PCC is chosen
as a current optimal set. This procedure is recursively repeated
until some termination criterion is satisfied. In this research,
the procedure stops when the set contains all features, and the
features are ranked according to the order of inclusion. The
backward elimination goes in a reverse direction, where the ini-
tial set contains all the features and sequential elimination is
performed by removing the most irrelevant features. We also
use the best-first search that allows adding or removing a fea-
ture in each step by constraining the intensity of backtracking.
We restrict the backtracking by terminating when the number
of consecutive non-improving sets becomes five, and we start
with an empty set of features. By using these approaches, we
can avoid evaluation of all subsets of features, but we could
get stuck in a local minima. This could be escaped by using ran-
domization techniques.

From the category of randomization techniques, we use a
genetic algorithm (GA) (Goldberg, 1989), which considers a gener-
ation with several solutions (subsets of features in this case), and
evolve them to the optimal solutions. A new generation of solu-
tions is formed by combining the solutions from the previous gen-
eration (by making a crossover), where the solutions with higher
fitness values (PCC in this case) have higher probabilities to be con-
sidered for making a new generation. In GA, mutations may also
occur, which means that the features could be added or removed
randomly, thus escaping local minima. We consider two probabil-
ities of crossover, i.e., 0.6 and 1, and for both values the same sub-
sets of features are selected.

It has been observed in recent literature that the minimum-
Redundancy-Maximum-Relevance (mRMR) (Peng et al., 2005)
technique is being increasingly used for feature selection. The
mRMR technique is based on mutual information instead of corre-
lation. The method maximizes an objective function U(D,R) in
order to maximize the relevance D and to minimize the redun-
dancy R in the same time. In Ding and Peng (2005), two schemes
are provided, i.e., Mutual Information Difference (MID) and Mutual
Information Quotient (MIQ). In MID, the objective function that is
maximized isU(D,R) = D � R, while in MIQ the objective function is
U(D,R) = D/R. In this research we use both schemes. Since mRMR is
applicable for nominal features, therefore we discretize the fea-
tures in ten intervals with equal widths.

We also use the technique used in Guyon et al. (2002), where a
recursive backward elimination of the features is performed. For
each inspected subset of features, a prediction model is induced
by using the SVM classifier. Then, the ranks of the features are cal-
culated based on the weights obtained by the SVMmodels induced
for each subset of features.
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2.3.2.3. Wrapper techniques. Wrapper techniques (Kohavi and John,
1997) consider some model induction method to find the optimal
subset of features by optimizing the final objective function. In this
research, a forward selection of the features is performed in order
to find the optimal subset of features. We use the following classi-
fiers for model induction: C4.5 Tree (Quinlan, 1993), Alternating
Decision Tree (ADTree) (Freund and Mason, 1999), Naïve Bayes
(John and Langley, 1995), Naïve Bayes Tree (NBTree) (Kohavi,
1996), Bayesian Network (BayesNet) (Friedman et al., 1997) and
K-Nearest Neighbours (KNN) (Aha et al., 1991). We apply repeated
2-fold cross validation over the training data to evaluate the signif-
icance of a given subset of features.

2.3.3. Software and experimental setup
For mRMR we use the implementation provided at http://peng-

lab.janelia.org/proj/mRMR/ (Accessed March 12, 2013), while for
the other FSTs we use the implementation provided in the Weka
software (Hall et al., 2009). We use the default settings, except if
it is otherwise stated, and we want to note that the test samples
are not used for feature selection.

2.4. Induction of the prediction models

2.4.1. Classical classification methods
Next, we induce models for protein binding sites prediction. For

this purpose we consider several classical (crisp) classification
methods, i.e., C4.5 Tree (Quinlan, 1993), Alternating Decision Tree
(ADTree) (Freund and Mason, 1999), Functional Trees (FTree)
(Gama, 2004), Naïve Bayes (John and Langley, 1995), Naïve Bayes
Tree (NBTree) (Kohavi, 1996) and Bayesian Network (BayesNet)
(Friedman et al., 1997).

