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Abstract: Many robotics systems carrying certain payloads are employed in manufacturing industries
for pick and place tasks. The system experiences inefficiency if more or less weight is introduced. If a
different payload is introduced (either due to a change in the load or a change in the parameters of the
robot system), the robot must be re-trained with the new weight/parameters and the new network
must be trained. Parameters such as the robot weight, length of limbs, or new payload may vary for
an agent depending on the circumstance. Parameter changes pose a problem to the agent in achieving
the same goal it is expected to achieve with the original parameters. Hence, it becomes mandatory to
re-train the agent with the new parameters in order for it to achieve its goal. This research proposes
a novel framework for the adaption of varying conditions on a robot agent in a given simulated
environment without any retraining. Utilizing the properties of Generative Adversarial Network
(GAN), the agent is able to train only once with reinforcement learning and by tweaking the noise
vector of the generator in the GAN network, the agent can adapt to new conditions accordingly
and demonstrate similar performance as if it were trained with the new physical attributes using
reinforcement learning. A simple CartPole environment is considered for the experimentation, and
it is shown that with the propose approached the agent remains stable for more iterations. The
approach can be extended to the real world in the future.

Keywords: reinforcement learning; GANs; Q-tables; noise vector; payload; industrial robots

1. Introduction

There has been an immense need for robotic assistance in the industrial sector as
witnessed in the last decade with the advent of various autonomous applications and
their complexity. This is also observed in warehouse-based industries [1]. This is a recent
development due to the increase in e-commerce and online shopping [2], including the
premium services within online shopping such as one-day shipping [3]. Companies such
as Amazon have already begun to introduce robots in their package-handling facilities [4].
Robots carry packages within the storage facilities and help connect the packages to their
destinations. Another instance of robot intervention can be seen in Boston Dynamics with
their robot dog [5]. This robot is capable of carrying payloads from one place to another and
can autonomously prevent obstacles in its way. However, manual control is still required
to maneuver the robot to its destination, making it somewhat human-dependent. Hence,
there is a need to develop techniques that help the robot maneuver autonomously. One
such technique is Reinforcement Learning (RL) training [6], RL is a training paradigm in
artificial intelligence that comprises an environment and an agent. The goal is to train
the agent through a reward-based trial-and-error system. Every positive step taken in the
environment is rewarded and every negative step is penalized to the agent. The agent
in this context is an industrial robot that is trying to carry a payload in its environment.
Due to the fact that even though robots nowadays have physical capabilities to carry a
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payload, they lack the intellectual prowess to handle their own motors in accordance
with the wide range of loads that they carry [7]. Whenever the physical attributes of a
reinforcement learning agent are modified, the agent’s efficiency falls. This research tries
to mitigate that by increasing robot adaptability while requiring one-time training. In
this work Generative Adversarial Networks (GANs) [8] based approach is proposed to
overcome this challenge and further enhance the capabilities of RL. The main goal here is
to generate autonomous behaviors for the robot agent which can enable it to intellectually
carry a wider range of loads. In the last few years, GAN and RL are integrated for a variety
of problems. In [9], authors have proposed a methodology to employ RL for improving
the GAN architecture search and also in reducing resource utilization. Here they used
GAN as an MDP for smoother architecture sampling, providing a more effective RL-based
search algorithm. This process reduced variance and noise from generated architectures
while improving the computational speed. In [10], RL was used to determine necessary
inputs to a GAN. The goal of the research was to generate complete point clouds from
incomplete or noisy point cloud inputs. A pre-trained discriminator of GAN is used to
decide the winner between the decoded output of the GAN and the output of the AE. The
final decision of the completed output shape has a high resemblance to the original point
cloud. On the other hand, utilizing GAN to improve or facilitate RL performance is also
possible. In [11], generative models are used to generate synthetic samples to improve
the exploration efficiency of the deep RL models. In [12] RL-CycleGAN is employed to
demonstrate a solution to address the problem of simulations not being realistic enough to
train the agent for real-world applications. Since building a simulation as close as possible to
reality requires immense domain knowledge. They proposed the idea of using generative
models to translate simulated visuals into realistic ones. Upon testing, RL-CycleGAN
proved to be substantially better than conventional RL training for sim-to-real transfer.
In [13], authors have demonstrated the effectiveness of pre-training the RL framework
with a mix of synthetic data and real data from a generative model. Using a process such
as this gave the RL framework a wider range of data to learn from. There is a resource
allocation problem in OFDMA systems, and that is reducing power under the constraints of
reliability, latency, and data rate. This problem was better resolved with the new pre-trained
RL framework that helps determine data rates. In [14], human demonstrations to train
reinforcement learning algorithms were emphasized. Instead of continuously providing
human input to guide the agent, GANs were used. Here, a GAN network generated
and provided the necessary guidance for the agent training alongside the reinforcement
learning algorithms. This allowed the agent to depend much less on actual human inputs
while keeping performance the same. Throughout the literature, it can be observed that
generative models and reinforcement learning frameworks can benefit from each other
in a number of ways. In this work, we have leveraged the power of GAN to diversify
and improve the capabilities of an RL agent. Firstly, an RL agent is implemented and
Q-tables are generated using the standard Q-learning algorithm [15] for a specific payload
and environment condition for an agent. Further, these Q-tables are employed for training
the GAN model. The input noise vector [16] to the Generator network is modified to
generate new Q-tables corresponding to different payloads or environmental conditions of
the agent. These tables can then be used to run the agent with the newer load. The primary
advantage of this approach is that with a few rounds of trial and error with tweaking the
noise vector, an optimal Q-table can be obtained without the need for any re-training. The
conventional way of making a robot adapt to physical modifications is to have it re-train
with reinforcement learning in its new form. This can be time and resource-consuming. The
proposed approach is useful in saving tremendous computation costs as well as accelerating
the process even though the payload is modified.

