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Abstract: Modern supply chains have evolved into highly complex value networks and turned into a
vital source of competitive advantage. However, it has become increasingly challenging to verify
the source of raw materials and maintain visibility of products and merchandise while they are
moving through the value chain network. The application of the Internet of Things (IoT) can help
companies to observe, track, and monitor products, activities, and processes within their respective
value chain networks. Other applications of IoT include product monitoring to optimize operations
in warehousing‚ manufacturing, and transportation. In combination with IoT, Blockchain technology
can enable a broad range of different application scenarios to enhance value chain transparency
and to increase B2B trust. When combined, IoT and Blockchain technology have the potential to
increase the effectiveness and efficiency of modern supply chains. The contribution of this paper is
twofold. First, we illustrate how the deployment of Blockchain technology in combination with IoT
infrastructure can streamline and benefit modern supply chains and enhance value chain networks.
Second, we derive six research propositions outlining how Blockchain technology can impact key
features of the IoT (i.e., scalability, security, immutability and auditing, information flows, traceability
and interoperability, quality) and thus lay the foundation for future research projects.
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1. Introduction

Supply chains are becoming increasingly heterogeneous and complicated due to a growing need
for inter- and intra-organizational connectedness, which is enabled by advances in modern technologies
and tightly coupled business processes [1,2]. To cope with this dynamic environment and the increasing
need to digitize supply chains and enhance competitiveness, companies are applying novel technologies
such as the Internet of Things (IoT), cloud computing, business analytics, artificial intelligence, machine
learning, and Blockchain technology [3–5], as well as innovative concepts such as the so-called physical
Internet [6]. The multiplicity of technologies, which are often simultaneously introduced, along with
the ubiquity of connected devices, often labeled as ‘smart’ devices or things, allow value chain exchange
(or trading) partners to reach new levels of effectiveness and efficiency [7]. These technologies promise
to reshape the modus operandi of modern supply chains through enhanced data collection as well as
information sharing and analysis between collaborating supply chain stakeholders [8]. Moreover, they
enhance information transparency, leading to increased trust between the exchange partners [9,10].
The impact of these technologies on supply chains constitutes a research gap that is relevant for both
practitioners and academics.

IoT is defined as a “group of infrastructures interconnecting connected objects and allowing their
management, data mining and the access to data they generate” [11] (p. 73). It embodies the next phase
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toward mass digitization of supply chains to facilitate the so-called Industry 4.0 [12]. IoT encompasses
devices such as sensors as well as passive, semi-passive (or semi-active), and active Radio Frequency
ID tags (RFID), and other electronics which are connected over a network. Together, these technologies
can perform numerous tasks, including functions such as sensing activity, movement, or temperature;
actuating and collecting; processing, storing, and sharing data. For example, the food supply chain is
particularly sensitive to environmental conditions during transportation and storage, such as light,
humidity and temperature [13]. In the cold chain, time-temperature measurements with sensor devices
connected to a wireless sensor network (WSN) can help to preserve the quality and safety of a food
product and reduce the risk of spoilage [14]. WSNs represent a network or system of connected sensors
which communicate to a base station through mobile networks such as 4G or GPRS (General Packet
Radio Service) and informs supply chain exchange partners in real-time [14]. When the information is
received, it can trigger an acceptance or rejection of the shipment based on the temperature parameters
preset in a smart contract, which in turn can trigger payment if accepted. Moreover, when IoT-enabled
sensor devices connected to a WSN provide time-temperature alerts on a real-time basis, an out of
tolerance measurement (or a predictive out of tolerance measurement) can trigger a mid-shipment
corrective action and intervention by the driver or shipper [8,9].

The growing economic importance of IoT reflects in its steadily increasing industry adoption.
With the convergence of information and communication technologies (ICT) and machine automation,
the use of IoT has become more pervasive, especially in supply chains and logistics. This trend
is attributable to increased computational power and decreased costs of the connected devices.
The International Data Corporation (IDC) forecasts that by 2021, 20% of the largest (G2000)
manufacturers will depend on a secure infrastructure backbone of embedded intelligence to automate
large-scale processes and enhance the speed of process execution by up to 25%. This backbone will
mainly depend on IoT for enabling controls and actuators to take autonomous decisions [15]. In 2017,
there was an estimated 5 billion IoT enabled devices, and this number is expected to reach 29 billion by
2022 [16]. Global connectivity will contribute further to new economic opportunities and business
growth that may generate an additional USD 14 trillion in the global economy by 2030 [17].

Various researchers identified supply chains and logistics as essential areas for deploying
IoT [18,19]. IoT can improve supply chain competitiveness through more effective tracking of the
flow of materials, leading to improvements in the effectiveness and efficiencies of critical processes
and timetables [20]. Within multi-exchange party supply chains, IoT can help to facilitate the sharing
of more precise and timely information related to production, quality assurance, distribution and
logistics [21–23]. Hofmann and Rüsch [24] posited an integrated solution for a Just-in-Time (JIT)
production line where RFID tags act to trigger an alert when a specific station is empty. This warning
signal notifies the supplier to replenish and deliver the stock directly to the specific station. Moreover,
the use of IoT applications inside the production plant can increase the visibility of parts and processes,
and by extension, using IoT devices along the supply chain can help to boost productivity, reduce
operational costs, and enhance customer satisfaction [25].

Despite the growing potential to apply IoT in supply chains, there are numerous challenges ahead.
For instance, IoT-related technical issues experienced when operating at the ecosystem level, such as
security, authenticity, confidentiality, and privacy of all stakeholders [26]. From an IoT vulnerability
perspective, practitioners and scholars consider security to be the most critical issue [27–29]. Existing
security solutions are not well suited because current IoT devices may consume significant amounts of
energy and may have significant processing overhead [30]. Moreover, problems such as counterfeiting,
physical tampering, hacking, and data theft might raise trust concerns among supply chain exchange
partners [31]. Tzounis et al. [26] (p. 42) therefore conclude that “IoT must be secure against external
attacks, in the perception layer, secure the aggregation of data in the network layer and offer specific
guarantees that only authorized entities can access and modify data in the application layer”.

