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Abstract: This paper investigates the market management and modeling based on advanced artificial
intelligence. The proposed model deploys the combination of the support vector machine and
fuzzy set theory to provide a practical and powerful prediction model for the market price over
the next day. A realistic and effective model is then introduced to model the market players, such
as the renewable energy sources of solar and wind turbines, as well as the fossil-fueled sources of
micro turbines and fuel cells. In order to provide an optimal management program, it introduces
a stochastic framework based on the point estimate method and adaptive grey wolf optimization
algorithm (GWO). The proposed optimization methods use an adaptive strategy to choose the
most fitting modification for enhancing the GWO performance. A realistic scenario is simulated to
demonstrate the model’s effectiveness and impression on the real market management. The results
clearly show the effectiveness of the prediction and management model. The prediction results show
the superiority of the proposed model by RMSE of 2.9643 compared to the 3.217 for SVR, 3.2364 for
ANN and 3.0621 for the grey model. Moreover, the optimal MAPE is 2.7453 by the proposed method,
which is much better than the 3.052 by SVR, 3.1552 by ANN and 2.9285 by the grey model. From
point of view of optimization, the most fitting power dispatch has been attained with the total cost of
300.8632 over 24 h.

Keywords: market price prediction; modeling and management; optimization; renewable energy sources

1. Introduction

The introduction of the electricity and energy, also called power, market is a system
which makes power purchasing and sales possible through bids to offer [1,2]. In this way,
the demand and supply regulations are deployed for clearing the market and setting the
price. The market price idea would provide a competitive environment in which electricity
consumers can play a more active role in deciding what to buy and how much to pay [3–5].
Therefore, it is clear that the price of energy would be a motivating term that would increase
demand if preserved low enough [6,7]. It is proved that the power market can support the
social welfare of the system by decreasing the power price and letting the cheap generation
players produce more power than the expensive units [8–10]. Therefore, the analysis and
modeling of the market is a very critical and significant task, which requires special work
and focus to enhance it [11]. Figure 1 shows the way that the market is cleared and its point
of common, called MCP, is determined as a tradeoff between demand and supply. One of
the most significant issues for the consumer is the estimation or prediction of the next day’s
market price for making clear policies and strategies. In recent years, much research has
been implemented, a list of which is described in the rest of the introduction.

In [12], the market price is forecasted using a hybrid generative adversarial network
model and the results are compared with the some of the most well-known algorithms
in the field. It is shown in [13] that the market price and market demand both have high
nonlinearity and non-stationary characteristics which, if combined with seasonality, would
create a big problem for accurate prediction. In [14], a heuristic flower pollination approach
is introduced in conjunction with machine learning to boost the prediction of the market
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price accuracy. The proposed model considers the feature selection based on a hybrid
regression model. In [15], authors assess the impact of renewable units on the market price
and forecasting accuracy. A novel bootstrap gradient-based architecture is deployed for
the short-term market price forecasting. In [16], a two-step market price forecasting tool is
developed which uses deep learning with a loss function. The loss function would penalize
any loss of spike in the price and thus some oversampling might be seen. Through the
spike calibration approach, the prediction accuracy is improved in the market. The Brazil
market price during the years 1998 to 2004 is assessed in [17]. It proposes a theoretical
formulation based on Markov, switching to predict the market price and showing how
a generator entry might be affected. In [18], the generator output power is forecasted to
be an indirect way for estimating the market price. It uses machine learning models and
probability sampling for analyzing the Italian electricity market. It is claimed that the
proposed method does need to access all market transactions. In [19], the market price over
the years January 2017–March 2020 are analyzed to forecast the price. It is shown in their
research that the dominant retailers can play a critical role in controling the market price
and its growth over the year. In [20], a hybrid Bayesian extreme learning and minimum
redundancy are combined to forecast the market price based on the sequence segmentation.
Two market price datasets from Ontario, Canada and New York are used to check the
accuracy of the proposed model hourly. The authors in [21] try to address the weather
effects on market behavior, including on demand and supply, using the fractional Brownian
motion. A temperature based stochastic prediction model is developed which can help
much to control the market fluctuations.