Contribution:
In summary, the contributions of this work are:

(a) Development and demonstration of an approach to make the robot agent adaptable
to the increased payload via the use of GANs.
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(b) Proposed an approach for mitigating the need for agent re-training with changing
payload leading to saving of time and resources.

The paper is organized into the following sections: Section 2 discusses the problem
formulation and assumptions. In Section 3, the method is discussed with a specific focus
on the GANs and the Q-learning RL algorithm along with the environment chosen for the
demonstration of this approach with the GANs training is discussed in detail. In Section 4,
experimental analysis and results are presented followed by Section 5 of discussion that
needs to be had in regards to this concept with a conclusion and discussion of future scope
in Section 6.

2. Problem Formulation and Assumptions

It is important to address the incapability of a trained agent to successfully complete a
task when it is put under different loads. Conventionally, the agent has to be re-trained
with the newer load in order for it to be able to complete the same task successfully. In this
work, an RL agent is combined with the GANs-based approach to avoid this retraining.
Figure 1 shows this method via a simple schematic.
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Reinforcement learning is a framework for learning how to interact with the envi-
ronment from experience (Refer Figure 2). This is a branch of artificial intelligence that
has found applications in various domains, most notably in robot training. As the name
suggests, this method tries to “reinforce” a particular behavior in the agent for it to perform
in a certain way. A robot interacts with the world by measuring its state in that environment
and then taking an appropriate action. Every such interaction yields a reward that the robot
receives if the action taken by it was in the right direction towards accomplishing the goal.
After taking any action, the robot enters a new state in the environment and the process
repeats itself till the goal is accomplished or the robot fails. Goal accomplishment gives the
robot a significant reward for all the actions it took so far to reach its destination which acts
as a positive reinforcement. Contrary to that, failure yields no rewards and hence it acts
as negative reinforcement. In this process, the robot builds a policy from all the positive
experiences. The policy is used by the robot to maximize its chance of obtaining a future
reward. In order to design a useful policy, it is required to understand what is the value of
being in a certain state given that policy. So, after choosing a policy one can start to learn
what is the value of each state based on what is the expected reward the robot will obtain
in the future if the robot starts at that state and enacts that policy. Over time, the robot
refines the value function and develops a better idea of what matters in the environment.
Reinforcement learning has been implemented for robotics tasks such as visual control
of robotic manipulators [17], obstacle avoidance [18], etc. In recent years, it has also been
employed for various critical tasks such as the efficient scheduling of limited satellite-based
radio resources to ensure enhanced transmission efficiency and meet the requested traffic
with low complexity [19].
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Instead of just learning the policy and the value functions separately, in Q-learning, the
robot can learn both of them at the same time. The Q function is not just a function of the
state but is also a function of action. It represents the quality of being in a particular state
and taking a particular action. The value update takes place by adding the old Q value to
the product of the learning rate and probable maximum Q value in the future considering
a particular action. As the robot goes through the learning process and updates the Q
function, a table is populated with pairs of states and the corresponding actions yielding
a high value. This table is called the Q-table and this process is called tabular Q-learning.
The robot refers to the Q-table after training is completed and it is time to perform in a
test scenario. This training methodology has a major drawback in that these tables are
very environment-specific and robot-agent-specific. Hence, essentially, the robot populates
the Q-table with the most optimal state-action pairs that it has learned from moving its
own body in its own environment. As such, it cannot be generalized for every other
similar functioning robot with different physical measurements. For example, consider a
four-legged robot that has a load-carrying capability of a maximum of 10 kg. The robot is
trained with Q-learning. The training can only be performed with a set physical dynamic.
Either the robot trains with no load or with maximum load, as the training can only be
performed with one set of physical attributes. If it is desired to make the robot efficient in
carrying a wide range of weighted loads from 0 kg to 10 kg, multiple sessions of training
will be required to achieve optimal results. To mitigate this limitation of multiple training
sessions corresponding to the different payloads, in this research, we leverage the power
of GANs.