Necessary safeguards must be developed to leverage the value and enhance the trust of connected
IoT devices in supply chains. For instance, Blockchain technology now offers several potential solutions
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to address known issues related to IoT. A Blockchain is a distributed network for orchestrating
transactions‚ value‚ and assets between peers‚ without the assistance of intermediaries [32]. It is also
commonly referred to as a ‘ledger’ that records transactions [33]. Another way to view a particular
Blockchain is as a configuration of multiple technologies‚ tools and methods that address specific
problems or use cases [8]. With the adopting of Blockchain technology, companies aim to enhance
information transparency and improve trust in their supply chains while supporting the interoperability
among the networked supply chain exchange partners. Blockchain technology has the potential to
address several known supply chain issues [34]. As a result, it has gained considerable attention from
scholars, firms, and technology developers who seek to combine IoT with other technologies [35,36].
Currently, supply chains are undergoing an evolutionary change through continued digitization.
They are evolving into value-creating networks where the value chain itself turns into a vital source
of competitive advantage. At the same time, developments are in progress to integrate Blockchain
technology with IoT solutions, leading to novel structures of modern supply chains‚ new partnerships,
as well as new ways of collaboration and value creation across supply networks [37].

In this paper, we explore how companies can leverage IoT in combination with Blockchain
technology to streamline their supply chains and value-creating networks. When combined‚ these
enabling technologies will help firms to overcome problems related to data acquisition and integrity,
address security challenges‚ mitigate traceability concerns, and reduce information asymmetry. In the
following section, we review IoT in the context of supply chain usage and present various benefits
and vulnerabilities. Subsequently, we discuss the critical role of Blockchain technology in leveraging
IoT-based supply chain applications. In the final section, we make some concluding remarks and
present suggestions for future research. The propositions that we derive in this paper extend existing
academic literature by providing a structured foundation for systematic research that investigates the
combined impact of IoT and Blockchain technology on modern supply chains.

2. Methodology

In this paper, we conducted a narrative literature review with the goals of summarizing the existing
body of literature, identifying essential research gaps and developing novel research propositions.
Given that Blockchain technology is in a nascent stage, only a small number of papers have been
published in top-tier academic journals so far, which ruled out a systematic literature review. In order
to take into account recent developments, we also included “grey” literature in our study. Furthermore,
we used EBSCO Business Source Premier, Scopus, IEEE Xplore, ScienceDirect, and Google Scholar as
our primary sources, but also screened numerous conferences proceedings and references (snowballing)
of published papers to find additional and related materials. We used the following search terms:
(“Blockchain*” or “Blockchain technologies”) and (“Internet of Things” or “IoT”) and (“supply chain*” or
“logistics”). The paper collection and analysis took place between February and May 2019. The authors
screened each paper for relevance, and the core topics were briefly summarized. Subsequently, we
combined all topics and derived research questions by creating a map in which we listed the potential
impacts of Blockchain technology on various IoT characteristics.

3. The Internet of Things and Its Application in Supply Chains

The concept of the “Internet of Things” (IoT) was first coined in 1999 by British entrepreneur and
startup-founder Kevin Ashton [38]. In essence, IoT refers to an information network that connects
sensors on or in physical objects (‘things’) ranging from consumer goods, pallets of goods to everyday
tools, household appliances, and industrial machinery. Furthermore, cloud computing and the more
recent concept of fog computing (i.e., a decentralized computing structure, extending the concept of
cloud computing through the local performance of computation, storage and communication through
so-called ‘edge devices’) provide computing resources and scalability to connect, store and analyze
IoT data (often labeled as big data) received from connected devices and sources including WSNs‚
global positioning systems (GPS)‚ GPRS, and geographic information systems (GIS). The analysis
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of IoT data can assist firms to sense and then respond to situations in real-time and may lead to
automation or value-creating predictive analytics capabilities [26]. Moreover, through the connection
of a heterogeneous set of hardware devices (e.g., sensors) IoT streamlines critical business processes
through the capture of data‚ such as the identification of human operators and environmental variables
(e.g.‚ temperature‚ humidity‚ vibration‚ air currents). IoT devices are often deployed to sense the
physical world‚ communicate over a wireless signal and to actuate based on predefined conditions.
According to Barreto et al. [39] the three distinguishing features of IoT are context‚ omnipresence
and optimization. The context describes the capability of IoT to provide real-time monitoring‚ to
interact‚ and to enable an instant response to specific situations that are controlled. Omnipresence
lies in the pervasiveness of the technology and its broad applicability, while optimization refers to the
specific functionalities and characteristics each physical object has [40]. These features pave the way
for novel and innovative IoT use cases among exchange partners within both simple and complex
supply chains and open up new business opportunities. With the shift towards 5G technology with
faster data transmission rates, IoT is expected to mature rapidly with pervasive integration into society.
Cisco‚ a leading network technology provider, predicts that the number of IoT devices connected to the
internet will reach 500 billion by 2030 [41]. Additionally, IoT has a wide range of potential applications
and use cases across multiple sectors, including healthcare‚ automotive, industrial activities‚ smart
homes‚ agriculture‚ and construction [42].

According to Lee and Lee [43], there are five crucial IoT technologies predominately used in
supply chains and logistics. They include RFID, wireless sensor networks (WSN), middleware, cloud
computing, and IoT application software. RFID is a technology used in many supply chain activities
(i.e., warehousing‚ manufacturing‚ transportation) [44]. Passive RFID tags (without a power source) in
modern supply chains utilize the GS1 Electronic Product Code (EPC) UHF Gen 2 industry standard
(see https://www.gs1.org/sites/default/files/docs/epc/GS1_EPC_TDS_i1_12.pdf). Passive tags rely on
wireless radio waves from a reader/antenna to identify physical objects that the tags are attached to or
associated with without the need for line of sight between the reader/antennae and the tags [45]. Some
unique applications of UHF Gen 2 tags may extend the tag read range up to 300’. RFID tags can also be
‘semi-active’ with a power source and send an intermittent signal to a network or signal when physically
moved (e.g., attached to a high-value asset). Active RFID tags or devices have a power source and send
out an active beaconing signal to a network. When RFID devices are connected to an IoT network‚ the
WSN is described as a cluster of nodes (i.e., connection points for data transmission within a network)
that cooperatively sense and actuate physical or environmental conditions (e.g.‚ temperature‚ humidity‚
light intensity‚ velocity)‚ allowing interaction between persons or computers and the surrounding
environment [46]. WSNs benefit supply chains with more effective real-time monitoring of logistics
activities through smart sensing capabilities. This capability leads to a better allocation of critical
resources due to the higher level of data granularity in decision making and resource allocation.
The middleware serves as a hub for collecting and storing the data generated by the connected devices
and structures the data in a usable format for IoT applications [47]. This layer enhances the availability
of the data, offers more granular insights and can make data more accessible to operational staff

and management for analysis and decision making. Cloud computing facilitates the ubiquitous
and on-demand access to a shared pool of configurable computing resources such as computers‚
networks‚ servers‚ storage‚ applications‚ services‚ and software applications [43]. Cloud computing
offers some benefits in orchestrating parts of the supply chain data and information flows between
multiple fragmented entities‚ facilitating cooperation among all value chain exchange partners [48].
Typically, an IoT application resides in the cloud and is accessed either by mobile application-based
(apps) running on smartphones‚ tablets or desktop computers [49]. These applications advance
machine-to-machine and human-to-machine interactions‚ resulting in a seamless processing of data
and timely transfer of information.