2.4.2. Fuzzy classification methods
However, the classical classification methods are sensitive to

small changes in the data (the features of the amino acid residues
in our case) that may arise during evolution. To overcome this,
besides the classical classification algorithms, we also consider
two existing fuzzy-based classifiers, i.e., the bottom-up (Huang
et al., 2008) and top-down (Senge and Hüllermeier, 2011) methods
for inducing Fuzzy Pattern Trees (FPTs). In Mirceva and Kulakov
(2012a,b) and Naumoski et al. (2012), these methods are used for
protein binding sites prediction, and discovering the diatoms’ indi-
cating preferences in water ecosystems. We feel that there is a
need to explain these models, as they are relatively new and less
known than the classical methods. First, we describe the bottom-
up approach (Huang et al., 2008), and then we point out the differ-
ences with the top-down approach (Senge and Hüllermeier, 2011).

2.4.2.1. Bottom-up fuzzy pattern trees. First, the dataset is fuzzified
by using some fuzzy membership function (FMF). In this research
we use the triangular, trapezoidal and Gaussian FMFs. With fuzzifi-
cation, each feature is labeled with a predefined number of fuzzy
terms. For induction of the fuzzy models we use sets of four fea-
tures and we set the number of fuzzy terms per feature to 5, thus
we have 20 different fuzzy terms. For each fuzzy term a separate
tree, named primitive tree, is induced thus obtaining 20 primitive
trees (trees at the lowest level). These primitive trees could be used
as models, but they are too simple and cannot provide accurate
predictions. Therefore, these primitive trees are aggregated in
order to provide more accurate model. For that purpose, first, by
using the Root-Mean Squared Error (RMSE) we calculate the simi-
larity between the membership values of a given fuzzy term and
the inspected class. Then, the primitive tree with highest similarity
is aggregated with the other primitive trees by using fuzzy aggre-
gation operators, thus several candidate trees are obtained. From
these trees, the tree with the highest similarity is identified and

it is further aggregated with the remaining primitive trees. This
procedure is repeated until the tree’s depth becomes 5. In the pro-
cess for aggregating trees we consider the AND, OR, MAX and MIN
fuzzy aggregation operators. In this way, a separate FPT is induced
for each class (two classes in our case). During testing, the test
sample is compared with the two FPTs, and it is classified in the
class that corresponds to the tree for which highest similarity is
obtained. In Naumoski et al. (2012), the procedure for inducing
bottom-up FPTs is described in details.

2.4.2.2. Top-down fuzzy pattern trees. In the top-down FPTs (Senge
and Hüllermeier, 2011), two major changes are introduced in order
to enhance the bottom-up FPTs (Huang et al., 2008). First, the
direction of the model induction is inverted, and second, the stop
criterion is adjusted according to the problem’s complexity. With
the second improvement the model induction stops when the
increase of the similarity in two consecutive levels is lower than
25%, thus the complexity of the model is adapted according to
the difficulty of the learning problem. Further, the top-down FPT
method considers various FMFs and applies the most appropriate
one.

2.4.3. Software and experimental setup
For the classical classification methods we use their implemen-

tations provided in the Weka software (Hall et al., 2009), while for
the fuzzy classification methods (Huang et al., 2008; Senge and
Hüllermeier, 2011) we use the implementations provided by their
authors. In the model induction, we use the default settings for the
parameters, and we want to mention that the test samples are not
used for tuning the models’ parameters.

3. Results and discussion

The test datasets are not balanced, so we must use an evalua-
tion measure that is suitable for unbalanced datasets. We use the
Area under the ROC curve (AUC-ROC) measure, which attains val-
ues in the interval [0,1]. Higher AUC-ROC corresponds to better
prediction power. Also, we use the Sensitivity (True positive rate)
and Specificity (True negative rate) evaluation measures in order
to get better insight about the prediction power of the models.

