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Abstract: Existing techniques for distilling situation awareness currently focus on information har-
vested from either IoT sensors or social media. While the benefits of fusing information from these
two distinct information spaces for achieving enhanced situation awareness are well understood,
existing techniques and related systems for fusing the IoT sensors and social media information
spaces are currently embryonic. Key challenges in intersecting, combining, and fusing these in-
formation spaces to distil high-value situation awareness include devising situation models and
related techniques for filtering, integrating, and fusing sparse and heterogeneous IoT sensor data
and social media postings to provide a richer and more accurate situation awareness. This paper
proposes novel, semantically based techniques fusing social media and IoT sensor information spaces
and a comprehensive, fully implemented system that utilizes these to provide enhanced situation
awareness. More specifically, this paper proposes the design of semantic-based situation models for
fusing sensor and social media information spaces and presents techniques for finding similarities
across these information spaces and fusing social media posting and IoT sensor data to generate an
enhanced situation awareness. Furthermore, the paper presents the design and implementation of a
complete system that uses the proposed models and techniques and uses that in an experimental
evaluation that illustrates improvements in situation awareness from fusing the IoT sensor and social
media information spaces.

Keywords: situation awareness; IoT; social media; situation modelling; information fusion

1. Introduction

We are living in a world of billions of Internet of Things (IoT) sensors and Social
Media Networks (SSNs) [1,2] that are constantly providing us with an enormous amount
of information that is critical for situation awareness of the physical world. Widely used
IoT and SSNs technologies allow machines (e.g., sensors, vehicles, and industrial machines)
and people to create digital information (which we refer to as IoT sensors and Social Media
information spaces, respectively) from observations of the physical word and communicate
that via the Internet. More specifically, IoT sensors are machines that automatically monitor
the physical world, while human or social sensors are people that report their observations
of situations and thoughts via postings on social media such as Twitter [3–11], Facebook [11],
Reddit [12], Weibo [13–15], and TripAdvisor [16]. Today IoT and social media data represent
a significant (if not the dominant) portion of the volume of Internet data traffic and offer a
great opportunity to increase the scope and accuracy of situation awareness that is needed
to understand and respond to virtually any situation.

Situation Awareness is a concept that was initially used in military services and
situation awareness, the perception of elements in the environment within a volume of time
and space, the comprehension of their meaning, and the projection of their status in the
near future [1,2,17,18]. While perception is being aware of the elements such as the sensor
measurements and social media respect to the decision maker’s goals. These elements
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when put together help the decision maker form a holistic picture of the environment. In
this paper we aim to improve the comprehension by the mapping, translation, and fusion
of high value information from sensors and/or social media.

Traditional situation awareness solutions consider information spaces from either IoT
sensors or social sensors, and the full potential of combining these information spaces
is still far from being fully realized [6–8,10,13–15,19–22]. This is due to the lack of any
solution that will provide an efficient intersection of high value information from the
combined information space. In this paper we contribute to the development of a novel
approach for combining the social media and IoT sensor information spaces for providing
improved situation awareness. This is accomplished by devising and using situation
models for describing situations of interest, and techniques that utilize these models to
fuse related data in these information spaces to provide more comprehensive and accurate
situation awareness information. To illustrate the improved situation awareness from the
combined information spaces, the paper uses examples from wind gust-related situations.
We developed a situation model for describing wind gust-related situations in both IoT
sensor and social information spaces. To assess situation awareness improvement, we
designed and implemented a novel system for intersecting sensor and social information
spaces. This system is highly scalable, utilizes distributed cloud computing services and
performs near-real time data processing across all information spaces. This paper includes
the following novel contributions:

• A situation model that captures weather-related situations that involve both IoT
sensors and social media information;

• Techniques for mapping and fusing social media postings and IoT sensor data obser-
vations to the situation model;

• The design and implementation of a complete system that performs the above;
• An experimental evaluation that shows the benefits of intersecting high value infor-

mation from IoT sensors and social media information spaces for improving situa-
tion awareness.

The rest of this paper is organized as follows: Section 2 presents the related work in
situation awareness not using a situation model, situation awareness focused in the IoT
sensor information space, situation awareness in the social media information space, and
related work in the combined information space. Section 3 presents a scenario illustrating
the benefits of intersecting sensor and social media data to improve situation awareness for
wind gust-related situations. Section 4 presents the semantic situation modelling. Section 5
discusses the mapping of sensor data to a semantic situation model. Section 6 discusses
the mapping of social media data to a semantic situation model. Section 7 discusses
combining and intersecting social media data and sensor data into a semantic situation
model for improved situation awareness. Section 8 discusses the evaluation of intersecting
the information spaces of sensors data and social media postings. Section 9 concludes the
paper and describes the potential future research directions.

2. Related Work

In the following sections we present related work from the following perspectives:
situation awareness not using a situation model for this (Section 2.1), situation awareness
focused in the IoT sensor information space (Section 2.2), situation awareness in the social
media information space (Section 2.3), and situation awareness in the combined information
space (Section 2.4).

2.1. Situation Awareness Not Using Situation Modelling

To explain the related work, we need to first discuss what is the contribution of
the situation model for improving situation awareness to the following: (a) describing
situations and (b) intersecting information from combined information spaces using the
concepts from the situation model. For that we consider wind gust-related situations in the



Sensors 2022, 22, 7823 3 of 24

state of Victoria as an application described in Section 3 to explain this and also to present a
high-level overview of the proposed approach.

A significant relationship has been observed between the frequency of the tweets to
that of the corresponding situations [10]. However, using the frequency of selected social
media postings as a feature translation parameter might not reflect the actual situation. For
example, in a situation awareness of the most recent rainfalls in the state of Victoria in June
2021, social media postings such as (1) “Recent heavy rains resulted in back-flow from Lake
Victoria, damaging homes in the area” and (2) “Victoria has been hit particularly hard in the last
18 months. Fire, plague, flood” might not reflect the actual situation as the actual discussion
might be referring to another location or a situation in the past as the first social media
posting is referring to the Lake Victoria in Africa. Moreover, with frequency-based feature
translation, the frequency of social media content depends on the social media adoption
(active users) in the affected area. Moreover, social media activity is generally associated
with the geographical and demographical distribution of users; the social and spatial
heterogeneity in the usage of social media services might bring some biases for the analysis
of the actual situation [13]. Moreover, situations in the real world have a more complex
structure which includes relations between entities, the spatio-temporal aspects, and often
requires additional semantic interpretation to fully understand the situation. A situation
model models these aspects when describing situations and supports the extraction of high
value information that can be used for a complete situation awareness.

2.2. Situation Awareness in Sensor Information Spaces

In this section we discuss the current state of the art in the use of IoT sensor infor-
mation spaces for situation awareness. Situations can be further classified as simple and
complex. Simple situations involve only space, time, or a single basic concept or basic
data type (e.g., a keyword in social media, a value of a simple data type such as temper-
ature). Complex situations need to be modelled to be understandable, i.e., they can be
described using a model involving features from IoT sensors and social sensors. In the
IoT sensor information space, various techniques have been used for situation awareness.
Techniques such as deep learning have been applied to achieve situation awareness in
various applications such as cloud-assisted IoT for industrial control systems [23] and
Smart Health [24]. The authors of [23] proposed two deep learning-based adaptive threat
detection models. The first model uses a disjoint training and testing data to build a deep
belief network (DBN) and a corresponding Artificial Neural Network (ANN). DBN models
do not require additional processing in feature reduction and unsupervised clustering
before being trained for supervised learning. The second model further trains the DBN on
unlabeled data to provide additional knowledge on changes in malicious attack patterns.
Convolutional neural networks (CNN) [24] have been applied to fuse information from
stereoscopic cameras and infrared sensors to identify ecologically valid obstacles when
using Electronic Travel Aids. A detection layer maps convolutions to a fixed feature vector,
and a fully connected network takes the fixed feature vector as the input and outputs a
class label and bounding box coordinates. Objects, i.e., features of interest were identified
based on the class labels or as general obstacles. Feature upsampling was applied to boost
the detection of small objects without significantly increasing time and complexity.