Figure 1. The market clearing price and the way it is determined.

According to the above explanations, it is well perceived that market modeling and
analysis, especially prediction of the market price, are significant tasks which can benefit
both the customers and the suppliers. This paper tries to provide market management and
prediction based on artificial intelligence (AI) [22]. The proposed AI model uses support
vector regression (SVR) [23] to avoid the possible overfitting concerns. It also suggests the
fuzzy set theory to find a way for adjusting the kernel function parameters. In addition,
the market price is then used as an input to a smart market, including several renewable
or fossil fuel-based generators. An objective function is introduced to manage the power
suppliers and minimize the cost of generation. Considering the very complex and nonlinear
fluctuations in the market price, we need to make use of a novel smart optimization
algorithm based on grey wolf optimization (GWO). It is a heuristic optimization method
which has shown great abilities over the other algorithms in the literature [24,25]. Therefore,
the main contributions of the paper can be shown as below:

• Proposing a fuzzy SVR-based prediction model for the market price
• Introducing a novel optimization algorithm called modified GWO for the optimal

scheduling of units in an economic way
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• Providing a comprehensive comparison with the most well-known algorithms in the
area such ANN, Grey model, SVR, GA, PSO and original GWO

The analysis is implemented in a physical scenario to determine the effectiveness and
influence of the proposed model. The simulation results obviously advocate the capabilities
of the proposed prediction and management models.

The paper follows a structure organized as follows: Section 2 describes the fuzzy SVR
for prediction of the market price. Section 3 describes the market model based on renewable
sources and players. In Section 3, the GWO algorithm is explained in detail. Simulation
results are then discussed in Section 4. At the end, the main conclusions are summarized.

2. Fuzzy Support Vector Regression

This section proposes a fuzzy support vector machine approach to forecast the electric-
ity market price over the next day. The original idea of support vector machine is rooted
in the nonlinear intrinsic structure of the dataset, which forces us to provide a tool for
handling this nonlinearity. In this way, a support vector is able to assign a linear function on
the nonlinear problem in a higher dimension. To describes this method, the sample points
are shown by {(xi, yi)}M, wherein M represents the size of the sample. In order to make a
nonlinear mapping in the higher dimension, Λ(.) is considered to form the input limited
dimension to the output space with high dimension as Λ(.) : <n → <nh . This is the core
idea of the SVR, which has made it a popular and successful method in machine learning.
Figure 2 shows this idea from 2D to 3D conversion. As shown in Figure 2, a nonlinear
relationship which is not detectable in 2D can be easily separated by a linear function in a
3D space. The linear function, also called the SVR function, may be formulated as below:

f (x) = WTΛ(x) + b (1)

In the above equation, the symbols W (W ∈ <nh ) and b (b ∈ <) are the model
coefficients, which, if adjusted well, make the final model trustable. The training process is
through optimizing the error between the real data WTΛ(x) + b and the simulated data y
as below:

RSVR =
1
M

M

∑
i=1

Eε(yi, WTΛ(xi) + b) (2)

In this equation, Eε(yi, f (xi)) plays the role of the ε-insensitive loss function that is
interpreted as below:

Eε(y, f (x)) =
{
| f (x)− y|−ε; | f (x)− y|≥ ε
0; Else

(3)

Other than the training error, the SVR minimizes the structural complexity, which is
shown by multiplication of weighting factors, as below:

MinW,b,ξ∗ ,ξ Rε(W, ξ∗, ξ) =
1
2

WTW + C
M

∑
i=1

(ξ∗i + ξi) (4)