In the first analyses, we use the balanced BIND training dataset
for model induction, and B3530 test dataset for validation of the
models. First, we compare the models obtained using all features
and the models obtained using total ASA, average DPX, average
CX and hydrophobicity. The results of this analysis provided in
Table 2 show that generally when the entire set of features is con-
sidered, the prediction power of the model is decreased (except for
ADTree and BayesNet). This proves that considering more features
does not mean increasing the prediction power. Also, the training
and testing times, as well as model’s complexity increase as the
number of features increases. For example, the first C4.5 tree
(using all features) is induced in 54 s and has 3015 nodes, while
the second C4.5 tree is induced in 11 s and has 243 nodes. The test-
ing for all test samples using these C4.5 trees lasts 13 and 5 s
respectively.

We applied the feature selection and transformation techniques
explained above. Table A.2 given in the Appendix provides details
regarding the selected features with each technique. Total ASA,
non-polar ASA, total RASA, the three variants of CX and hydropho-
bicity are the features selected by most of the techniques. In
Table A.3 given in the Appendix we provide details about the time
required for each technique. Feature selection lasts longer when
Relief technique is applied, which is expected since each sample
is compared with all other samples in order to find its nearest
neighbors. The selection using SVM lasts longer because for each
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inspected subset, a SVMmodel is induced. The wrapper techniques
take significantly more time than the others, since for each exam-
ined subset of features separate models are induced.

We made simulations by filtering the top 4, 8 and 10 features,
and the results indicate that the additional features do not always
improve the predictions. Therefore, in the next analyses, for the
techniques that rank the features we consider only the top 4 fea-
tures. Using C4.5, the most accurate model is obtained using the
MID scheme of mRMR. Also the sets of features identified by some
wrapper techniques, and the set of features that is used in previous
papers are appropriate in combination with C4.5. Using InfoGain
and GainRatio for estimating features’ significance, we do not
obtain the best C4.5 trees, even though C4.5 uses gain ratio to
select the best feature in each node. This is a result of the feature
selection where we rank the features and find the most optimal
feature that should be examined in the root node of the tree. The
top ranked features have high gain ratio at the root node, but later
in lower nodes they could turn to be irrelevant since they may have
high correlation with the features that are examined in the upper
nodes toward the root of the tree. Using the NB classifier, lower
AUC-ROC is obtained. The highest AUC-ROC using NB is achieved
on the sets of features obtained by PCA, since NB presumes fea-
tures’ independency and PCA transforms the original correlated
features into new non-correlated features. NBTree classifier

achieves highest AUC-ROC using the sets of features identified by
Wrapper_KNN, Relief unweighted and Wrapper_NBTree. ADTree
classifier induced models with lower prediction power. We can
mention that for the other classifiers using wrapper FSTs, the worst
model is obtained using Wrapper_ADTree. However, using ADTree
classifier, Wrapper_ADTree shows better selection performances
than most of the other wrappers. FTree models generally show best
prediction performances. Using the FTree classifier and considering
the top 4 features identified by the MID scheme of mRMR, the
highest AUC-ROC is obtained. Also, FTree obtained better results
on the set of features selected by the exhaustive search, best-first
search, genetic algorithm and some wrappers. Regarding BayesNet
classifier, best results are obtained by using the features selected
by the corresponding wrapper (Wrapper_BayesNet). Generally,
the top-down FPT method induces more accurate models than
the bottom-up approach. However, with the top-down approach
the best results are obtained by using the set of features used in
previous papers. Namely, none of the FSTs found a better set of 4
features appropriate for this method. Regarding the bottom-up
approach, by using FSTs more optimal sets of features are identi-
fied than the set of four features that was used previously. Regard-
ing mRMR, MID proved as a better scheme than MIQ. Unweighted
Relief obtained better results than weighted Relief. Regarding
wrapper FSTs, if we use the model induction method in the feature

Table 2
AUC-ROC obtained using various classifiers and different sets of features. For the feature selection techniques that rank the features, we consider the top 4 features. The bolded
values are the highest values for AUC-ROC achieved by each classifier. NA denotes that we were not able to obtain the result due to memory complexity.