Several ontologies have been used for situation awareness using IoT sensors. SSN
(created by W3C) is a generic ontology mainly related to a sensor and its observations. It is
an ontology developed by the Semantic Sensor Network Incubator group for describing
sensors, the procedures involved, their features of interest, the sample strategies, observed
properties, and actuators. SOSA —Sensor observation, Sample, Actuator—developed
by the first joint working group of the Open Geospatial Consortium (OGC), provides a
formal lightweight general-purpose specification for modelling entity interactions. SOSA,
while providing a lightweight core for SSN [25], defines common classes and properties
for safe data exchange and also acts as a replacement for SSN’s Stimulus Sensor (SSO)
core. SOSA [26] provides an event-centric perspective and is centered around observations,
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sampling, actuations, and observation procedures. The Smart Appliances REFerence
(SAREF) [27] ontology evolved from the needs of smart home solutions such as smart ovens
and refrigerators.

Situation models have been reused, adapted, or modelled in many ways in the lit-
erature using ontologies to effectively describe the situations. Su et al. [28] modelled
every observation as an RDF statement. RDF is a conceptual graph-based data model
commonly used to represent arbitrary structures, where a graph consists of statements with
(subject, predicate, object) structure. This structure can be interpreted as: “object o stands
in relationship p with subject s” [28]. Serialization formats for RDF include RDF/XML,
RDFa, N Quads, Notation 3 (N3) N-Triples, Turtle, JSON for Linked Data (JSON-LD),
and Entity Notation (EN), etc. [28]. RDF Schema (RDFS) provides a vocabulary to de-
scribe application-specific classes and properties whereas OWL provides a more complex
vocabulary which can be helpful for modelling complex ontologies [28]. Web Ontology Lan-
guage (OWL) [28–31] based on the W3C web standard is preferred over the more verbose
RDFS/XML because of its expressiveness and reasoning ability [31].

Most of the existing works model features of interest as classes [29,31] and their
respective features as subclasses while leveraging [29,31] the properties to describe the
internal relationship between classes. The situation model of Hussein et al. [29] included
classes and subclasses in them SIoT ontology (domain-specific ontology for smart spaces) to
model features from the physical world, i.e., location, objects, etc., as well as features related
to the users and their profiles (including their preferences). In their model, properties are
leveraged to model detailed aspects about features such as hasTemperature, hasLatitude, and
hasHumiditylevel which may be used to capture the values of temperature, latitude, and
humidity level, respectively. Their model aimed at representing physical things in addition
to social knowledge about users and smart services.

A microservice-based situation model was used to understand situations in cross-
domain IoT applications by modelling features as virtual objects and composite virtual
objects [30]. The virtual objects virtualize and provide information about real-world
objects. Another situation model included processing natural language to detect home
appliances based on an ontology that describes home appliances and identifies the action
to be executed by determining the command from the natural language. The observational
model in home appliances ontology [32] describes, among other things, the states, sensors,
actions, alerts, and services that a home appliance provides and also uses these descriptions
to recognize and classify entities. This model also classifies the instruction provided in
the natural language to be an executional command or just a query of the state of the
appliance. However, the regular pattern matching rules were extended to include concepts
from the home appliance ontology which were then used to identify the home appliance
from the natural language query. However, this approach makes it difficult to identify
instructions when the users’ instructions do not contain words (keywords) describing
the home appliance or the action but contain references to them. The situation model
of a network security situation described features of interest as classes, the features as
subclasses, and object properties which were leveraged to describe the internal relationship
among the features of interest to reflect the network security situation.

2.3. Situation Awareness Using the Social Information Space

In this section we discuss the techniques used for situation awareness in social media
information spaces. In the literature, social sensors are commonly referred to as people post-
ing their observations on social media such as Twitter, Facebook, Weibo, etc. Information
spaces constructed using social sensors have used geolocated Twitter data to understand
social distancing situations. Xu et al. [33] used a twitter mobility index, a metric based
on the standard deviation of a user’s geolocated tweet as high-value information in the
information space for situation awareness.

Word frequencies, bursty words [34], and NER-based rules [9] are commonly used in
the literature for extracting high value information from social media information spaces.
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Fang et al. [13] used word frequencies to observe the temporal evolution of disaster-related
topics, assess disaster impact, and identify disaster hotspots. Word frequencies [13] were
used to analyze temporal variations during the evolution of the 2016 Wuhan rainstorm,
and identify sub-events triggered by a hurricane situation. To identify trapped situations
Rexiline et al. [9] formed a set of rules based on NER such as “person name followed by a
predefined unigram, location name followed by a preposition and then by a unigram”.

Techniques such as logistic regression, Maximum Entropy Principle [7], transfer learn-
ing [12], naïve Bayes classifiers [35], CNN-based [3,36], ANN [14], and support vector
machines [3,9] have been used to understand situations using social media information
spaces. The maximum entropy principle has been considered for density estimation and is
an effective model in the presence of a limited number of positive labels and a substantial
number of features [7]. Transfer Learning approaches have been applied to understand
stressful situations and classified stress expressions in Reddit posts into binary labels (high
stress and low stress) [12]. A semantically enhanced wide and deep Convolutional Neural
Network (Sem-CNN) model has been used to automatically detect (identity) and classify cri-
sis information. Korolov et al. [37] used logistic regression to establish a correlation between
mobilization-related social media messaging and protest occurrences. Khalifa et al. [38]
used the DBSCAN algorithm to identify tweet clusters and identify outliers using outlier
detection techniques.

In the presence of class imbalance problems which are commonly associated with
social media data, the Naïve Bayes classifier is not suitable for classification [35]. CNN
using Fasttext for word embeddings was observed to be the best performing model for
health classification tasks [3]. Rexiline et al. observed that a combination of rules, linguis-
tic features, and linear SVM improved the performance of text classification system [9].
Support Vector Machines (SVM) are supervised machine learning algorithms used for
classification and regression and are more suitable for text classification than other machine
learning-based algorithms because of their automatic parameter tuning property [9]. A
kernel is the core of a learning algorithm and works based on a similarity function.

2.4. Situation Awareness in Combined Information Spaces

In this section we discuss the techniques used for situation awareness in combined
information spaces, i.e., using both IoT sensors and social sensor information spaces for
situation awareness, henceforth referred to as combined information spaces. Traditional
situation awareness systems consider information spaces constructed either using IoT
or social sensors features for situation awareness. However, more recently, combined
information spaces have been constructed and used for situation awareness for several
reasons discussed in Section 4. There are many situations such as flood transportation, smog,
rainfall, etc., in which data from IoT sensors cannot be fully exploited [28,39] as data from
rain gauges, radar, or meteorological satellites are not always available for various reasons,
such as the failure of rain gauges, lack of maintenance leading to incorrect data, etc., and
hence a complete awareness of situations cannot be achieved. Researchers [12–14,28–30]
have identified the need for supplementing IoT sensor information spaces with social
sensor information spaces for a better awareness of situations. However, most of the
existing work [6,8,10,13,14,19,20] involving combined information spaces has translated
social sensor features using frequency-based transformation techniques to homogenize
the features so that it they are suitable for fusion. For algorithms based on machine
learning, each data item must be accurately represented as a feature vector. Frequency-
based transformation involves using the frequency of social media postings as a metric
to achieve homogenous features. Such a transformation assumes that the intensity of
the situation is directly proportional to the (activity) number of relevant social media
postings [10]. For example, Fang et al. [13], Restrepo-Estrada et al. [10], Chen et al. [14],
and Wu et al. [6] translated features based on social media activity.