The first item in this formulation represents the model structure’s complexity, which,
if it becomes too high, the overfitting problem appears. In addition, the parameter C is
the constant value employed in the model structure for balancing between the error and
complexity. The variables ξ∗i /ξi are errors below or above the allowed values of –ε and
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+ ε, respectively. The dual format of the objective function in the new structure may be
represented by (5), which is solvable linearly:

yi −WTΛ(xi)− b ≤ ε + ξ∗i ; i = 1, . . . , M
−yi + WTΛ(xi) + b ≤ ε + ξi; i = 1, . . . , M
ξ∗i ≥ 0; i = 1, . . . , M
ξi ≥ 0; i = 1, . . . , M

(5)

Figure 2. The higher dimension concept in the SVR.
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A linear solution of the above equation would easily determine the optimal value of
the weight factor, as below:

W =
M

∑
i=1

(β∗i − βi)Λ(xi) (6)

In this model, the new parameters β∗i and βi are called the Lagrangian multipliers.
Deploying β∗i and βi provides the dual format of the model, as below:

f (x) =
M

∑
i=1

(β∗i − βi)K(xi, x) + b (7)

K(xi, x) = Λ(xi)
◦Λ
(
xj
)

(8)

In (8), the term K(xi, x) is named a kernel function. Theoretically, the kernel function
meets Mercer’s condition [26].

A significant point is that the kernel function can much help the mapping process,
due to its role in the connection of the input and output in the dataset. Fundamentally,
the kernel function is computed by the inner multiplication of ϕ(xi) and ϕ(xj). There are
different types of kernels, such as the Gaussian or RBF, which can be used. This article
proposes a fuzzy model for the kernel function, which can enhance the model performance
by suitably adjusting the fuzzy membership function. Figure 3 shows the trapezoidal fuzzy
function considered as the kernel function in our model. The input feature of the function
is the same as the kernel function in (7). The way that the output is determined instead can
help us much in finding a better nonlinear mapping.

Figure 3. Fuzzy membership function used as the kernel function.

3. Market Economic Problem Formulation

In this section, an economic model is developed for the market players, including the
consumers (loads) and generators (renewable and non-renewable sources), to make sure
that the analysis can mitigate the total cost which is beneficial to both players. In order
to model the market players, we first try to give a cost function which focuses on the cost
of generation by the private generators, utility and battery storage. Therefore, we have
considered the two renewable sources of wind turbines and solar units, and two other
dispatchable units, i.e., micro turbines and fuel cells. The main goal is that the total power
generation would cost the customers less based on the market hourly price. Therefore, the
cost function is formulated as in (9), where the first term is the generators’ power cost, the
second term is the cost of On/OFF, the third term is the storage cost and the last term is the
utility cost:

Min f (X) =
T
∑

t=1
Costt =

T
∑

t=1
{

Ng

∑
i=1

[ui(t) pGi(t)BGi(t) + DGi×

max(0, ui(t− 1)− ui(t)) +
Ns
∑

j=1
[uj(t)psj(t)Bsj(t)]

+ pGrid(t)BGrid(t)}

(9)
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where T shows the time interval length (here 24 h), Ng shows the number of generators,
ui(t) is the status of a generator, pGi(t) is the generator power output, BGi(t) is the bidding
of the generator, DGi is the On/Off switching cost, Ns is the number of storages, uj(t) is
storage status, psj(t) is the storage power value, Bsj(t) is the storage power price, pGrid(t)
is the main utility power value, and BGrid(t) is the grid price.

The control vector which is used for optimizing (9) contains some terms, as below:

X = [Pg, Ug]1×2nT ;
Pg = [PG, Ps] ; n = Ng + Ns + 1
PG = [PG,1, PG,2, . . . , PG,Ng ];
Ps = [Ps,1, Ps,2, . . . , Ps,Ns ]
PG,i = [PG,i(1), PG,i(2), . . . , PG,i(T)]; i = 1, 2, . . . , Ng + 1
Ps,j = [Ps,j(1), Ps,j(2), . . . , Ps,j(T)]; j = 1, 2, . . . , Ns
Ug = [u1, u2, . . . , un],
uk ∈ {0, 1}
uk = [uk(1), uk(2), . . . , uk(T)]; k = 1, 2, . . . , n