Set of features C4.5 NB NBTree ADTree FTree BayesNet

All features 0.564 0.565 0.576 0.562 0.582 0.579
tASA, avgDPX, avgCX, hydrophobicity 0.587 0.567 0.586 0.546 0.589 0.576
PCA 0.577 0.574 0.570 0.551 0.581 0.572
ChiSquared 0.568 0.565 0.572 0.560 0.576 0.575
InfoGain 0.568 0.565 0.572 0.560 0.576 0.575
GainRatio 0.564 0.560 0.566 0.552 0.578 0.572
Relief unweighted 0.582 0.554 0.589 0.546 0.584 0.588
Relief weighted 0.561 0.552 0.568 0.552 0.566 0.568
Exhaustive/Best-first/Genetic 0.583 0.567 0.583 0.562 0.589 0.587
Forward selection 0.577 0.567 0.571 0.552 0.578 0.579
Backward elimination 0.577 0.567 0.571 0.552 0.578 0.579
mRMR (MID) 0.590 0.555 0.586 0.546 0.591 0.586
mRMR (MIQ) 0.566 0.558 0.568 0.541 0.569 0.563
SVM 0.583 0.567 0.570 0.553 0.585 0.580
Wrapper_C4.5 0.583 0.565 0.578 0.546 0.585 0.588
Wrapper_ADTree 0.569 0.542 0.567 0.560 0.571 0.562
Wrapper_NB 0.568 0.565 0.570 0.561 0.573 0.573
Wrapper_NBTree 0.585 0.547 0.589 0.546 0.590 0.587
Wrapper_BayesNet 0.587 0.565 0.577 0.562 0.589 0.588
Wrapper_KNN 0.586 0.548 0.589 0.546 0.589 0.587

Set of features Bottom-up FPT Top-down FPT

Triang. Trapez. Gauss.

All features NA NA NA NA
tASA, avgDPX, avgCX, hydrophobicity 0.541 0.563 0.541 0.586
PCA 0.555 0.531 0.545 0.572
ChiSquared 0.569 0.564 0.567 0.578
InfoGain 0.569 0.564 0.567 0.578
GainRatio 0.561 0.563 0.543 0.569
Relief unweighted 0.541 0.535 0.541 0.568
Relief weighted 0.547 0.530 0.548 0.568
Exhaustive/Best-first/Genetic NA NA NA NA
Forward selection 0.567 0.564 0.568 0.575
Backward elimination 0.567 0.564 0.568 0.575
mRMR (MID) 0.554 0.549 0.556 0.560
mRMR (MIQ) 0.555 0.559 0.555 0.547
SVM 0.565 0.564 0.566 0.579
Wrapper_C4.5 0.541 0.562 0.542 0.569
Wrapper_ADTree 0.536 0.561 0.554 0.558
Wrapper_NB 0.557 0.562 0.558 0.564
Wrapper_NBTree 0.541 0.531 0.541 0.576
Wrapper_BayesNet 0.545 0.564 0.570 0.585
Wrapper_KNN 0.541 0.533 0.541 0.570
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selection, more powerful models are induced. The highest AUC-
ROC of 0.591 is obtained using FTree classifier and the top 4 fea-
tures selected by the MID scheme of mRMR. The second best model
is obtained by the C4.5 classifier using the same set of features. In
almost all simulations, higher precision is achieved using a subset
of features instead of using the entire set of features. Generally, by
using FSTs we enhanced the classifiers.

Tables A.4 and A.5 given in the Appendix present the times
required for training and testing by using various classifiers and
different sets of features. These tests are made on a machine with
Intel Core 2 Duo CPU on 2.1 GHz and 4 GB RAM. It can be seen that
the induction of ADTree, top-down FPT and NBTree models takes
longer than the induction of the other models. On the other side,
the testing time is longer when FTrees and bottom-up FPTs are
used.