Combined information spaces have recently been used for various reasons such as
identifying the utility of IoT sensor features [13], augmenting the low temporal resolution
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of satellite imagery [21], and for awareness of other situations such as floods. In [10], the
combined information space included features from social sensors estimated by extracting
and converting Twitter messages into rainfall values based on the frequency of geo-located
tweets containing flood-related keywords obtained for cumulative periods (20, 30, 40 min).
Cervone et al. [20] used high-value information from social media to complement IoT
sensor information spaces containing high-value information from remote sensing imagery
for awareness on flood situations. A decision tree induction classifier helped in crafting
high-value information based on the classification of flood-related images. The authors
of [6] spatially correlated the severity of damage in a given area with the disaster-related
activity reported by social sensors. A spatial correlation of features describing economic
losses, geolocation, and social media activity was used to identify damage severity. Within
the combined information spaces, Wang et al. [7] used high value information from social
sensors to overcome noisy and spatially biased label issues in the IoT sensor information
space. The geotagged information was extracted from tweets and was used as labels to
complement high-value information describing satellite imagery data for flood extent
estimation using spatial density estimation techniques.

3. Scenario Illustrating the Benefits of Intersecting Sensor and Social Media Data to
Improve Situation Awareness for Wind Gust-Related Situations

A sudden increase in wind speed even for a few seconds is commonly referred to as a
wind gust which can be dangerous and destructive. The Beaufort wind scale developed by
Sir Francis Beaufort in 1805 is widely used by the Bureau of Meteorology (BOM)in Australia
to measure wind speed based on its impact on land and sea [1]. Winds commonly feature in
the Bureau of Meteorology’s weather forecast and warnings in Australia and these forecasts
are made up of wind speed and wind directions which are measured in intervals of 10 min
and at a height of 10 m above sea level. BOM classifies wind gust-related situations as gales,
storms, or hurricanes, etc., based on the wind warning thresholds applied to wind speeds.
These situations commonly cause large branches to sway and break off trees, dislodge roofs,
and uproot trees while also causing significant structural damage to building infrastructure
and also result in a significant loss of human and animal life. In addition to wind speed,
the severity of damage is also dependent on the wind direction and duration. Significant
changes in wind duration and direction have been found to contribute to a wind gust-
related situation. For example, in September 2019, in Grand Bahama, hurricane Dorian [2]
stalled for more than 24 h with a maximum sustained wind speed of 185 kmph and caused
significant flooding and damaged numerous homes. While naturally occurring wind gust-
related situations such as gales, storms, and hurricanes can be forecast, a better awareness
of the situation can help in improving preparedness—making decisions on where to target
the rescue efforts, minimize the consequences, and reduce the impact to vulnerable areas.

Various IoT-based atmospheric sensors such as temperature, relative humidity, wind
speed, and wind direction, pressure, etc., can be used for the early forecasting of these
situations. The data from social media postings and the images and videos contained
therein, etc., can potentially be utilized to improve the awareness of these situations.
Consider the Bureau of Meteorology monitoring the state of Victoria with the following
IoT infrastructure: (1) IoT devices that include (a) weather sensors at weather stations
including temperature, relative humidity, wind speed, wind direction, pressure and (b)
satellite imagery; (2) social media postings when people post about infrastructure and
utilities, caution, and advice, affected people, help requests, relief, fundraising, etc. While
this information comes from IoT-based sensors at weather stations, satellite images can help
us identify potential vulnerable areas:, (a) a lack of sensor coverage in the region of storms
and hurricanes, etc., due to various reasons such as unavailability, satellite revisit times,
etc., further complicates the awareness of a situation as it unfolds and (b) in the event of
these situations, sensors cannot report first-hand information of the situation to help with
situation management. The supplementary information from social media can be used to
compensate for the information sparseness from sensors in improving our awareness of the
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situation and in the event of emergencies can also help in improving the monitoring and
coordinating of rescue efforts by providing first-hand information of a situation. Figure 1
illustrates the data analysis tasks to provide situation awareness in the event of a wind
gust-related situation.
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situation awareness.

Now consider a situation awareness application for identifying a potential wind gust-
related situation and improving emergency management. This application should utilize
the data from the IoT devices and perform the following tasks to provide an awareness of
the vulnerable areas, human and animal life, injuries and infrastructure, etc.: (1) utilize
a situation model that describes a wind gust-related situation; (2) based on the situation
model, perform an initial analysis of weather conditions by analyzing data from weather
sensors including temperature, relative humidity, wind speed, wind direction, pressure;
(3) identify the districts with high wind warning thresholds as described by the situation
model and provide high value information such as time, location and situation type, etc.;
(4) filter social media postings within the spatio-temporal dimensions of the selected dis-
tricts; (5) process the filtered social media postings to extract wind gust-related observations
and based on the situation model provide high value information such as people, infras-
tructure affected, location, etc.; (6) fuse the high value information from sensors and social
media to provide an improved situation awareness in terms of information on people who
need help, disruption information such as roads, water, breaks, and flooded areas etc.

4. Semantic Situation Modelling

We define a situation as the collection of all the features, their relationships, (e.g., those
that relate to ourselves, anything that we care for or are interested in), and the values of
these that are critical for situation awareness. Please note that we did not aim to devise a
comprehensive sematic situation modelling ontology from scratch, but to rather reuse and
combine concepts from existing ontologies that are currently used for model sensor or social
media information from the perspective of providing situation awareness by intersecting
sensor and social media information spaces. This is discussed further in Section 8. In situa-
tion modelling, a feature is a specific, observable, and measurable property (characteristic)
such as height, color, etc., and can be used to describe an entity such as a tree, car, person,
etc. The feature values can either be a result of an observation, estimation, or calculation,
etc., from IoT sensors or social sensors. Situations could involve only simple features, such
as only space or time, or a basic concept such as temperature. An observation relates to the
process of determining the value of a feature that can be sensed directly or indirectly from
an environment by an IoT sensor or reported by a posting from a social sensor. So, an infor-
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mation space is characterized by features and this needs to be identified, searched, selected,
or extracted from an IoT sensor or a social sensor to provide effective support for achieving
situation awareness.In this paper we propose using ontology-based situation models for
bridging the sensor and social media information spaces. We only used those classes which
are just enough to describe a situation. Ontologies have been used for describing IoT
sensors and their data and can model, e.g., what is being observed by capturing formal
descriptions of their features and relationships known. Gruber [40] defined ontologies as a
“formal explicit specification of a shared conceptualization”. By formal explicit specification
we mean the ontology must be machine-readable and understandable. Shared implies the
community consensus towards the ontology and conceptualization refers to the concepts
and properties used to represent knowledge in a specific situation. While conceptualization
represents an abstract view of the world, specification aims to provide a concrete structure
to conceptualization using a standard vocabulary and semantics. A situation model is an
ontology or a fragment of an ontology that possibly includes classes, subclasses, properties,
etc., that are necessary to provide a formal description of the features of a situation of
interest. An important characteristic of the situation model lies in its ability to describe
a situation from heterogenous sensors and capture their relationships. Unlike traditional
domain ontologies, situation models tend to be more compact and require less effort and
time to be developed. The situation model we propose in this paper extends the standard
W3C SSN ontology, and the namespaces which are listed in Table 1.

Table 1. Situations, concepts, features of interest, and ontology in the IoT sensor information space.