(10)

where PG is the generator output power and Ps is the storage output power.
The above cost function is optimized by meeting some operation limits which are

explained in detail. Each of the limits is explained here:

(1) the total demand should be provided by the generators and storage, and the utility as
active suppliers, to clear the market, as below:

Ng

∑
i = 1

PG,i(t) +
Ns

∑
j= 1

Ps,j(t) + PGrid(t) =
NL

∑
l = 1

PL,l(t) (11)

In the above, PL,l(t) is the load demand at time t and NL is the number of load levels
in the system.

(2) each dispatchable generator or unit is allowed to produce in its limited range, as below:

PGi,min(t) ≤ PGi(t) ≤ PGi,max(t)
Pgrid,min(t) ≤ PGrid(t) ≤ Pgrid,max(t)
Psj,min(t) ≤ Psj(t) ≤ Psj,max(t)

(12)

In (12), the min/max indices technically show the least and highest possible values.
(3) The battery storage can only charge/discharge according to its limited charging and

discharging rate, as well as the energy storage limit:

∆ess(t) = ∆ess(t− 1) + ηchargePcharge −
1

ηdischarge
Pdischarge (13)


∆ess,min ≤ ∆ess(t) ≤ ∆ess,max
Pcharge(t) ≤ Pcharge,max
Pdischarge(t) ≤ Pdischarge,max

(14)

where ∆ess(t) is the energy stored at time t, ηcharge is the charging efficiency, ηdischarge is the
discharging efficiency, Pcharge is the charging power and Pdischarge is the discharging value.

4. Adaptive Grey Wolf Optimization Method

In order to solve the problem formulation described in the last section, we need to
make use of a suitable and reliable optimization algorithm. This paper proposes an adaptive
grey wolf optimization (AGWO) to make sure that the optimization success is guaranteed.
The original GWO is a heuristic method which uses the evolutionary habit of wolves in
hunting prey. The GWO is a newly introduced algorithm which has some key features
which make it a very powerful optimizer for nonlinear problems. Some of the main features
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of GWO include: being a simple concept, ease of implementation, powerful local search
operators, providing an appropriate balance between local and global searches, and its
sub-division ability. These animals live in a group and try to make use of the experience of
leaders to make the hunt a successful process. Meanwhile, the leaders can consult with
each other to obtain the most promising solution. Other than that, the leaders in some
circumstances listen to the wolves to make sure that the maximum efficiency is attained.
This shows a low level of democracy, which can boost the optimization process. The main
leader of the group is called alpha α. This is the wolf with the smartest decisions in hunting.
The next dominant wolf is called beta β, which can play the role of a leader for the group
in the absence of α. Moreover, in the presence of α, beta can help him through consultation.
In each group, the wolf with the least quality is called omega ω, which are assumed to
be workers and need to obey the leader. The remaining wolf members in the group are
called delta δ. Figure 4 provides a simple diagram showing the position of these members
in the GWO.

Figure 4. GWO algorithm structure and concept.

In order to mathematically formulate the idea of grey wolf hunting, we first produce
the group of wolves, control vector, in a matrix. After calculating the cost objective for
them, the population is sorted in a downward order and the alpha, beta, delta and omega
members are determined. In the improvization stage, the wolves hunt a prey which is
simulated in a circle with dimension:

D =
∣∣ϑ1 × Xp(k)− X(k)

∣∣ (15)
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where ϑ1 is a random coefficient, k shows the epoch number and Xp is the prey position.
The position of each wolf is updated according to (15) as below:

X(k + 1) =
1
3 ∑

p=α,β,δ

(
Xp(k)− ϑ2 × Dp

)
(16)

where ϑ1 is a random coefficient. The GWO suggests to update the coefficients ϑ1 and ϑ2 in
a recursive way. Therefore, it suggests a recursive formulation to update it, as below:

ϑ1 = 2aλ1 − a (17)

ϑ2 = 2aλ2 (18)

a = 2− 2(k/kmax) (19)

λ1&λ2 = rand (20)

In the above equations, the parameter a is a decreasing value in the domain (0,2). More
explanations on the original GWO can be found in [19,20].