In order to get a clearer picture regarding the overall ranks of
the classifiers and FSTs, we performed overall ranking using the
Friedman and Quade tests (García et al., 2010). Since for the FPT
based methods we induced models by using sets of 4 features,
therefore only these sets are considered in the ranking. The results
of the ranking are shown in Figs. 1 and 2. Lower value for the rank
indicates better overall ranking. It can be seen that the set of 4 fea-
tures identified by Wrapper_BayesNet has the best rank, while the
set selected by the Relief weighted technique has the worst rank.
Regarding classifiers, FTree has the best prediction power, while
the bottom-up FPT with trapezoidal FMF is the worst classifier.

We also made tests by using different number of features in
order to investigate the benefits of using feature selection tech-
niques. In this analysis, we consider the Wrapper_BayesNet and
FST based on the SVM classifier, which are the best FSTs according
to the results shown on Fig. 1, while for the model induction we
use the FTree and BayesNet classifiers that attained best ranks

according to Fig. 2. We induced models by using the highly ranked
features, and different tests were made by considering various
number of features. In this analysis we use the B1549 test dataset
for evaluating the models. Figs. A.1 and A.2 show the ratio of the
training/testing time by using various number of features and the
training/testing time by using all (16) features, while Fig. A.3 pre-
sents the values for AUC-ROC of the models obtained by using dif-
ferent number of features. These tests are made on a machine with
8 processors on 2.27 GHz and 8 GB RAM. The results show that by
using the FTree and BayesNet classifiers the training and testing
times linearly increase with the inclusion of additional features.
Regarding the time required for testing the models, by using the
FTree classifier the increase of the time required for testing the
query samples significantly increases with the increase of the
number of features. On the other side, the results for AUC-ROC
show that with the rise of the number of features up to 4 or 6, there
is an increase of the predictive performance of the models, while
by using more than 6 features, generally lower values for AUC-
ROC are obtained. From this, we can conclude that the optimal
number of features could be between 4 and 6. The analysis showed
that by applying proper feature selection technique before generat-
ing the prediction model, we can improve the model and time
complexity (training and testing times), as well as the predictive
performances (AUC-ROC) of the models as a result of considering
the most relevant features.

In order to get better insight into the predictive performances of
the models, we also analyzed the Sensitivity and Specificity of the
models obtained by using various FSTs and model induction meth-
ods. This analysis is performed over B1549 test dataset by using
the 4 features with highest ranks. The results of this analysis,
which are presented on Fig. 3, show that by using the NBTree
and BayesNet classifiers higher Sensitivity is obtained in predicting
the protein binding sites as a result of the lower number of false
negatives. This means that with these classifiers, higher fraction
of the residues that are part of binding regions are correctly
detected. For example, by using the NBTree classifier and the set
of 4 features selected by the Forward selection technique more
than 74% of the residues that are part of binding region are cor-
rectly identified. On the other side, with this model the Specificity
is around 40.5%, which means that 40.5% of the residues that are
not part of binding site are correctly identified, as a result of the
higher number of false positives. By using the C4.5 and FTree clas-
sifiers higher Specificity is obtained, which means that with these
methods the number of false positives is smaller. The model gener-
ated by using the FTree classifier and the set of features selected by
the MID scheme of mRMR has Sensitivity of 49.3% and Specificity

Fig.1. The ranks of the sets of four features obtained by using the Friedman and
Quade tests. Lower value indicates better ranking.

Fig.2. The ranks of the classifiers obtained by using the Friedman and Quade tests.
Lower value indicates better ranking.
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of 69.7%. Since we are interested in predicting the protein binding
sites, the best option is to use a model that attain higher Sensitivity
in order to find the candidate residues that form binding regions,
and then to verify these candidates by using some other more
sophisticated methods.