Author Situation Concepts IoT Sensor Information
Space Features Ontology

[28] Deducing different activities
of a car Taxicab

Observation Record ID, Data
Timestamp, Area ID,

Location (longitude and
latitude), Velocity, Driving

direction, Taxi ID

High level static OWL
Ontology

[27]

Early detection of a vehicle
collision, health issues with

drivers, and accidents
involving dangerous goods

Driver, Vehicle
Driver’s ECG, Heart Rate,
Accelerometer Position,

Speed
SAREF, LogiCO

[29]

Increase volume setting in
users’ cell phone, depict

sleeping status in an airport
lounge sleeping facility

Location, Person,
Activity

Temperature, Latitude,
Humidity Level, Longitude SIoT

[30] smart spaces Car, smart home,
workplace, hotel

Temperature, Humidity,
Occupancy VO/CVO

[32] Controlling home appliances
using natural language

State, Sensor, Action,
Alert, Service

StartAction, StopAction,
OffState, PausedState, Water
Level, Temperature, Coffee

Level

Home Appliances

[31] Network Security
Context, Attack,

Vulnerability, and
Network Flow

DestIp, DestPort, Protocol,
SourceIp, ICMPtype,

ICMPcode
Network Security

The proposed situation model represents the classes, instances, rules, and their rela-
tionships when using combined information spaces. The top classes of the situation model
are depicted in Figure 2. A detailed description of all the prefixes is presented in Table 2.
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Table 2. Ontologies that can be used to model situations in the proposed situation model when using
combined information spaces.

Prefix Ontology Description

sosa http://www.w3.org/ns/sosa/

Sensor, Observation, Sample, and Actuator (SOSA)
ontology provides a lightweight core for SSN and aims at
broadening the target audience and application areas that

can make use of Semantic Web ontologies

ssn http://www.w3.org/ns/ssn/ SSN ontology describes sensors and their observations and
does not describe time, locations, etc.

senso http://dai1.dg-001.cloud.edu.au/ontologies/SenSo Senso ontology describes social sensors and their postings

aws https://www.w3.org/2005/Incubator/ssn/ssnx/meteo/aws AWS ontology provides descriptions of various sensor
models used for measuring weather phenomena

time https://www.w3.org/2006/time#

This ontology provides a vocabulary for expressing facts
about topological (ordering) relations among instants and
intervals, together with information about durations, and
about temporal position including date-time information.

ns1 <http://www.w3.org/2003/01/geo/wgs84_pos#> An RDF/OWL vocabulary for representing spatial
information.

xsd https://www.w3.org/2001/XMLSchema# XML Schema namespace as defined by XSD

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# “RDF Schema for the RDF vocabulary terms in the RDF
Namespace” (“World Wide Web Consortium (W3C)”)

rdfs http://www.w3.org/2000/01/rdf-schema# RDF Schema is an extension of RDF vocabulary, providing
a data-modelling vocabulary for RDF data

owl http://www.w3.org/2002/07/owl#
“This ontology partially describes the built-in classes and
properties that together form the basis of the RDF/XML

syntax of OWL 2.” (“World Wide Web Consortium (W3C)”)

5. Mapping Sensor Data to a Semantic Situation Model

The “Semantic Sensor Network” (SSN) ontology is an ontology for describing sensors,
their observations, observation procedures, and features of interest, etc., the W3C Semantic
Sensor Network Incubator Group. SSN includes a self-contained core ontology called
Sensor, Observation, Sample, and Actuator (SOSA) for its elementary classes and properties
and contains a wide range of modules. Given our interest in describing the core concepts
of the weather situation using combined information spaces, we focused on the following
classes from the SSN ontology:

http://www.w3.org/ns/sosa/
http://www.w3.org/ns/ssn/
http://dai1.dg-001.cloud.edu.au/ontologies/SenSo
https://www.w3.org/2005/Incubator/ssn/ssnx/meteo/aws
https://www.w3.org/2006/time#
http://www.w3.org/2003/01/geo/wgs84_pos#
https://www.w3.org/2001/XMLSchema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#


Sensors 2022, 22, 7823 10 of 24

- sosa: Sensor to describe the sensors;
- sosa: Observation to describe the measurement context.

In addition to the class definition, we also used the main object properties associated
with these classes: sosa: observedProperty, sosa: madeObservation, sosa: observes, sosa:
hasResult, etc. These properties were used with the idea of forming a “subject–predicate–
object” triple structure. For instance, the object property madeObservation connects the
class Sensor and class Observation in “Sensor-madeObservatio-Observation”.The Ontology
for Meteorological Sensors (AWS) [41] is based on the technical literature published by the
World Meteorological Organization (WMO) (https://public.wmo.int/en) ontology which
extends the SSN ontology and provides descriptions of different models of sensors used
to measure weather phenomena. While AWS does not import any ontology, it proposes
a wide variety of sensor models in the AWS Hierarchy. Given our interest in weather
situation descriptions and with the data being sourced from the Bureau of Meteorology
sensors, we did not try to specialize the sensors and only reused the sensor models closely
related to the weather phenomena being observed. More specifically, we mostly reused the
following classes:

- aws: AtmosphericPressureSensor for pressure measurements;
- aws: HumiditySensor for humidity measurements;
- aws: TemperatureSensor for temperature measurements;
- aws: WindSensor for wind measurements.

The AWS ontology relies on domain-specific definitions sourced from the Climate
and Forecast Metadata Conventions, which includes a collection of standard names (http:
//www.met.reading.ac.uk/~jonathan/CF_metadata/14.1/#standard_names) for climatic
data variables which was published by Jonathan Gregory and aims at providing a compre-
hensive and systematic description for climatic data variables. The Climate and Forecast
features ontology is a translation of the Climate and Forecast (CF) standard names vocabu-
lary and contains classes that specialize the sosa: FeatureOfInterest class. We leveraged
this vocabulary to (a) define the weather features of interest such as temperature, pressure,
humidity, and wind, etc., and (b) define the measurable properties such as air_temperature,
air_pressure, air_relativehumidity, wind_direction, wind_speed, wind_gust for sosa: Fea-
tureOfInterest. GeoSPARQL [42] is one of the most widely used vocabularies for describing
geometries of spatial objects and it also extends one of the most common vocabularies in
WGS84 which is used for representing spatial coordinates. This ontology can be used to
define the vocabulary for representing geospatial data and to spatially link IoT sensor and
social information spaces. The point geometry from GeoSPARQL can be used to describe
the location of IoT sensors and social sensors. For describing the timestamps associated
with IoT sensor observations and social media postings, the W3C Time ontology [43] can be
used. This ontology enables the description of both time instants and intervals. The authors
of [42] reused the classes time:Interval and time:Instant from the W3C Time ontology and
the ISA Core Location vocabulary [44] to describe the experimental farm address. We used
the sosa:resultTime object property to represent the instant of time an observation is made.
The ontology for the proposed situation model described in Section 7 was created using
Protégé. This situation model contained the minimum set of classes that can describe IoT
sensors, their observations, social sensors, and their postings. The top classes and the main
object properties of IoT sensors in the proposed situation model are shown in Figure 3
and Table 3 shows the object properties, domain, range, and the description of main object
properties.

https://public.wmo.int/en
http://www.met.reading.ac.uk/~jonathan/CF_metadata/14.1/#standard_names
http://www.met.reading.ac.uk/~jonathan/CF_metadata/14.1/#standard_names
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Table 3. The object properties, domain, range, and the description of main object properties.