Although GAN architecture is presented earlier, this research work tries to rather
introduce the utilization of GAN network with Reinforcement Learning. Thus, producing
improved results in simulations (as of now) of industrial robots. The novelty that this
research work provides is the reduction in the training time of an RL.

3. Methodology

Each Q-table consists of features of a policy in a given environment and agent. Q-tables
can be thought of as a collection of features representing a policy similar to how pixels in an
image represent the features of an image. Conventionally Convolutional Neural Network
(CNN) [20] are employed to learn the features of an image. In this work, instead of images,
Q-tables are fed to CNN networks. CNN learns to recognize the patterns in the feature
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space of the Q-tables and later on it is successfully able to classify and even generate new
Q-tables as used in GANs.

GANs consist of a pair of neural networks that compete with each other. One is called
the generator and the other is called the discriminator. The generator constantly tries
to mimic a set output using something known as the noise vector. The discriminator’s
job is to crosscheck the generator output with what is real and the generator’s job is to
fool the discriminator as shown in Figure 3. As the generator’s training progresses, it
becomes better and better at producing real outputs as shown in Figure 4. As the networks
start converging, the generator starts generating more and more realistic output which is
highly indistinguishable from the actual real input. As such, the discriminator is no longer
able to classify if the generated output is fake or not. Once this level of performance is
achieved, the generator is disconnected from the GAN and is employed separately. There
are several variants of GANs which can be used for various tasks. This paper employs
Deep Convolutional GAN [21] (DCGAN) to generate new q-tables. DCGAN is one of the
network designs for GAN. That comprises convolution layers without max pooling or
fully connected layers. It uses convolutional stride and transposed convolution for the
down-sampling and the up-sampling.
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In this research, first, an agent is trained in an environment using the Q-learning
algorithm. Then after the training, a Q-table is generated. This table is passed to a DCGAN
network and the generator is trained to produce similar tables. Since this table acts as a
guide and calculates states and actions such that it can provide the maximum expected
future rewards for action at every given state in an environment, they essentially carry
information on how the agent should traverse through the environment successfully. Hence,
the features of a Q-table can be learned, and even have a generative model produce similar
tables for varying conditions. After the DCGAN has completed training, the generator
can be disconnected and used exclusively. For the generator training, a noise vector is fed
in as an input. The generator performs computations on the noise vector and produces
output accordingly. Therefore, a noise vector can have a very significant influence on
the generator output. By leveraging this feature of the generator multiple Q-tables with
different capabilities to instruct an agent can be generated. The complete system pipeline is
shown in Figure 5.
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For demonstrating this approach, a simple CartpPole-v1 [22] environment is consid-
ered (shown in Figure 6).
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The first agent is trained in the OpenAI CartPole-v1 environment shown in Figure 6.
Cartpole-v1 provides a 2D environment with a structure where a pole is attached to the
cart and the cart is free to slide over a frictionless surface. The goal of this pole-carrying
cart is to balance the pole in an upright position without letting it drop on either side. By
sliding the cart left or right, the cart pole is balanced. Cartpole is controlled by applying
force +1 and −1 to the cart.