Next, we compare our approach with several existing methods
for protein binding sites prediction. We consider distance-based
(Mihel et al., 2008; Ofran and Rost, 2003; PRINT, 2013) and conser-
vation based methods (Aytuna et al., 2005; Capra and Singh, 2007;
Jones and Thornton, 1997), as well as pocket finding methods (An
et al., 2005; Hendlich et al., 1997; Laskowski, 1995). Also, we make
tests by using the ConCavity method (Capra et al., 2009) that com-
bines some pocket finding algorithm with the Jensen-Shannon
divergence (JSD) method for estimating sequence conservation
(Capra and Singh, 2007). Additionally, we consider the PRISM
method (Keskin et al., 2008) that identifies the binding sites of a
given query by structural matching with the template structures
whose binding sites are determined based on sequence and struc-
ture conservation (Aytuna et al., 2005). Regarding our approach,
we consider the FSTs and classification methods that are better
ranked in the analysis performed above. In Table 3 we present

the results for AUC-ROC, Sensitivity and Specificity obtained on
B1549 and L213 test datasets.

Our approach shows better performances than the JSD sequence
conservation-based method (Capra and Singh, 2007). The results
show that the examined existing methods behave differently on
various datasets. The existing distance-based and conservation-
based methods, except JSD, achieved high Sensitivity and high
Specificity for predicting the binding sites stored in the BIND data-
base, and low Sensitivity and high Specificity on the LigASite data-
base. On the other side, the methods that are based on pocket
finding obtained high Sensitivity and high Specificity on the LigA-
Site database and very low Specificity on the BIND database. This
fact shows that the former methods accurately predict the binding
sites from the BIND database, while the latter methods make better
predictions of the binding sites in the LigASite database. This is
because these methods are concentrated on a specific group of
interactions, and thus are appropriate for one group of proteins,
but not in general. On the other side, our approach attained com-
parable results on all datasets and thus proved as very stable.
Our approach is general, since we use training dataset from various
proteins without focusing on specific interactions.

Fig.3. The results obtained using various classifiers and different sets of features: (a) AUC-ROC, (b) Sensitivity and (c) Specificity.
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Our approach could attain better prediction power if it is used
for building models for specific group of proteins and interactions.
In this way, our approach is self-adaptable, since in the induction
of the model for particular group of proteins/interactions, the FST
will filter the most significant features that are important for that
specific group. On the other side, the examined existing methods
could not be adapted for inducing separate models that are
adjusted for various proteins. In order to prove this, we made mod-
els for predicting the binding sites of the protein chains that belong
to the fold TIM beta/alpha-barrel (51,350) in the SCOP hierarchy,
which is the fold with highest number of chains in L213 test data-
set. For this purpose we use 2.03 version of the SCOP database
(Murzin et al., 1995). The test dataset is formed by considering
the 3752 residues of the 17 protein chains from L213 dataset that
belong to the inspected fold (51,350), while the training dataset is
generated from the 2934 residues of the remaining 14 protein
chains from the non-redundant LigASite set that belong to the
same fold. The training dataset is balanced by down sampling
the set to 20% of its original size without replacement of the sam-
ples and by following uniform distribution of the class attribute.
After balancing, the features are normalized in the interval [0,1].
The predictive performances of the best model are: AUC-
ROC = 0.716, Sensitivity = 61.80% and Specificity = 81.41%. From
this, it is evident that if the proposed approach is used on a more
specific group of proteins, then the predictive power improves.
Moreover, by the usage of FST, the most relevant features are iden-
tified for the inspected group of proteins.

Finally, we made an analysis of the predictions for the protein
chains from SCOP fold TIM beta/alpha-barrel (51,350) whose func-
tions are not discovered yet according to the Gene Ontology anno-
tations from 10 July 2014. The results presented in Tables A.6 and
A.7 in the Appendix show that for these protein chains (1OF8 chain
A and 1OF8 chain B) there are fewer false negatives and false pos-
itives than by using the existing methods. From these results we

can conclude that the residues that are incorrectly classified as
negatives with our approach are also misclassified with the exist-
ing methods. In future, by analyzing the parts of the protein struc-
ture where false negatives occur, the disadvantages of the methods
can be identified in order to improve them. Also, these predictions
potentially could be used for determination of the functions of
these protein chains.