Object Property Domain Range Description

sosa: madeObservation sosa: Sensor sosa: Observation Relation between a Sensor and an
Observation made by the Sensor

sosa:resultTime sosa:Observation xsd:dateTime The instant of time when the Observation
activity was completed

sosa:observes sosa:Sensor sosa:ObservableProperty Relation between a Sensor and an
ObservableProperty; capable of sensing

sosa:observedProperty sosa:Observation sosa:ObservableProperty Relation linking an Observation to the
ObservableProperty that was observed.

sosa:hasSimpleResult sosa:Observation value The simple value of an Observation

6. Mapping Social Media Data to a Semantic Situation Model

To describe the social media observations, we designed a social media ontology with
the namespace senso: http://dai1.dg-001.cloud.edu.au/ontologies/senso to describe the
postings made by a social sensor using the following classes:

- senso: Posting to describe the social media posting;
- senso: Entities to specify the entities to be extracted from social media postings.

The senso: Posting class was used to describe a set of concepts such as location or
persons that are being discussed in the social media posting. These classes were intended
to serve as a source of additional situational information to what can be achieved using
IoT sensors only. Further, to the class definitions, we also defined object properties as-
sociated with these classes such as senso:isReportingOn, senso: hasPersonCount, senso:
hasmentionedLocation, senso: hasCity, senso: similarityStrength, etc. These properties
were used with the idea of forming a “subject–predicate–object” triple structure. For in-
stance, the object property hasmentionedLocation connected the class Posting and class
LocationNames in “Posting-mentionsEntities-LocationNames”, identifying a relation be-
tween a Posting and the locations that are mentioned in the posting. The hasPersonCount
connected the class Posting and a value in “Posting-hasPersonCount-value” identifying a
relation between a Posting and the value representing the number of persons mentioned
in the posting. The ontology for the proposed situation model described in Section 7 was
created with Protégé. The situation model contained classes that provide the descriptions
of social sensors and their observation via social media postings. The object properties in
an ontology describe relations between their respective domain and ranges. The top classes

http://dai1.dg-001.cloud.edu.au/ontologies/senso
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and the main object properties of social media postings in the proposed situation model
are shown in Figure 4 and Table 4 shows the main object properties, their corresponding
domain, range, and description.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 24 
 

 

- senso: Entities to specify the entities to be extracted from social media postings. 
The senso: Posting class was used to describe a set of concepts such as location or 

persons that are being discussed in the social media posting. These classes were intended 
to serve as a source of additional situational information to what can be achieved using 
IoT sensors only. Further, to the class definitions, we also defined object properties 
associated with these classes such as senso:isReportingOn, senso: hasPersonCount, senso: 
hasmentionedLocation, senso: hasCity, senso: similarityStrength, etc. These properties 
were used with the idea of forming a “subject–predicate–object” triple structure. For 
instance, the object property hasmentionedLocation connected the class Posting and class 
LocationNames in “Posting-mentionsEntities-LocationNames”, identifying a relation 
between a Posting and the locations that are mentioned in the posting. The 
hasPersonCount connected the class Posting and a value in “Posting-hasPersonCount-
value” identifying a relation between a Posting and the value representing the number of 
persons mentioned in the posting. The ontology for the proposed situation model 
described in Section 7 was created with Protégé. The situation model contained classes 
that provide the descriptions of social sensors and their observation via social media 
postings. The object properties in an ontology describe relations between their respective 
domain and ranges. The top classes and the main object properties of social media 
postings in the proposed situation model are shown in Figure 4 and Table 4 shows the 
main object properties, their corresponding domain, range, and description. 

 
Figure 4. Top situation model classes for mapping social media postings. 

Table 4. The main object properties, corresponding domain, range, and the description. 

Object Property Domain Range Description 
senso:hasmentionedLoc

ation senso:Posting senso:LocationNames relation between a Posting and the location 
names mentioned in the posting 

senso:similarityStrength senso:Posting value 

relation between a Posting and the 
observable property which contains a value 
identifying the closeness of the observable 

property that is being discussed to the social 
media posting 

senso:hasCity senso:Posting value 
relation between a Posting and the name of 

the place it is posted from 

senso: isReportingOn senso:Posting sosa:ObservableProperty 
Relation between posting that are similar 

with ObservableProperty observed by social 
sensor 

senso: hasPersonCount senso:Posting value 
relation between a Posting and person, 
which contains a value representing the 

number of persons mentioned in the posting 
 

Figure 4. Top situation model classes for mapping social media postings.

Table 4. The main object properties, corresponding domain, range, and the description.

Object Property Domain Range Description

senso:hasmentionedLocation senso:Posting senso:LocationNames relation between a Posting and the location
names mentioned in the posting

senso:similarityStrength senso:Posting value

relation between a Posting and the observable
property which contains a value identifying the
closeness of the observable property that is being

discussed to the social media posting

senso:hasCity senso:Posting value relation between a Posting and the name of the
place it is posted from

senso: isReportingOn senso:Posting sosa:ObservableProperty Relation between posting that are similar with
ObservableProperty observed by social sensor

senso: hasPersonCount senso:Posting value
relation between a Posting and person, which
contains a value representing the number of

persons mentioned in the posting

7. Combining and Intersecting Social Media Data and Sensor Data into a Semantic
Situation Model for Improved Situation Awareness

In this paper, we model the wind gust-related situation. As we noted in Section 4, we
did not aim to devise a comprehensive semantic situation modelling ontology from scratch,
but we rather reused and combined concepts from existing ontologies that have been used
to model sensor or social media information from the perspective of providing situation
awareness by intersecting sensor and social media information spaces. For example, given
our interest in describing the core concepts of the wind gust situation in the combined
information space, we focused on the following classes: from the SSN ontology we used
the classes sosa: Sensor to describe both IoT and social sensors sosa: Observation to de-
scribe the measurement context, the object properties associated with these classes: sosa:
observedProperty, sosa: madeObservation, sosa: observes, sosa: hasResult, sosa: hasFea-
tureOfInterest, etc. The senso: Posting class, object properties such as senso:isReportingOn,
senso: hasPersonCount, senso: hasmentionedLocation, senso: hasCity, senso: similarityS-
trength, etc., were reused from the social media space. In addition, we used the classes
of the aws ontology to capture wind measurements from windSensor. As in a general
ontology, the class hierarchy can be better analyzed using object and data properties. In
our ontology, object properties represented the connection between a subject and an object
via the predicate whereas the data properties represented the connection of a subject to
a form of data attribute. A detailed description of all the object properties is presented
in Tables 3 and 4. In Figure 5, the classes, object, and their data properties of a wind gust
situation model in a combined information space are shown, whereas the object properties,
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domain, range, and the description of main object properties in combined information
space are presented in Table 5.
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Table 5. The object properties, domain, range, and the description of main object properties in
combined information space.

Object Property Domain Range Description

sosa: madeObservation sosa: Sensor sosa: Observation
Relation between a IoTSensor and an Observation made

by the Sensor which is either an IoT sensor or social
sensor.

sosa:resultTime sosa:Observation xsd:dateTime
The result time is the instant of time when the

Observation activity was completed by either an IoT
sensor or social sensor.

sosa:observes sosa:Sensor sosa:ObservableProperty Relation between a Sensor (either IoT or social media)
and an ObservableProperty that it is capable of sensing.

sosa:observedProperty sosa:Observation sosa:ObservableProperty Relation linking an Observation to the
ObservableProperty that was observed.

sosa:hasSimpleResult sosa:Observation value The simple value of an Observation.

senso:hasmentionedLocation sosa: Sensor senso:LocationNames relation between a social media sensor and the location
names mentioned in the posting.

senso:similarityStrength sosa: Sensor value

Relation between a social media sensor’s posting and the
observable property which contains a value identifying
the similarity of the observable property that is being

discussed in the social media posting.

senso:hasCity sosa: Sensor value Relation between social sensor and the name of the place
the social sensor or IoT sensor is reporting from.

senso: isReportingOn sosa: Sensor sosa:ObservableProperty
Relation between social media sensor and the sosa
observable property that is being reported by social

sensor.

senso: hasPersonCount sosa: Sensor value Relation between a social media sensor and number of
persons mentioned in the social media posting.
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The real-time availability of social media data makes these data a valuable resource
for situation awareness. The volume, velocity, structureless, heterogeneity, and enormous
volumes make it challenging to process such data. Further, the volume and velocity
of social media posts tend to be extremely high during times of an event, making the
filtering of relevant situational data a complex and challenging task [36]. Moreover, filtering
relevant situational data from social media data spaces is further complicated by the short,
inconsistent nature of social media postings [16] and their high volumes make it time-
consuming to filter relevant situational data [35]. The volume of data generated by social
media varies based on the extent of emergency events as the no of affected people and
geographical area vary [8] as does the adoption of social media [45] (number of active users)
in the affected area.