https://www.gs1.org/sites/default/files/docs/epc/GS1_EPC_TDS_i1_12.pdf
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3.1. IoT in Supply Chains: Levers and Application Scenarios

The application of IoT promises significant improvements in supply chain performance and
operational efficiency. The benefits result primarily from real-time information exchange, which can
reduce time wastage caused by the bullwhip effect [50,51]. Moreover, IoT can help to mitigate the risk
of counterfeiting and illicit trade when combined with covert, overt or forensic security features on
physical products. Thus, IoT is set to revolutionize supply chains by improving operational efficiencies
and creating revenue opportunities [52]. Three of the areas that can benefit from IoT deployment
include (1) inventory management and warehouse operations, (2) production and manufacturing
operations, and (3) transportation operations (see Table 1).

Table 1. IoT Levers in Supply Chains.

Inventory Management and Warehouse Operations

Enablers Processes

- Smart racks
- Smart glasses
- Monitoring cameras
- Smart forklifts
- Smart warehouse

management system (WMS)

- Route optimization‚ elimination of in-process collisions
- Fast‚ cost-efficient‚ and flexible operations
- Better handling of items that are hard to reach or ‘dark assets’

(i.e., items that are difficult to detect on the shelf or racks)
- Real-time visibility of inventory levels
- Avoidance of stockouts
- Agility and fast responsiveness to inadequacies

(e.g.‚ misplacement of items)
- Workspace monitoring (e.g., for security purposes)
- Stock keeping units (e.g., pallets) recognition and localization
- Simultaneous threat detection and scanning for imperfections

Production and Manufacturing Operations

Enablers Processes

- Embedded machine sensors
- Machine analytics

- Real-time condition monitoring
- Remote maintenance
- Predictive maintenance: Detection of physical stress levels‚

pile-ups‚ and prevention of failures
- Improved measurement of throughput‚ setup-time‚ and

overall productivity
- Enhancement of both machine-to-machine and

machine-to-human interactions

Transportation Operations

Enablers Processes

- GPRS sensors
- RFID sensors
- Routers
- GPS satellites

- Continuous visibility of products along the supply chain
- Real-time shipment tracking
- Remote product sensing (e.g., temperature‚ humidity‚ vibrations)
- Protection and preservation of product quality
- Improve activity bottlenecks and outdoor traffic‚ transport

mobility‚ road and driver safety
- Maximizing fuel efficiency and optimize routing strategies
- Improved service delivery



Future Internet 2019, 11, 161 6 of 22

IoT paves the way for smarter inventory management where key processes in warehousing
operations can be optimized, labour costs reduced, and throughput time improved [53]. Technical
enablers include smart forklifts and racks but also novel usage of ‘smart glasses’ (i.e., wearables devices
equipped with sensors and camera technologies to locate objects in the warehouse), monitoring cameras,
and warehousing software. Within warehouse operations, reusable assets such as inventory storage
totes and pallets can be tagged with IoT enabled tags or devices that assist in guiding and directing the
warehouse picker to their storage locations. IoT not only aids in automating aspects of warehousing
activities (e.g.‚ picking and packing) but also leads to efficiencies by reducing manual effort spent on
locating the exact position of products and materials in warehouses. Importantly, cost savings and error
reductions are attainable through the use of IoT by automating the warehouse or distribution centre
inventory receiving and order dispatch processes, which in turn reduces human intervention (and error)
associated with manual storage management. This benefit results from deploying commercial RFID
readers and antennas in receiving and shipping docks that send a radio signal to identify RFID tags
attached to, or embedded on pallets, totes, or the product cartons leading to a reduction in the time
spent in collecting‚ recording, and retrieving data [54,55]. Besides, RFID tags help to overcome the
(occasional) problematic readability of barcodes in specific industrial environments and result in a
higher read accuracy [56].

Production and manufacturing are the second area that can benefit from the implementation
of IoT. Industrial machines with embedded sensors can be monitored in real-time and controlled
by smart instruments, such as microcomputers, microcontrollers, microprocessors, and intelligent
sensors. IoT-based solutions can enhance operational control over the processing capacity‚ set-up time,
and throughput. Therefore‚ their usage can lead to more efficient machine utilization‚ reduction of
bottlenecks in production and can help in optimizing production planning and scheduling at varying
levels within a company. Moreover, Waller and Fawcett [57] point out that IoT enablement leads to
greater agility and proactivity in the company by enabling quick identification of machine errors and
enabling predictive maintenance. As a result, this enhanced insight into key manufacturing processes
will enable stronger collaboration and value co-creation with suppliers [58] as well as improved
machine-to-machine and machine-to-human interaction.

Finally, when it comes to transportation activities in supply chains‚ IoT can also provide potential
benefits. For instance, IoT-enabled solutions usher in a well-defined and configured transportation
management system (TMS) or “smart” TMS [39]. More specifically, a set of IoT devices can help to
transform transportation processes and achieve more flexible and efficient operations. For example,
a GPS helps to position refrigerated trucks from remote distribution centers and to optimize both
routing and delivery time while preserving product quality [59]. In a broader sense‚ GPS‚ RFID‚ and
other connected sensors increase the in-transit visibility by measuring conditions such as temperature,
humidity, and by precisely localizing vehicles on public roads or at shipping terminals through large
scale mapping, traffic data collection and analysis. The data gathered from these IoT devices will
help to improve forecasting of delivery times‚ fleet availability, and routing efficiency [57]. Moreover,
these devices can be used for enhancing the sharing of under-utilized resources among vehicles in the
parking space or on the road [39].