This paper proposes an adaptive formulation to enhance the search process in the
GWO. The adaptive mechanism can choose the best modification in an iteration according
to its success. First, the modifications are explained:

- Modification 1: This modification uses an exchange mechanism to combine two
optimal solutions in the genes (like GA) in each vector randomly. Each grey wolf
would attend this operator and exchange data with the leader alpha Xα:

xnew
i,j =

{
xα,j; ϑ3 < ϑ4

xrand
i,j ; ϑ3 > ϑ4

Xα = [xα,1, . . . , xα,d]

Xrand
i = [xrand

i,1 , . . . , xrand
i,d ]

(21)

where ϑ3/ϑ4 are random variables in the range (0,1).
- Modification 2: This modification would try to enhance the mean of the grey wolf

population using a motivating operator as below:

Xnew
i = Xold

i + LF(Xα − Xβ) (22)

where LF is an integer value of either 1 or 2.

Each grey wolf is allowed to pick one of these two modifications which best fits its
situation. The probability of success for each modification is determined by an n index
called Prbθ = 0.5 & θ = 1,2. Moreover, a storage is considered whose value is zero at the
beginning, but as time passes, it is updated as below:

Acumθ = Acumθ +
κl

nModθ

l = 1, . . . , nModθ
(23)

κj =
Log(N − j + 1)

n
∑

i=1
Log(i)

; j = 1, . . . , N (24)

In the above, κj is the weight each solution Xj and N is the size of the population. The
probability of any modification method is updated as below:

Prbθ = (1− ε)× Prbθ + ε× Acumθ

k
, (θ= 1, 2) (25)
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where ε is a constant value for balancing the two modifications. In the last step, the Prbθ is
normalized as follows:

Prbθ =
Prbθ

(
2
∑

θ=1
Prbθ)

(26)

5. Simulation Results

In this section, a test system is used for examining the proposed model. The test
system structure is shown in Figure 5. As is seen here, there is a wind turbine, a fuel cell,
a micro turbine and a solar panel installed in the system as the generators. In addition,
battery is considered to play the role of an active player as ancillary services. The utility,
also as a big supplier, can attend the market and sell its power. The total power generation
of the wind and solar units are plotted in Figures 6 and 7, respectively. Furthermore, the
market demand is considered as shown in Figure 8. It is worth noting that this demand can
also be predicted, but since the paper’s focus is on the market price, it is ignored in this
research, though the solution procedure is the same.

Figure 5. Single line diagram of the MG test system [27].

Figure 6. Wind turbine output power.



Sustainability 2022, 14, 8503 10 of 14

Figure 7. Solar panel output power.

Figure 8. Market demand production.

Table 1 summarizes the test system data, including the capacity and prices of each
generator. In order to show first the accuracy of the proposed prediction model for market
price forecasting, the historical data over a year of Tehran Electricity market are considered
as the benchmark [28]. The recorded data include the hourly market price over 480 h in
2018, from which 90% is used as the training set, 5% as the validation set and 5% as the test
set. Therefore, we consider the next 24 h as the prediction time horizon. The comaprisons
are made according to MAPE and RMSE, as described in [29]. For the sake of simplicity, the
formualtions are not provided here but can be found in [29]. Table 2 shows the prediction
results using the proposed fuzzy SVR (FSVR), the original support vector machine, artificial
neural network (ANN) and the grey model. As can be seen in this table, the proposed
FSVR shows a higher training result, as reflected in the MAPE and RMSE. The proposed
model could enhance the RMSE rather than the SVR, ANN and grey model by 7.8%, 8.4%
and 9.2%, respectively. A complete comaprison is provided in Figure 9. Almost similar
iprovements can be seen for the MAPE. The same conclusion might be made for the RMSE,
of which the low value shows the very high robustness. Figure 10 shows the forecast curve
plotted in the same figure with the real data. The appropriate accuracy can be deduced
from the following nature of the forecast signal that can be seen here.
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Table 1. Data of the test system.