While a significant amount of research has focused on retrieving huge volumes of
data that may or may not provide a good reflection of the situation being understood and
then processing the extracted information to understand situations, it is still a challenge to
identify and filter relevant situational information. Situational data from social media are
commonly filtered by querying social media data spaces using either keywords, hashtags,
or geotags [19]. The process for mapping the social media data to the ontology is discussed
in detail in Section 8.1. In this section we discuss how we designed rules that were used for
identifying and extracting relevant social media postings within the spatial boundary of
the IoT sensors. Overall, we followed the process of (a) filtering social media postings from
the social media data stream using the Twitter academic research API, (b) processing social
media data to remove noise, and (c) extracting high value information which includes
temporal and spatial information and synonyms of IoT sensor concepts (e.g., temperature—
hot) and information on the entities such as names of places (Melbourne, etc.) and persons
(Dimitrios, etc.) mentioned in the postings and their count.

8. Evaluation of Intersecting the Information Spaces of Sensor Data and Social
Media Postings
8.1. Test Bed Implementation for Evaluation

We designed and implemented a highly scalable, fault-tolerant architecture for fa-
cilitating the development of internet-scale IoT sensors and social media-based situation
awareness systems. With this highly scalable architecture, we designed various layers that
can efficiently identify, extract, store, process, and visualize data with a high volume, veloc-
ity, and variety. For data ingestion from various IoT sensors and social media platforms, we
made of use of an Apache Kafka cluster and an Apache spark cluster for data processing.
An Apache Jena-based cloud instance was used for storing the data into a highly scalable
triple store. Apache Kafka is a fault-tolerant, highly scalable, and available open-source
distributed streaming platform that can be used to store and process data streams. It pri-
marily consists of topics, producers, and consumers. Topics are logical entities where data
records are published by producers and consumers read data records from topics. We made
use of various Kafka Producer applications to ingest data from various automatic weather
stations from the Bureau of Meteorology in the state of Victoria and the geotagged social
media postings from Twitter. Twitter is one of the most popular and widely used social
media platforms. The Kafka producer application connects to the Twitter streaming API v2
via an academic endpoint and is capable of using either keywords, hashtags, geotags, or
a combination of these to filter tweets and then publishes the tweets into Kafka topics. A
detailed discussion and implementation of the cloud-based system architecture is out of
the scope of this paper. This section describes the process that we followed for extracting
IoT sensor data from various weather stations across the state of Victoria. Then we discuss
the algorithm that translates the IoT sensor data into high value information and annotates
the high value information based on the concepts in the IoT sensor (SOSA) ontology and
converts it into triples as well as storing the triples to an Apache Jena Fuseki triple store.
We also present a brief description of the Bureau of Meteorology weather stations and
their sensors.



Sensors 2022, 22, 7823 15 of 24

The Bureau of Meteorology is Australia’s national weather, climate, and water agency.
Weather data are obtained from different automatic weather stations around Australia and
the latest weather observations web pages are updated from the Bureau of Meteorology’s
real-time database. Table 6 represents an extract of various sensors from the Melbourne
(Olympic Park) weather station. The individual observations such as temperature, pressure,
humidity, wind speed, direction, and gust describe the context of the respective sensor
measurements and the properties such as sosa:observedProperty, sosa:hasFeatureOfInterest,
sosa:madeBySensor, and sosa:hasSimpleResult link the respective observations with their
corresponding observed properties, natural phenomena, sensors, and measurement values.

Table 6. Weather observations from automatic weather stations in Victoria.

Place_Name Station_Name Wind_Direction Wind_Speed Wind_Gust Time_Reported

melbourne Melbourne (Olympic Park) SSW 6 9 29 November 7:20 p.m.

ballarat redesdale ENE 11 15 23 February 2022 18:10:00

bendigo kyabram ENE 11 17 23 February 2022 18:00:00

geelong ferny creek ESE 11 15 23 February 2022 18:10:00

In this section we briefly describe the processes involved in RDF dataset generation.
The measurements produced by the automatic weather station sensors were read at every
10-min interval and stored in a Kafka topic. It is possible that the data contained noise due to
incorrect measurements. After reading the data we ensured the data were of decent quality
by identifying inconsistent values such as ‘–’ and empty values. We also transformed the
time stamp reported attached to the sensor measurements into a format suitable for time-
based calculations. We also monitored the weather sensor data between 29 November 2021
and 9 February 2022 to identify any anomalies and correlations. Figure 6 shows the results
from pearson correlation, applied to understand if there was any significant correlation
between these measurements so that the situation model could be adjusted accordingly.
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We developed an algorithm to clean and transform these measurements into an RDF
format and was implemented in an OpenStack-based cloud instance. This algorithm
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leveraged an Apache Kafka cluster to poll the sensor data across the state of Victoria for
every 10-min interval from Bureau of Meteorology web pages and stored it in Kafka topics.
A copy of these measurements was also stored in a MySQL Database. The goal of this
algorithm was to read and transform the sensor measurements for temperature, humidity,
pressure, wind direction, speed, and gust based on the concepts described in the situation
model and store them in the Apache Jena-based RDF triple store. In this section we briefly
describe the working of the algorithm involved in RDF dataset generation. The first part of
the RDF data generation involved cleaning the data from sensor observations and adding
geographic information to this data. The second part involved transforming the cleaned
data into an RDF format.

8.2. Sensor Data Cleaning

The weather data from the Bureau of Meteorology weather station is the raw form
were mostly structured. As such the data did not require comprehensive cleaning and a
sample of the raw sensor data is presented in Table 6. These data contained measurements
from temperature, humidity, pressure, and wind sensors which are located in specific
places such as Melbourne and each place has multiple weather stations that host these
sensors. The measurements produced by the sensors from the weather stations were read
at 10-min intervals between 29 November 2021 and 9 February 2022 and stored in a Kafka
topic. It is possible that the data contained noise due to incorrect measurements. After
reading the data we ensured that the data were of decent quality by identifying inconsistent
values such as ‘–’ and empty values. These values were imputed with the respective mean
values for each of the sensor observations. We also transformed the time stamp reported
attached to the sensor measurements into a standard xsd:dateTime format as specified in
the situation model. For example, the value of the timestamp reported in observations was
29 November 7:20 p.m. and it did not have a year component attached to it. We converted
this to a standard format and added the year component as 21 November 2021 19:20:00
using the datetime library in python. These data were used in the next step for adding
geographic information.

8.3. Adding Geographic Information

The observations at this point, however, did not have geographic information asso-
ciated with them when they were being reported. The Bureau of Meteorology provides
a list of all the weather stations with their precise geographic location. As presented in
Table 7, each weather station is associated with basic details such as the official station
name, a unique station ID, and geographical coordinates which help in identifying the
weather station.

Table 7. Weather station details in the state of Victoria.