State space includes cart position, cart velocity, pole angle, and pole velocity at the tip.
These state values are continuous in nature, and later have to be discretized. The reason
behind the conversion from continuous to discrete value is that Q-learning trains only
on discrete state space and action space. Since action space is already discrete in nature
having only right and left moves, no conversion is required. The agent is trained using
the Q-learning approach for a specific set of parameters. These variations in parameters
are illustrative of varying payloads to an industrial robot. This original q-table is passed
through the GAN. The network learns the feature representation given by the q-table and
tries to replicate them by re-shaping noise vectors. The main idea behind using DCGAN
for this application is the use of convolutional layers. These layers are conventionally used
to map features for images and video streams. Since the q-table represents the feature space
of an agent, the CNN-based DCGAN can be employed for this specific task. The agent
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learns its environment and learns the appropriate actions corresponding to the highest
value. This information is stored in the q-table which can be imagined as a brain that can
understand and envisage the result even before taking an action. The generator tries to
produce q-tables as real as the original table. A noise vector of the exact same dimension
as the original q-table is passed through 3 layers of transposed convolutional layers, each
followed by a Batch normalization [23] and a ReLU [24] layer and then by the final 4th
transpose convolution layer followed by a Sigmoid function. All the layers are configured
to have the “same” padding such that the output dimension of each layer is unchanged.
Output from here is passed to the Discriminator along with a normalized version of the
original q-table. The discriminator learns the features and updates their weights along with
the generator’s weights. Discriminator uses two convolution layers each followed by a
batch normalization layer and a leaky ReLU [25] layer, then it is another Convolution layer
for the final 3rd layer with a linear and sigmoid layer at the end. Discriminator also has
been configured to have “same” padding. The output is a probability of the realness of
the input.

During GAN training, two inputs are required for the two components, the Generator
and the Discriminator. Inputs to the Discriminator are always q-tables. It takes in two
q-tables, one from the generator and one which is the real q-table i.e., from the first agent’s
q-learning. In a supervised learning fashion, the discriminator compares the two tables and
essentially tries to classify which one is generated and which one is real.

Input to the generator is a noise vector. A noise vector is a collection of random values
in the form of a matrix. The matrix obtained from the numbers is of the same dimensions
as the original q-table. The nature of these randomly generated values falls on the Gaussian
curve [26]. This also provides control over what type of output is generated by the generator.
Figures 7 and 8 show the process for generator and discriminator training respectively.
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As shown in Figure 9, the Gaussian curve has two parameters viz, standard deviation
and mean. By manipulating these values, the output can be controlled. Taking control of
the output is important here because that allows the robot to adapt to the new payload.
Although in its current state the exact Gaussian parameters corresponding to a certain
payload are ambiguous. The generator is attached to the environment to act as an agent.
This research work uses the trial-and-error methodology to determine the appropriate
noise vector for a given payload on the robot agent.
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The CartPole-V1 environment is chosen for the experimentation and demonstration
of the proposed approach. This environment’s states consist of four parameters: cart
position, cart velocity, pole angle, and pole angular velocity. The action space consists
of one discrete parameter, (0,1) i.e., left and right movement. That makes the q-table of
4 + 1 = 5 dimensions. Yet using all the state parameters to train the GAN network would
require a lot of GPU memory. Hence, after testing the agent with an off-policy method it
was found that cart position and cart velocity played a major role in obtaining the correct Q
values. Therefore, taking only the two of the cart’s state values the dimension of the q-table
becomes three dimensional.

Experiments were performed on a system equipped with AMD Ryzen 9 4900HS CPU
and Nvidia RTX 2060 max-q edition GPU. Reinforcement learning was performed on
the CPU and GAN convolutions were performed on the GPU using CUDA cores. It is
evident here that using the original q-table for updated parameters does not produce usable
output. The entire movement of the agent changes and it struggles to perform with similar
efficiency as it did before the update. Although not perfect, the GAN network does assist
the agent in maintaining efficiency by providing generated q-tables. Currently, at this
stage, the generated q-tables are picked by trial and error to check for the most efficient
table. A looping mechanism is used to randomly pick mean and standard deviation values
for the noise vector. For each loop cycle, a new noise vector is obtained from the mean
and standard deviation values. The generator takes in these noise vectors and tries to act
as an agent in the environment. The idea here is to reject the poorly performing tables
for the high-performing ones and save the most efficient q-table for that particular set of
parameters for future use when it may be desired to use it again.