3.2. IoT in Supply Chains: Weaknesses and Threats

IoT has the potential to ‘connect the unconnected’ and can help to optimize supply chain
operations [60] substantially. It addresses several supply chain challenges including the growing
business need to enhance supply chain information transparency and improve the integrity of
production data and the identity of products (i.e., the right products‚ at the right time‚ place‚ quantity‚
condition‚ at the right cost) [39]. However, as IoT will generate massive volumes of data across the
supply chain, this data often resides in silos, which are generally underutilized and fail to extract
real-time business insights. As such, data silos can be seen as trapped or hidden sources of potential
business insights and value. Global analysts firm Gartner refer to data silos as ‘dark data’ and suggest
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that firms are often guilty of data hoarding (https://www.gartner.com/smarterwithgartner/how-to-
tackle-dark-data/).

Several issues regarding IoT security need to be addressed [61], including IoT device trust,
access control, data integrity, physical tampering, and user privacy. One study revealed that 70% of
IoT devices have vulnerabilities due to a lack of encryption, unprotected interfaces, poor software
protection, and inadequate authorization [43]. In discussing various security and privacy challenges‚
Cam-Winget et al. [60] argue that contemporary security solutions are inadequate because of scalability
issues to process and analyze data transmitted from large networks of heterogeneous devices and the
need to satisfy real-time requirements. Conventional security and privacy approaches are considered
inapplicable to IoT ecosystems due to their dynamic topology and distributed nature. Besides,
the current Internet architecture with its server-based infrastructure might not be able to deal with a
countless number of devices and large amounts of data because individual servers may pose a single
point of failure for cyber-attacks and physical damage. For instance, IoT devices are at risk from
DDoS attacks‚ data theft‚ and remote hijacking. Furthermore, Marjani et al. [62] assert that some IoT
systems lack a service level agreement to protect personally identifiable information (PII) demanded
by privacy laws. Hence, this can negatively affect data integrity and security and may lead to negative
repercussions in privacy protection for both individuals and firms [63].

Additionally, supply chain exchange partners may have concerns regarding the physical security
and confidentiality of product information as it moves along the supply chain. Even though IoT
helps supply chain exchange partners to validate and verify the authenticity of items in the supply
chain‚ there are still some concerns about the vulnerability of IoT devices to counterfeiting‚ cloning,
and fraudulent practices, such as unauthorized access‚ tampering‚ and manipulation of content.
For example, if RFID tags are compromised‚ it may be possible to bypass security measures and to
introduce new vulnerabilities during automatic verification processes [64]. Moreover, the manual
retrieval and storage of information regarding unique tag identities in a centralized database enables
the reproducing or forging of this information at any time [65]. Therefore‚ it is difficult to identify
counterfeit products accompanied by misleading provenance histories [59].

Finally, centralized systems may pose a weakness for IoT deployments in the supply chain for
traceability purposes. The existence of centralized institutions may lead to distrust (or suspicion), which
may limit the further improvement of supply chains [66]. A centralized approach for data hosting and
control can lead to several business risks and operational issues related to data integrity, security, and
privacy. For example, cloud-based solutions for monitoring IoT data may be subject to manipulation
and privacy legislation issues that arise when exporting substantial amounts of confidential and highly
sensitive information to external services in other jurisdictions [31,60]. Additionally, these solutions
may cause opacity and increase information asymmetry between supply chain exchange partners.
A compounding factor is that centralized systems act as a black box, and the participating nodes do
not know how their data is stored, managed, utilized, and secured [67]. Blockchain technology can
help to alleviate several of these problems.

4. Blockchain Technology

A Blockchain is defined as a “digital, decentralized and distributed ledger in which transactions
are logged and added in chronological order with the goal of creating permanent and tamperproof
records” [34] (p. 547). Essentially, it is a novel mechanism for storing, securing and sharing data
between multiple nodes in a network [68]. A Blockchain breaks away from the traditional centralized
approach by managing chain data across a distributed and interlinked network of nodes. The main
characteristics of Blockchains are shared recordkeeping‚ immutability, decentralization, distributed
trust, multiple-party consensus‚ independent validation‚ tamper evidence, and tamper resistance [69,70].
The term ‘Blockchain’ gained its popularity as the output of a combination of configured technologies,
tools and methods underpinning the cryptocurrency Bitcoin. In itself, Bitcoin is a decentralized digital

https://www.gartner.com/smarterwithgartner/how-to-tackle-dark-data/
https://www.gartner.com/smarterwithgartner/how-to-tackle-dark-data/
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currency based on an open system of computer networks and online communication protocols [33]
and was the first successful application built on an online Blockchain.

Blockchains can be configured to encrypt and store on-chain or off-chain data and record
timestamped transactions. Furthermore, they can automate agreements through the utilization of smart
contracts to run procedures based upon a set of conditions‚ terms‚ and rules that participants in the
system have agreed upon [71]. A Blockchain platform can support multi-party exchange relationships
in global supply chains by authenticating participant identities‚ authorizing their access and enhancing
recordkeeping of transactions. This capability is possible by cryptographic mechanisms and recursive
hashing of blocks. Each block contains a header and a body, the former of which contains the hash
of the previous block, thus connecting the individual blocks. Any attempt to tamper with a block
necessitates that the headers of previous and consecutive blocks be changed accordingly to avoid
detection, and it gets progressively more difficult to tamper with as the chain gets longer. Since their
pervasiveness and distributed nature characterize IoT networks, a centralized approach to collecting,
storing, and analyzing all relevant supply chain data may cause delays and lead to a situation often
referred to a single point of failure. A Blockchain, therefore, has the potential to address the challenges
mentioned above and provide supply chain exchange partners with trust based on decentralization [31].
The lack of centralized controls in Blockchains ensures a high-level of scalability and robustness by
using resources of all involved nodes and eliminating many-to-one traffic flows [30].

5. Combining IoT with Blockchain Technology: Emerging Research Areas

Blockchains allow for the decentralized aggregation of vast amounts of data generated from IoT
devices and ensures that benefits are shared more equitably across supply chain exchange partners.
In the following sections, we discuss the main research areas at the intersection between IoT and
Blockchain technology including scalability, security, immutability and auditing, effectiveness and
efficiency of information flow, traceability and interoperability, and quality as is shown in Figure 1.
We end each section with a question for further research.
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5.1. Scalability

Unlike mining nodes in cryptocurrencies‚ IoT devices such as sensors have limited computing
ability‚ which is both difficult and computationally expensive to improve [72]. Several Blockchain
solutions have been developed and introduced to address the scalability requirements of IoT in the
supply chain. Depending on the industry type‚ consensus mechanisms and Blockchain structures might
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be more or less compatible with IoT applications. In this regard, private or consortium Blockchains are
viewed as highly beneficial for many supply chain applications because they have a limited number of
nodes and can apply IoT data filtering to increase the scalability of the Blockchain. Applications can
integrate IoT networks with smart contracts and benefit from enhanced scalability with a capacity of
tens of thousands of transactions per second [73].