Station ID Station Name Latitude Longitude

86338 Melbourne (olympic park) −37.8255 144.9816

83084 Falls creek −36.8708 147.2755

87031 Laverton −37.8565 144.7565

The next task was to map the geographic coordinates of the weather stations to cleaned
data. We converted all the station names into lower case and created an index of the station
names with their corresponding latitude and longitude values. We mapped this index
with the station names from the cleaned data created in the sensor data cleaning step. The
weather sensor data in the above-mentioned duration was also monitored to identify any
anomalies and correlations. We applied the Pearson correlation to understand if there was
any significant correlation between these measurements so that the situation model could
be adjusted accordingly.
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8.4. Sensor and Social Media Data Transformation

The transformation process, implemented in python, read the cleaned dataset, and
produced a triple. The goal was to annotate the data based on the description provided
in the situation model, and as such it was not feasible to use a generic library such as
Rdflib to fulfill this requirement. We first created a dictionary using key value pairs to
capture the descriptions of the sensors used, their location, and their units of measurement
that are described by the situation model (Table 5). An example dictionary for wind gust
description is show in Table 8.

Table 8. Dictionary for wind gust descriptions.

Sensor Location Units of Measurement

‘wind_gust’:
{‘observedProperty’: ‘wind_gust’,

‘madeBySensor’: ‘windspeed_sensor’,
‘featureOfInterest’: ‘wind’,

‘resultTime’: ‘instant’,
}

{
‘place_name’:

{‘place_name’: ‘City’,
},

‘station_name’:
{‘station_name’: ‘Place’,

},
}

‘wind_gust’:
{‘unit’:

‘http://qudt.org/1.1/vocab/unit#MeterPerSecond’,
‘unit_txt’: ‘degreeAngle’,

‘unit_symbol’: ‘m/s’, ‘cdt_type’: ‘ucum’,
}

To make it convenient to reference the ontologies during the transformation process,
we the set the prefixes for each of the ontologies being used. For example, we set the
prefix sosa for the ontology http://www.w3.org/ns/sosa/. A detailed description of all
the prefixes is presented in Table 2. We then read each row from the dataset and matched
the corresponding key value pairs in the dictionary to the values from each of the sensor.
Consider a single record from the raw data as shown in the Table 9 below.

Table 9. Sample observation from the Melbourne Olympic Park weather station.

Attribute Value

place_name melbourne

station_name melbourne (olympic park)

temperature 23.2

humidity 56

wind_direction SSW

wind_speed 6

wind_gust 9

pressure 1014.3

time_reported 29/11/2021 19:20

lat −37.8255

long 144.9816

station_id 86338

The corresponding transformed record is:
{‘unit’: ‘http://qudt.org/1.1/vocab/unit#MeterPerSecond’, ‘unit_txt’: ‘degreeAngle’,

‘unit_symbol’: ‘m/s’, ‘cdt_type’: ‘ucum’}
wind_gust
<http://www.w3.org/ns/sosa/sensor/86338> a sosa:Weather_Station ;
sosa:observedProperty <http://www.w3.org/ns/sosa/observableProperty/wind_

gust> ;
sosa:hasFeatureOfInterest <http://www.w3.org/ns/sosa/FeatureOfInterest/wind> ;

http://qudt.org/1.1/vocab/unit#MeterPerSecond
http://www.w3.org/ns/sosa/
http://qudt.org/1.1/vocab/unit#MeterPerSecond
http://www.w3.org/ns/sosa/sensor/86338
http://www.w3.org/ns/sosa/observableProperty/wind_gust
http://www.w3.org/ns/sosa/observableProperty/wind_gust
http://www.w3.org/ns/sosa/FeatureOfInterest/wind
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sosa:madeBySensor <http://www.w3.org/ns/sosa/Sensor/windspeed_sensor> ;
geo:lat “−37.8255”;
geo:long “144.9816”;
senso:hasCity “melbourne” ;
senso:hasPlace “melbourne (olympic park)” ;
sosa:resultTime “2021-11-29 19:20:00”ˆˆxsd:dateTime ;
sosa:hasSimpleResult “9 “ˆˆcdt:.
The social media data for this study were gathered by leveraging the twitter-v2 aca-

demic research API from the Twitter platform. In this paper, we considered only geotagged
tweets, and searched Twitter between the dates 29 November 2021 and 9 February 2022
to match the window of the IoT sensor observations from the Bureau of Meteorology. We
extracted the specific point coordinates (latitude and longitude) for each of the weather
stations in Victoria. We created a set of rules to search for tweets within twenty-five miles
of each of these geo-coordinates. Then we filtered tweets which were not replies or quotes,
were not retweeted and were only in the English language. We performed a basic sanitizing
of social media postings to remove noise such as removing links from the tweets, but we
left the hashtags as hashtags can still contain some information which can help us identify
the conversations in a more general way. We then made the social media posting case
insensitive to avoid the words such as ‘climate’ and ‘Climate’ being treated as different.
We further tidied up the social media posting by removing the punctuation marks, double
spacing, and Stopwords.

Consider an example social media posting. “Another couple of toasty hours on the

bike
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@ Nimmons Bridge https://t.co/K23JxdCBBU”. This posting was posted from
Newtown in Australia. Our algorithm matched this tweet to its nearest weather station
in Ballarat. This posting was found to be discussing temperature concept and one person
was mentioned in the tweet. We verified this match by investigating the place name field
returned by the tweet object. The field name for this specific posting contained a value of
Newtown. Newtown is a locality situated on Pitfield Road (Lismore—Scarsdale Road) in
Golden Plains Shire, about seventeen miles southwest of Ballarat.

Tweet country: Australia
Tweet place name: Newtown
Closest weather station: BALLARAT
Location mentioned: []
Observable property: temperature
Similarity score, 53.0
Person count: 1
<http://www.w3.org/ns/sosa/Sensor/1496441118602452997> a sosa:Sensor;
rdfs:label “Social_Sensor_from_BALLARAT”;
sosa:observes <http://www.w3.org/ns/sosa/observableProperty/temperature>;
sosa:madeObservation <http://www.w3.org/ns/sosa/Observation/temperature_

observation_from_BALLARAT>;
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senso:isReportingOn “temperature”;
senso:similarityStrength “53.0percent”;
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senso:hasmentionedLocation “[]”;
senso:hasCity “BALLARAT”.
As discussed in Algorithm 1, we developed a novel technique to estimate the similar-

ity of a social media posting to an observable property. For example, specific keywords
extracted from social media postings that were synonymous with sosa: ObservableProperty
such as Temperature which is an Observable property of an IoT sensor. This technique
makes use of natural language processing-based semantic similarity approaches to estimate
how similar a social media posting is to the observable property described in the situation
model. This estimation helped us determine the potential social media postings similar to

http://www.w3.org/ns/sosa/Sensor/windspeed_sensor
https://t.co/K23JxdCBBU
http://www.w3.org/ns/sosa/Sensor/1496441118602452997
http://www.w3.org/ns/sosa/observableProperty/temperature
http://www.w3.org/ns/sosa/Observation/temperature_observation_from_BALLARAT
http://www.w3.org/ns/sosa/Observation/temperature_observation_from_BALLARAT
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the observable property using token similarity techniques from spacy. We first normalized
the social media postings to remove all punctuation, weblinks, users such as @user infor-
mation, hashtags, emojis, etc. We then performed tokenization and computed a semantic
similarity estimate for each of the token in the social media posting and the observable
property. Any token with a score equal to 1 or less than 0.5 was filtered out to avoid any
ambiguous matches. We considered the maximum similarity score among the observable
properties for each social media posting to estimate its closeness to the observable property
based on the assumption that the higher the scalar similarity score the more similar the
posting is to the observable property.