4. Conclusion

In our previous work, a set of four features of the amino acid
residues was considered for predicting the protein binding sites.
However, computational selection of the most relevant features
was not performed. In order to consider the most significant fea-
tures, in this paper we applied various feature selection and trans-
formation techniques before the model induction. Generally the
techniques that evaluate subsets of features appeared to be a bet-
ter choice, since they consider both the relevance and the redun-
dancy of the features. The wrapper techniques showed better
performances when the corresponding induction method is con-
sidered. The results showed that the predictive power and time
complexity are improved when an appropriate FST is used to select
the optimal subset of features. By using the Friedman and Quade
tests, we also performed ranking of the FSTs and classification
methods in order to get better picture about their overall predic-
tion power. The results show that Wrapper_BayesNet selects the
most optimal subset of features, while the FTrees classifier
achieves best prediction power.

Additionally, we compared our approach with several existing
methods for protein binding sites prediction. The results show that
the examined existing methods behave in different manner on dif-
ferent sets of proteins, while our approach is stable. This means
that the existing methods are suitable for making predictions for

Table 3
The results for AUC-ROC, Sensitivity and Specificity obtained using various methods. NA denotes that we do not have predictions on this dataset.
Type 3DM denotes 3D matching; D denotes distance-based; C denotes conservation-based and P denotes pocket finding.

Method Type Reference

Our approach This
PRISM 3DM Keskin et al. (2008)
Atom nucleus distance D Ofran and Rost (2003)
PIADA D Mihel et al. (2008)
PRINT D PRINT (2013)
ASA change C Jones and Thornton (1997)
Van der Waals distance C Aytuna et al. (2005)
JSD C Capra and Singh (2007)
LigSite P Hendlich et al. (1997)
PocketFinder P An et al. (2005)
Surfnet P Laskowski (1995)
ConCavity LigSite C + P Capra et al. (2009)
ConCavity PocketFinder C + P Capra et al. (2009)
ConCavity Surfnet C + P Capra et al. (2009)

Test dataset B1549 L213

Method AUC-ROC Sensitivity Specificity AUC-ROC Sensitivity Specificity

Our approach 0.595 0.546 0.645 0.619 0.457 0.782
PRISM 0.787 0.878 0.695 0.538 0.372 0.705
Atom nucleus distance 0.833 0.845 0.821 0.530 0.295 0.765
PIADA 0.832 0.848 0.816 0.531 0.300 0.763
PRINT 0.775 0.926 0.623 0.548 0.476 0.619
ASA change 0.820 0.864 0.776 0.543 0.353 0.732
Van der Waals distance 0.840 0.822 0.859 0.525 0.256 0.795
JSD 0.537 0.496 0.578 0.608 0.679 0.538
LigSite NA NA NA 0.744 0.664 0.824
PocketFinder NA NA NA 0.773 0.796 0.751
Surfnet NA NA NA 0.741 0.731 0.751
ConCavity LigSite 0.587 0.657 0.518 0.800 0.781 0.820
ConCavity PocketFinder NA NA NA 0.809 0.771 0.847
ConCavity Surfnet NA NA NA 0.791 0.676 0.907
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a given group of proteins, but are not able to make general deci-
sions. Furthermore, the examined existing methods are not adapt-
able, meaning that they can be used only for particular set of
proteins. Our models are trained using various proteins, but if
the models are focused on a specific group of proteins, then the
prediction power will be much better. In order to prove this, we
generated a model for predicting the binding sites of the protein
chains from the SCOP fold TIM beta/alpha-barrel (51,350) and
the results showed that our approach attains significantly better
results if it is applied on a specific group of proteins. Our approach
provide self-adaptability since by using FST the most relevant fea-
tures for the particular group of proteins are automatically chosen.
Additionally, our approach could be used to build a general predic-
tion model that is a cascade of separate sub-models, where each
sub-model will self-adapt for the corresponding types of proteins.

We identified several directions for further improvements. We
plan to include additional amino acid residues’ features and to
apply additional FSTs. Regarding classifiers, we would continue
searching for other classification methods that may provide more
powerful models. Also, we will try to build a general cascade pre-
diction model, which is a cascade of sub-models that are self-
adapted to cover specific groups of proteins.
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