The evolving Blockchain architecture leads to the emergence of ‘off-chain’ scaling solutions. These
include so-called sidechains, which are chains that run in parallel to the Blockchain and allow the
transfer of value between them [74]. The ever-increasing data generated from IoT devices in the
supply chain can be encrypted and stored in the sidechains, and a reference to them can be added
into the main Blockchain. This functionality helps to significantly reduce the storage complexity by
offloading the data from a Blockchain in terms of transactions processed [75]. Moreover, although in
its infancy and with a lack of interoperability standards, inter-Blockchain communication promises
higher levels of scalability [76]. Examples of transactions that can run on the sidechains include fast
payment systems‚ crowd sale and token distribution‚ transfer of digital assets‚ and ID generation.
Off-chain models widen the scope of Blockchain uses by setting up networks which operate certain
functions within the Blockchain model‚ but also localizing certain operations outside the Blockchain
system [77]. These might include off-chain smart contracts, raw files of third-party food safety, quality,
or faith-based certifications (e.g., HACCP, BRC, Halal, Kosher); third party analytical laboratory results
and quality records.

A configured Blockchain could be administered in either a centralized database (e.g.‚ MySQL) or
in the form of Distributed Hash Table (DHT) technology [78,79]. In this way, (off-chain) transactions
are performed faster, and scalability is enhanced [80]. Beyond this‚ off-chain solutions hold promise for
being compatible with business infrastructures containing non-vital information [81]. More examples
of off-chain methods include multi-chains (e.g.‚ the Cosmos network powered by Tendermint [82]),
the lightning network [83]‚ payment channels (e.g.‚ Raiden [84]‚ and Sprites [85]).

Furthermore, Blockchain-enabled IoT applications in the supply chain are evolving to the specific
network characteristics of IoT, such as heterogeneity‚ dynamic topology‚ complexity‚ scalability‚
throughput‚ and memory size. These methods aim to enhance the scalability by altering the core
elements of the Blockchain transaction, including the increase of the block size‚ the use of new or specific
lightweight network protocols for IoT devices [73–86]‚ sharding techniques (i.e., splitting work between
subsets of nodes in order to increase throughput) [87] editable Blockchains [88] and the Directed
Acyclic Graph (DAG) [89,90]. Increasing the block size of public Blockchains can further enhance
scalability and offer additional storage and processing capabilities but may slow down the propagation
rate of blocks in the network. The development of Blockchain scalable protocols for IoT applications
(e.g., Delegated Proof of Stake‚ Practical Byzantine fault tolerance‚ Proof of Assignment [91]) could
significantly improve the scalability and the flexibility of the Blockchain system. Moreover, the design
of IoT-specific consensus protocols would benefit the integration of a Blockchain in an IoT-based supply
chain and create opportunities for developing content-oriented consensus protocols. Collectively, these
advancements will enhance the integrity of sensory data through the cross-validation with the sensory
data from other IoT nodes and historical data [92].

Sharding is a novel mechanism to alleviate scalability by distributing contents of a database across
nodes in a network [93]. Partitioning a Blockchain might be especially suitable for IoT-enabled supply
chains where the main chain handles less frequent global events (e.g., global transshipments‚ containers
operations‚ disaster monitoring, and emergency plans) while secondary chains are established for
recording frequent local transactions and logistical events of interest only to regional networks
(e.g.‚ inbound logistics‚ production monitoring‚ inventory control) [73]. However, the consistency and
efficiency of inter-communication among Blockchain shards remain a challenging task to maintain.
For example, the need for a scalable distributed ledger for IoT devices has resulted in the emergence
of alternative data structures such as IOTA. Unlike traditional Blockchains, IOTA is a distributed
architecture build upon a DAG called Tangle [90]. The tangle serves as a data structure that offers a
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set of significant advantages, including scalability‚ efficiency, fee-less, and real-time transactions [94].
Every node that registers a transaction has to verify two other transactions before its transaction is
verified, which significantly speeds up the validation process. The Tangle meets the requirements of
storing massive amounts of data and high-speed access to them. Moreover, its design introduces a new
approach for reaching consensus and resolves the (often prohibitive) fees for microscale transactions
required by IoT sensing and actuating use cases [95]. This implies that the applications of IoT in
the supply chain will be enabled by a supporting platform that moves toward a more efficient and
economic machine-to-machine interaction. In the case of multi-directional and tightly integrated
supply chains, this might further lead to potential cost-savings and opportunities to generate new
revenue streams. For instance, IOTA offers an IoT marketplace wherein sensor data can be bought and
sold using Blockchain technology [96]. Various use cases illustrate the ability to transfer sensor data
from the physical layer to the service layer more rapidly and securely, leading to real-time streamlining
of transactions and better evaluations of different scenarios and tradeoffs (e.g.‚ the choice of suitable
protocols)‚ and more increased micro-level IoT integration [97].

Even though existing proposals for enhancing scalability are confronted by the difficulty to
combine decentralization‚ scalability, and security‚ the scalability of Blockchain technology is not
necessarily an inherent problem for its integration with IoT-based supply chains. Likewise, many
innovative and more scalable solutions are still under development to make Blockchain technology
a key catalyst for transferring value and efficiently allocating resources among IoT networks in the
foreseeable future. Parallel to this approach‚ Blockchain technology is reinventing cloud computing
technology in that it facilitates greater levels of IoT scalability and mobility [98]. A practical use case
that has emerged from coupling Blockchain with cloud storage is the IBM Watson IoT Blockchain which
operates in a cloud environment and helps to process massive amounts of data among heterogeneous
devices [31]. To empower IoT devices and sustain their operations in a completely trustless ecosystem‚
Ming et al. [99] propose the combination of service-centric networking (SCN) and Blockchain technology,
in which the Blockchain is backed up by the ubiquitous IoT devices mobility and the global scalability
offered by SCN. In sum, we put forward the following research proposition (RP):

RP 1: Blockchain technology positively impacts the scalability of IoT solutions.