Algorithm 1: Match social media posting with sosa:observable property

procedure GETSOSAOBSERVABLEPROPERTY(socialMediaTokens)
smTokens←nlp(socialMediaTokens)
sosaObservableProperties←temperature,humidity,wind,gust,pressure
observablePropertiesTokens← nlp(sosaObservableProperties)
tokenSimilarity← []
dictTokenSimilarity← []
for eachToken in observablePropertiesTokens do

for eachsmToken in smTokens do
if eachToken.text != eachsmToken.text and eachtoken.similarity(eachsmToken) > 0.50 then

tokenSimilarity.append(eachToken.similarity(eachsmToken))
dictTokenSimilarity[eachToken.text]=eachToken.similarity(eachsmToken)

end
end
if max(dictTokenSimilarity.items(), key←lambda x : x[1]) is None then

NSOP , 0 ; /* NSOP← NoSimilarObservableProperty ∗ /
tokenSimilarity.append(eachToken.similarity(eachsmToken));

dictTokenSimilarity[eachToken.text]=eachToken.similarity(eachsmToken)
else

mostSimilarObservableProperty,mostSimilarObservablePropertyValue
=max(dictTokenSimilarity.items(),key←lambda x:x[1]) ; /* return
the most similar observable property(token) with max similarity of all
tokens */
return mostSimilarObservableProperty, mostSimilarObservablePropertyValue

end
end
end procedure

To identify and extract the concepts such as persons, geographical entities, and nat-
ural phenomenon, described in the situation model, we developed an algorithm that
(a) reused named entity recognition techniques from spacy to support this extraction and
(b) identified person names by applying parts of speech tagging. In the literature, named
entity recognition techniques have commonly been used to identify entities mentioned
in the social media postings such as geographical entities and natural phenomenon. To
identify person names, we first applied parts of speech tagging to find out the parts of
speech of each token in the tweet and looked for pos tag type ‘NNS’ (plural nouns) and
created chunks of pos tags. Then for each of for each of these chunks we processed them
individually till we found a chunk which is of tree type and contains the entity data. We
then expanded the tree into leaves and attached the leaf names to the persons concept
described in the situation model. Following the extraction of high value information from
social media postings based on the concepts from the situation model using the techniques
discussed above, we then translated and stored this information as triples to an Apache
Jena Fuseki triple store as discussed in Section 8.4.
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8.5. Evaluation of the Intersection of Social Media and Sensor Information Space

We tested the response times to validate the performance of the querying engine
in terms of query response time by querying the sensor, social media, and combined
information space with various queries. To count all the triples in database, the query
response time was 4.535 s and the query returned 71,208 triples. Of these triples, it took
0.038 s to find out how many types of weather sensors were currently reporting observations
and to retrieve the sensor name and the name of weather station as of 29 November 2021
19:30:00. When we searched for all sensors monitoring a specific location with coordinates
(144.9816, −37.8255), the query took about 0.035 s and 0.175 s to extract all observations of
a wind gust sensor.

To demonstrate the potential of using both IoT sensor and social media information
spaces for improving situation awareness, we began by querying the IoT sensor and social
media information spaces for various weather-related situations. More specifically, we
considered the wind-related weather situation for evaluation in this paper. As seen in
Table 10, there was an instance of a social sensor discussion at close to 5 a.m., related to
gust near Puckapunyal West (defence) with a strength of about 72% and count of 1 person
was mentioned. According to the Bureau of Meteorology, wind gusts can be 40% stronger
than the forecasted average wind speed which means the wind gusts are normally 40%
higher than the average. Based on this calculation, Table 11 (adapted from [46]) shows
the potential gust ranges for their corresponding average wind speeds ranges. In the
social media information space, we looked for any discussions on gust-related discussion
and whether this discussion mentioned any locations and were any people observed in
the discussion.

Table 10. Instances of social sensor discussions on gusts.

Socensorname Strength City Count_People

Social_Sensor_from_PUCKAPUNYAL_WEST_(DEFENCE) 72.0% Puckapunyal West (defence) 1

Table 11. Wind speeds, gusts, and associated wind warning categories.

Average Wind Speed (Knots) Gust Strength (Knots) Wind Warning Thresholds

10 14

15 21

20 28

26–33 36–45 strong wind warning issued

34–47 48–65 gale force warning issued

48–63 67–88 storm force warning issued

64 or more 90 or more hurricane force warning
issued

To look for more information, we then performed a union of sensor and social media
information space to see how the gust measurements looked in the sensor information
space from the Puckapunyal West (defence) weather station. To perform this search, we
created a window of 1 h and took the average of the gust measurements in this hour. If
it was the first measurement of the day from this weather station, then we expanded the
window to 3 h. The measurement from Puckapunyal West (defence) for wind direction.,
wind speed, and wind gust returned values of SSE, 28 and 39, respectively, at 6 a.m. The
social sensor reported that one person was involved in this gust situation in Puckapunyal
West (defence) which corresponded to coordinates (−37.0177, 144.8546) and complemented
the gust strength of 39 from the sensor which corresponded to a strong weather warning.
By intersecting this with the social media information space, we were able to find additional
information in terms of the number of people involved in this situation.
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8.6. Evaluation Results

The query processing times were low when using either sensor or social media in-
formation spaces as well as combined information spaces. During the extraction of social
media postings, we used bounding box coordinates to map the tweet to the nearest weather
station by identifying if the weather station location fell within the bounding box attached
to the social media posting. Our algorithm was able to match most of the social media
postings to the correct weather stations. This could also be confirmed by looking at the
place name information returned by the twitter with every posting. In twitter-v2 API,
Tweets with a Twitter “Place” contain a polygon, made up of bounding box coordinates
which normally refer to the place from which the user is posting. This field commonly
corresponds to a name where the place is located within a country. Consider the example
social media posting discussed in Section 8.4, this posting was posted from Newtown in
Australia. Our algorithm matched this posting to its nearest weather station in Ballarat.
This posting was found to be discussing the temperature concept and one person was
mentioned in the posting. We verified this match by investigating the place name field
returned by the tweet object. The field name for this specific posting contained a value
of Newtown. Newtown is a locality situated on Pitfield Road (Lismore—Scarsdale Road)
in Golden Plains Shire, about seventeen miles southwest of Ballarat. The social media
postings dataset contained a total of 862 tweets, a majority (668) were returned as having a
similarity score of 0.0. from the remaining postings, Figure 7 shows a distribution of the
social postings that matched the sosa observable property from the situation model.
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However, there were few false positives which were incorrectly matched to the ob-
servable property. For example: “Bairnsdale Bearings is an agent for Schmalz vacuum
technology. If you have a worksite that has repetitive or manual handling, we can design
a system for you that will save time and injuries” was related to an observable property
“pressure”. We hope to improve the algorithm in future work to exclude such cases.

When we queried the combined information spaces, the volume of results returned by
the query was quite low. This could be because when filtering the social media postings
from Twitter, we considered using only geotagged tweets which commonly have a low
volume. For future work, we would consider including all tweets within a given time
period and move deeper into the places being discussed in the posting and extract the
location information from these postings while also adding other information such as the
infrastructure involved in the social media posting discussion.

9. Conclusions and Future Research

The development of situation models for integrating sparse IoT sensor data and
social media postings, as well as techniques for fusing such information has the potential
to provide richer and more accurate situation awareness information. In Section 8 we
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explained how we can transform the sensor and social media data to the situation model
concepts that can be used to look for more information. However, with only limited public
data available, opportunities to combine sensor and social media information data were
low. In this paper, we proposed a situation model and various techniques for mapping
IoT sensor and social media data to the situation model. In our future research, we aim to
investigate a deeper extraction of high value information from social media, for example,
distinguishing singular and plural nouns for persons and expanding the situation model to
provide a more comprehensive description of situations for improving situation awareness
by intersecting IoT sensor and social media information spaces. We also aim to develop
tools for easy creation of situation models via picking and relating concepts for existing
ontologies used to describe sensor and social media information spaces.
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