Type Min Power
(kW)

Max Power
(kW)

Offer
(EUR/kWh)

Start-Up/Shut-Down
Cost (EURct)

Micro turbine 6 30 0.457 0.96
Fuel cell 3 30 0.294 1.65
Solar unit 0 25 2.584 0
Wind unit 0 15 1.073 0
Battery −30 30 0.38 0
Utility −30 30 - -

Table 2. The results of prediction by the fuzzy SVR for the market price.

Type Grey Model ANN SVR FSVR

MAPE 2.9285 3.1552 3.052 2.7453
RMSE 3.0621 3.2364 3.217 2.9643

Figure 9. The percentage improvement made by the proposed prediction model compared to SVR,
ANN and Grey model.

Figure 10. Forecast market price value versus real data.
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Considering the market price, as shown in Figure 10, the cost minimization problem
is solved using the AGWO algorithm. It is assumed that the battery has an initial charge
of zero. The optimal scheduling is for 24 h (a full day). However, in order to see the
search ability of the algorithm, the optimization process is repeated 25 times. Through this
repetition, the best solution, the average of the optimal solutions and standard deviation
values, would be achieved. This is a well-defined approach for assessing the stability of the
algorithm. The simulation results are repeated 25 times and the final results are provided
in Table 3. Accordingly, it is seen here that the proposed algorithm has discovered a more
optimal solution than the other algorithms. The performance of the proposed algorithm is
compared with the PSO, GA, FSAPSO and original GWO, and the results clearly show the
superiority of the algorithm. Not only the best solution, but also the worst solution and
standard deviation values, are still optimal compared with the other algorithms. These
results show the robustness of the algorithm. The very time saving nature of the AGWO
may be deduced from the last column, showing the CPU time. This is especially important
if the operation time interval is reduced in the management (such as to 10 min or less). The
results evidently reveal the high quality and search features of the algorithm for solving
the problem. The optimal power generation and charging values of each unit is plotted
as a bar diagram in Figure 11. According to this bar diagram, the battery is trying charge
during the first hours and discharge during the mid-hour times. Moreover, the fuel cell, as
a cheap unit, is attending with the maximum capacity. The utility is changing to a buyer of
the power at the middle of the day to let the market increase its profit. The renewable wind
and solar energy sources are also producing as forecasted in their initial power curves.

Table 3. Simulation results of optimizing cost function over 25 times.

Method Best Solution
(EURct)

Worst Solution
(EURct)

Standard
Deviation
(EURct)

CPU Time
(s)

GA [27] 335.0707 345.4849 20.9302 17.451
PSO [27] 329.4922 341.9583 15.2483 16.263
FSAPSO [27] 328.6594 336.5502 12.8409 15.685
GWO 320.3640 334.3312 8.84420 16.862
AGWO 300.8632 305.8774 0.75270 9.1673

Figure 11. Output Power of RESs evaluated by the proposed method.

6. Conclusions

The focus of this work is to study market management and modeling based on AI.
The proposed model uses the fuzzy-based SVR for the prediction of the market price with
high accuracy. A management model based on cost minimization and unit dispatch is
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developed in the study, which can help scheduling the units. A novel adaptive-modified
GWO is also devised which can help to minimize the operation cost over the next 24 h. The
adaptive formulation is such that it allows the algorithm to chose the best modification
according to its success rate and probability. The simulation results show that the proposed
model has an appropriate performance for market price prediction with low MAPE and
RMSE. Furthermore, it is seen that the test system model can suitably optimize the total
cost of operations, including the solar and wind renewable energy sources, as well the fossil
fuel-based models, such as fuel cell, micro turbine and battery. The AGWO’s superiority
over the set of algorithms is well proved.
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