5.2. Security

With the increasing complexity of supply chains and the proliferation of exchange partner
relationships, firms are driven to secure their data and information exchanges as well as the integrity
of their physical objects to protect against theft and various forms of illicit trade including diversion
and counterfeiting. For example, companies need to keep pace with the continuous development
of covert, overt, and forensic technologies to secure or monitor physical objects such as products,
totes, pallets as well as supply chain operational events. In this regard‚ IoT and Blockchain are two
emerging technologies that can enhance productivity and assist in assuring the integrity demanded by
supply chain exchange partners. The combination of Blockchain technology with IoT is viewed as
having substantial transformative power across several industries [100] since it shows a promising
avenue for enabling the management of IoT devices [101,102]. The combination of Blockchains and IoT
ushers in a more resilient, responsive, and distributed peer-to-peer system with the ability to interact
with supply chain exchange partners in a ‘trustless’, secure and real-time manner. More importantly,
Blockchain-enabled systems are capable of transforming the potential benefits of IoT and bridging the
gap of device-data interoperability while maintaining security, privacy, and reliability.

Blockchain facilitates the resolution of several security challenges inherent in IoT devices and
networks, such as unique device identification and trust management between different devices,
data and information provenance tracking (to the authoritative source versus custodian sources),
authentication and access control, and accountability in IoT-based applications [102]. The security
mechanism under the Blockchain system mitigates the risk of a single point of failure due to its
decentralization approach. In other words, Blockchain technology helps to eliminate the risk of network
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failure and collapse in case of a node crash. Woodside et al. [103] point out that Blockchain technology can
foster the protection of a supply chain from most malicious attacks. Moreover, Preuveneers et al. [104]
confirm the usefulness of the Blockchain protocol to secure an IoT network by enabling communication
between trustworthy nodes while eschewing malicious nodes. Blockchain technology can restrict the
access of some selected devices and minimize the possibilities of unauthorized access.

Similarly, IoT serves as a link between the physical and digital world. It enables supply chain
exchange partners to receive reliable information directly from the physical objects tracked on the
Blockchain. This capability, in turn, ensures the sharing of unique and authentic information from the
device, which reduces the risk of deliberate fraud whereby misleading information is added to the
Blockchain through a standard human interface. This enhances both transparency and trust because
once data (or information) is entered into the Blockchain, it is considered immutable and tamper-proof.
Any attempt at data manipulation will be quickly detected, and retrospectively traced back to its
source. Consequently, the business risk will lower significantly due to effective fraud detection and
audit enforced by Blockchain technology. However, human manipulation of data or information in
non-IoT scenarios remains a challenge for the industry. Since the IoT ecosystem relies on several
points of contact with the physical world, namely products, totes, pallets, this connection is subject
to a particular risk of tampering, falsification, and exchange party collusion. Physical objects or IoT
sensors can still be tampered with [105]. For instance, a product’s IoT enabled tag links the physical
product to its virtual identity (often called a ‘digital twin’) but does not necessarily reflect its complete
traceability and a legitimate IoT device can be removed and placed on another physical object such
as a counterfeit. An integrated system incorporating barcodes, RFID tags, sensors, and Blockchain
could facilitate consumers to reject the purchase of counterfeits even with an authentic tag if the seller
does not possess the (digital) ownership of products in the Blockchain system [106]. Consequently,
Blockchain-based solutions can help to crosscheck and verify the identification and the authenticity
of IoT devices. For example, Chronicled‚ a San Francisco-based technology startup‚ combines IoT
sensors‚ NFC embedded adhesive seals‚ and QR codes in an Ethereum Blockchain platform [107]. IoT
devices are protected against forging and counterfeiting thanks to the tamper-resistant nature of the
Blockchain. Hence, we posit:

RP2: Blockchain technology positively impacts the security of IoT solutions.

5.3. Immutability and Auditing

The integration of Blockchain technology with IoT devices advances supply chain automation
and creates an ecosystem consisting of immutable transactions that allow for improved audit. Supply
chains exchange partners gain from the combined application of Blockchain and IoT through safe
and auditable transactional data exchange within a massively heterogeneous and context-aware
setting [108]. When connected on a network, smart IoT devices can consistently and autonomously
push data into the Blockchain platform‚ creating an immutable and auditable transactional history
which is useful for product traceability, recall, product provenance, and authentication purposes.
Blockchain technology, thus, enables a fine-grained audit capability [109] where sensor values can
add additional trust incorporating real-time and immutable data [110]. These characteristics sparked
the attention of IoT technology providers who are adapting their IoT network-based solutions to
Blockchain-based technology [111].

In automating several supply chain activities, Blockchains can include and leverage smart
contracts, a term first coined by Nick Szabo in 1994 and predating Bitcoin’s usage of Blockchain by
more than a decade. A smart contract, such as an automated payment through a financial institution,
is defined as a computerized protocol that executes the terms of a contract [112]. Intelligent contracts
streamline processes‚ ensure privacy and enable supply chain exchange partners to take full advantage
of automation efficiencies. This benefit is evident in the ability to process information streamed from
IoT devices and networks without any downtime or human intervention and to support transactions
between devices [100] safely. Smart contracts can be run and stored in the Blockchain system, and they
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guarantee the execution of rules in a pre-defined way. In doing so, they support auditing processes,
and we postulate:

RP3-1: The immutability of Blockchain technology positively impacts the auditing of
IoT solutions.

The idea of a ‘mutable’ (editable, redactable) Blockchain comes as a response to the ever-increasing
complexity of the ledger, evolving business environments and the incremental accumulation of
blocks. Moreover, it may be directly related to the overall poor quality of product data across supply
networks [113]. Thus, the mutable Blockchain has been proposed to reverse‚ delete‚ and add new
blocks in the Blockchain [88]. Since supply chains are experiencing the proliferation of IoT device
usage‚ the use of editable Blockchains could address data errors caused during this nascent stage of
IoT’s evolution. As such‚ transactions generated from IoT sources and replicated across the Blockchain
network could be edited or removed while still maintaining an immutable audit trail. Examples
include IoT data for products already consumed‚ deactivated tags or sensors, reusable tags or sensors,
damaged or faulty tags or sensors‚ and outdated or retired/unusable technologies. Currently, firms
are exploring the possibility of mutable Blockchains‚ changing the way hash pointers link blocks so
that only authorized parties can modify past blocks [114]. Despite being intuitively contradictory
to immutability as a key attribute of Blockchain technology‚ these mutable Blockchains create new
opportunities but also raise new questions related to the rules and governance for performing edits
and corrective actions. Thus, we postulate:

RP3-2: Mutable Blockchain technology creates new application scenarios for IoT usage
and management.