4. Results

Experiments were performed on a system equipped with AMD Ryzen 9 4900HS CPU
and Nvidia RTX 2060 max-q edition GPU. Reinforcement learning was performed on
the CPU and GAN convolutions were performed on the GPU using CUDA cores. It is
evident here that using the original q-table for updated parameters does not produce usable
output. The entire movement of the agent changes and it struggles to perform with similar
efficiency as it did before the update. Although not perfect, the GAN network does assist
the agent in maintaining efficiency by providing generated q-tables. Currently, at this
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stage, the generated q-tables are picked by trial and error to check for the most efficient
table. A looping mechanism is used to randomly pick mean and standard deviation values
for the noise vector. In each loop cycle, a new noise vector is obtained from the mean
and standard deviation values. The generator takes in these noise vectors and tries to act
as an agent in the environment. The idea here is to reject the poorly performing tables
for the high-performing ones and save the most efficient q-table for that particular set of
parameters for future use when it may be desired to use it again.

The graphs in Figures 10 and 11 are extensions of Table 1 and show the generator
behavior when fed with a particular noise vector.
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Figure 10. Before GAN, agent performance throughout the episodes average around 52 steps per
episode, and the maximum of 500 steps per episode is never reached.
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Figure 11. After GAN, agent performance throughout the episodes averages around 297 steps per
episode, and a count of 497 steps per episode is also achieved which is very close to the maximum of
500 steps.
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Table 1. Updated testing parameters (Mass of Cart and Mass of Pole) for the CartPole and the
corresponding results of the RL agents with and without GANs.

Training
Parameters

Testing
Parameters Before GAN After GAN

Gravity 9.8 9.8

Figure 10 Figure 11

Mass of Cart 1.0 30.0
Mass of Pole 0.1 2.1
Length 0.5 0.5
Force Applied 10 10
Tau 0.02 0.02

Figure 10 presents plots corresponding to the episode-wise performance of the cart
pole agent. On the x-axis, the number of episodes is marked against the number of steps
taken on the y-axis. Agent performance throughout the episodes averages around 52 steps
per episode and the maximum of 500 steps per episode is never reached. The performance
in these graphs is an illustration of less than adequate performance given by the agent
upon introduction to different environmental parameters. The agent is performing here
without GAN interference.

In Figure 11, graphs illustrating agent performance with GAN interference are shown.
Although not consistent, the agent now takes many more steps in forthcoming episodes as
compared to Figure 10. Each graph demonstrates the performance variation of the agent
with tweaks in the Input Noise Vector. After GAN, agent performance throughout the
episodes averages around 297 steps per episode, and a count of 495 steps per episode is
also achieved which is very close to the maximum of 500 steps.

5. Discussion

Though GAN and Reinforcement Learning have previously been used in literature,
this paper is trying to bring the two methodologies together for a novel use case as we
venture into industrial applications for robots. Further down the line, this concoction of
GAN and RL will turn out to be fruitful as advances are innovated. Expected improvements
over the years could be to have better integration, more variability tolerance in terms of
load, etc.

6. Conclusions and Future Scope

In this paper, an RL and GANs-based methodology is proposed for handling the
changing load-carrying requirements for an industrial robot agent. The Q learning-based
algorithm is implemented for generating the RL agent’s behavior. However, for a different
payload condition, the RL algorithm needs to be retrained. To avoid this, GANs based
model is proposed, which can generate different Q-tables for changing load conditions
based on different input noise vectors. For the demonstration of the approach, a pilot
environment of CartPole from OpenAI Gym is considered. From the results it can be
observed that using this proposed methodology we can achieve impressive performance
on increased load on the robot agent without requiring any additional training. Increased
load in this context is the increased cart weight and increased pole weight in the CartPole-
v1 environment. This pilot experiment can be extended to more complex real-world
applications through customizable simulation platforms. Such research could result in
being very beneficial in industrial scenarios wherein tasks include the transportation of
payloads from one part of a factory to another.
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