5.4. Effectiveness and Efficiency of Information Flows

Blockchain applications create new opportunities with respect to tracking physical assets and
goods in multi-party supply chains. Verified supply chain exchange partners will be informed about
relevant assets, products or merchandise, whether online, in-transit, or in-store [77]. When informed
about the movement of physical assets (totes, pallets, shipping containers), raw materials or ingredients,
components or end consumer products, firms attain better control of their supply chains. Subsequently,
firms are increasingly facilitating consumer access to product related information online or through
mobile devices. For instance, consumers can use a smartphone to scan a barcode or QR code on
the primary packaging of a food product and access relevant data and information recorded on a
Blockchain system. This could include information such as product and brand information, allergens,
ingredients, product origin (provenance), traceability, processing method, transportation and its route
to market. The product supplier’s ability to assure transaction authenticity and record and provide an
open report on the transfer of ownership remains one of the core benefits of Blockchain technology [115].
As an illustration, the use of IoT along with Blockchain in the cold chain for the storage and distribution
of perishable food products is proving to be critical in reflecting the leverage achieved by utilizing
IoT sensors and Blockchain technology together. For example, companies such as OriginTrail and
ZetoChain use an open, standards-based Blockchain platform for the supply chain. The former
company aligns with the global industry standards body GS1 to ensure its open source Blockchain
protocol integrates and interoperates with the globally recognized and utilized industry-standard used
to uniquely identify products, physical locations such as farms, factories or distribution centers and a
firm’s unique global identification. The latter company monitors every link of the cold chain based on
the usage of IoT devices [116]. Any problem that occurs is immediately identified, and the supply
chain exchange partners are notified accordingly to enable swift action to be taken. Sensors combining
the usage of GPS, temperature data and smart contracts are harnessed to automate the process and
update a product’s digital profile whenever anomalies are detected during the distribution phase.
Accordingly, mobile apps are increasingly being used by consumers to scan labels on products in order
to locate a product’s history [117].
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Equally important‚ the combination of Blockchain technology and IoT provides a reliable
infrastructure for improving supply chain information management‚ arranging legal agreements
and securing the storage of IoT device identities throughout the product’s life-cycle stages [118].
Critical threshold data captured with sensors and stored on the Blockchain are useful for managing
plant equipment‚ predicting failures‚ and scheduling appropriate proactive repair and maintenance
before breakdowns occur. Regulators‚ suppliers of machinery and spare parts‚, as well as repair
and maintenance service providers, could gain shared access to equipment records and provide
inspections and certifications to achieve high equipment availability and utilization [119]. Therefore‚
it is anticipated that the integration of Blockchain technology with IoT will be a catalyst for increased
remote machine diagnostics‚ reciprocal data analytics‚ and machine-to-supplier interactions resulting
in improved spare parts replacement and overall maintenance practices [120]. We therefore propose:

RP4: Blockchain technology positively impacts the effectiveness, efficiency, and integrity of
information flows in IoT solutions.

5.5. Traceability and Interoperability

Blockchain technology is already used in combination with tamper-evident RFID-tags to aid in
the verification of the provenance (e.g., geographic source or origin) and authenticity of bottles of fine
wine. The tags are affixed to the cork and aim to eliminate attempts to refill wine bottles with a cheaper
product. By logging the data on the Blockchain and crosschecking the traceability and provenance of
the wine bottles, consumers can verify the history and authenticity of the purchased wine by inputting
the product ID in the system [65]. It should be noted that absolute certainty on the authenticity of
any food or drink product can only be achieved using science-based analytical testing methods of the
product itself rather than relying on covert or overt security features on the outer package. Several
projects are in development to apply a combination of Blockchain and IoT for enhanced traceability
and interoperability. For example, firms such as UK-based Evrythng; Slovenian-based OriginTrail,
a Blockchain protocol provider; and Ambrosus‚ a Swiss-based Blockchain startup‚ aim to combine the
Blockchain and the IoT for the food, consumer goods, apparel, and pharmaceutical sector. In doing so,
their Blockchain-powered IoT networks will enable a secure and frictionless dialogue between sensors‚
distributed ledgers, and databases to optimize supply chain visibility and quality assurance [121–123].
In another example, Skycell, a company developing containers for refrigerated biopharmaceuticals,
uses IoT sensors along with the Blockchain to monitor temperature‚ humidity‚ and location‚ thereby
reducing temperature deviations to a level of less than 0.1% [124]. Given these current developments,
we propose:

RP5: Blockchain technology positively impacts the traceability and interoperability of
IoT solutions.

5.6. Quality

Apart from providing a decentralized migration path for IoT data‚ Blockchain technology
addresses the problem of data and information quality existing in other information technology
platforms. It complements the need for maintaining consistent data provenance that describes where
the data of interest originates‚ who owns the data and what transformations were made to the data [125].
In this way‚ the metadata posted on the Blockchain is protected from compromise and unauthorized
disclosure. For instance, Blockchain technology is suitable for distributed cloud storage. Blending
the technology into the cloud environment can lead to improved data provenance where cloud nodes
record data over a distributed network with a fault-tolerant ledger and strong cryptography [126].
Hence‚ the ‘block cloud’—a combined usage of the Blockchain and cloud computing—paves the way
to self-sovereign data management and ownership by allowing private and contextual access to IoT
data hosted across cloud layers. In empowering IoT‚ Blockchain technology could be easily merged
with the application of big data in supply chain use cases which implies a shift for supply chains from
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being digitally enabled to digitally-led and process-centric [127]. However, several shortcomings still
exist in this infrastructural integration. For instance, big data is increasingly encountering three critical
challenges, namely control (governance and monitoring of the data structure when several parties are
involved)‚ data authenticity (reliability and trustworthiness), and data monetization (transfer of the
ownership of data and exchange in a universal data marketplace) [128]. Blockchain technology can be
used to exert more control over IoT-based supply chain data‚ ensure their integrity and immutability‚
and establish a marketplace for data provided by IoT devices [129]. Moreover‚ a Blockchain-based big
data system can facilitate aggregation of IoT data coming from scattered sources across the supply
chain‚ thus creating a more suitable data sharing ecosystem and conducive analytics for business
insights and decision making. Hence, we propose:

RP6: Blockchain technology positively impacts the quality and integrity of IoT solutions.

6. Discussion

Blockchain technology is gaining momentum in global supply chains and shows great potential
in leveraging IoT as well as enhancing interoperability and governance of IoT devices. Supply chain
exchange partners can reap many benefits from this convergence. The proliferation of IoT devices
improves the connectivity within and between multiple organizations and generates a massive amount
of valuable data. At the same time, firms strive to solve the issues of security‚ oversight‚ privacy‚ trust,
and transparency between different stakeholders [130]. When operating under distributed digital
ledger platforms such as a Blockchain, supply chain exchange partners will benefit from a new form of
governance, enhanced information transparency and improvements in the integrity of IoT transaction
data. During the physical transit of products and raw materials through supply chains‚ IoT devices can
capture data concerning specific functions (e.g., product tracking‚ machine monitoring‚ environmental
sensing) and transmit them to the Blockchain network. In turn, distributed ledgers will secure data
storage and provide more oversight for supply chain exchange partners. Moreover, analytical tools
can extract business insights from the data collection in real-time, allowing a business to sense and
respond to supply chain anomalies more rapidly.

Blockchain facilitates machine-to-machine interaction where sensors and IoT devices attached
to machinery will be synchronized, resulting in high flexibility and collaboration with exchange
partners. The importance of this new capability lies in the secure communication, confidentiality,
and integrity of the exchange transactions. Users can transact with the machines directly and
engage in on-demand manufacturing services by sending transactions to a registered machine [131].
Blockchain-based distributed ledgers that harness smart contracts enable the embedding of business
logic covering a wide range of purposes such as payment conditions‚ product acceptance, smart
inventory replenishment‚ predictive maintenance‚ and repairs.

By combining Blockchain technology and IoT‚ exchange partners gain new and timely insights
into their supply chain in real-time with more precise and reliable information about key processes,
events, and product attributes—such as quality‚ performance and availability. This fusion of IoT and
Blockchain technology can help to enhance end-to-end traceability and enable rapid recall capabilities
of unsafe goods [33]. As a result, exchange partners will be informed about the products‚ the potential
risks‚ and the preventive and corrective actions needed for sustaining the sufficient flow of safe
products to the final consumers.

The confluence of IoT-driven data‚ Blockchain technology and mobility enables physical assets
to become digitally active in the various stages of their lifecycles [132]. This implies that supply
chains need to adapt to new rules and forms of governance shaped by the specific features of these
emergent technologies, and new regulations should be created for addressing specific situations [133].
For example‚ a problem of synchronization between Blockchain and IoT-sensing devices in the cold
chain leaves many open questions as to who will be legally accountable for any eventualities associated
with the product journey in cross-border settings. The same goes for concerns regarding smart
contracts used in a Blockchain–IoT combination (e.g.‚ reliance on “off-chain” resources‚ unintended
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programming errors‚ conflicts between jurisdictions) [134]. To summarize, in this paper, we identified
various areas in which the combination of IoT and Blockchain deserves further attention. Table 2 lists
the research propositions that we derived in the previous sections.

Table 2. Summary of Research Propositions.

Proposition Area

RP 1: Blockchain technology positively impacts the scalability of
IoT solutions. Scalability

RP2: Blockchain technology positively impacts the security of IoT
solutions. Security

RP3-1: The immutability of Blockchain technology positively impacts
the auditing of IoT solutions. Immutability & Auditing

RP3-2: Mutable Blockchain technology creates new application
scenarios for IoT usage and management.

RP4: Blockchain technology positively impacts the effectiveness,
efficiency and integrity of information flows in IoT solutions.

Effectiveness and efficiency of
information flow

RP5: Blockchain technology positively impacts the traceability and
interoperability of IoT solutions. Traceability and interoperability

RP6: Blockchain technology positively impacts the quality and integrity
of IoT solutions. Quality

7. Conclusions, Limitations, and Further Research

In this conceptual paper, we have shown how the combination of Blockchain technology with IoT
can trigger new opportunities to enhance supply chain integrity and improve operational performance.
Simultaneously, the technologies can potentially yield new problems. For example, a Blockchain
provides the benefit of immutability, which is seen as a core feature. However, immutability can be
viewed as a negative feature for various reasons which are now drivers of a renewed interest in creating
‘mutable’ Blockchains. Thus, additional academic research is therefore needed to explore, explain and
predict different application scenarios rigorously. This includes the application of academic theories,
which might help to gain further insights on why specific phenomena occur.

It is important to note that there are several limitations and challenges concerning Blockchain
integration in an IoT environment [70]. The heightened increase in the complexity of IoT infrastructure
puts the Blockchain at the front of managing growing amounts of data that require high scalability.
Privacy and scalability issues can be mitigated by the use of permissioned Blockchains, which are
less resource-intensive and the concept of ‘Blockchain pruning’ (i.e., deleting unnecessary data or
obsolete transactions) has been suggested as a possible solution. Nevertheless, these alternatives fuel
the discussion over the immutable nature of Blockchains and the monopolistic approach of consortium
ledgers that creates barriers to entry and hinders innovation [135].

Beyond geographical boundaries‚ the combination of Blockchain with IoT can be delayed by both
regulatory uncertainties and the lack of industry standards [136]. Although Blockchain technology
could enhance peer-to-peer connectivity between supply chain exchange partners‚ the integration
of Blockchain and IoT challenges some of the institutional assumptions common in international
business [137]. Indeed‚ harmonization (or ‘equivalency’ between sovereign states) of data protection
laws remains a problem, while stronger industry self-regulation to govern and control the access
to data and organize their transmission both nationally and globally is a requirement [138–140].
It is still unclear how disparate Blockchain technologies and systems will interoperate with each
other and integrate with other technological artifacts. This is compounded by the existence of
unreliable and inefficient transmission standards and protocols that clog the arteries of information
sharing between the exchange partners. Additionally, an IoT environment is inherently dynamic‚
unpredictable and affected by the ever-changing laws and regulations related to security and other
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interoperability requirements [141,142]. Such sudden variability and chaotic nature necessitate new
laws and regulations urgently [143].

It is our goal in this paper to lay the foundation for further research by suggesting six different
research propositions. They need to be operationalized, refined and adapted to specific research
contexts by other researchers. In order to foster incremental research, we especially encourage
researchers to carefully investigate the applicability of existing theories to better understand emerging
phenomena at the confluence of Blockchain, the IoT, and supply chain management.
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