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Abstract: Water pollution is caused by multiple factors, such as industrial dye wastewater. Dye-
contaminated water can be treated using hydrogels as adsorbent materials. Recently, composite
hydrogels containing metal oxide nanoparticles (MONPs) have been used extensively in wastewater
remediation. In this study, we use a statistical and artificial intelligence method, based on principal
component analysis (PCA) with different applied parameters, to evaluate the adsorption efficiency
of 27 different MONP composite hydrogels for wastewater dye treatment. PCA showed that the
hydrogel composites CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose should be used
in situations involving high pH, time to reach equilibrium, and adsorption capacity. However, as the
composites PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and PVPA/Fe3O4@SiO2,
are preferred when all physical and chemical properties investigated have low magnitudes. To
conclude, PCA is a strong method for highlighting the essential factors affecting hydrogel composite
selection for dye-contaminated water treatment.

Keywords: dye removal; hydrogel; hydrogel composites; machine learning; metal oxide nanoparticles;
principal component analysis; wastewater

1. Introduction

Dyes are made of synthetic organic material. They are mutagenic and exhibit biolog-
ical toxicity, such as teratogenicity and carcinogenicity [1,2]. Dyes are primarily used in
the production of some consumer goods, including textiles, plastics, paints, paper, and
printing inks. According to recent studies [3], approximately 60,000 tons of dyes are dis-
charged annually worldwide. Synthetic and organic dyes are mainly produced through the
textile dyeing process. Azo dyes, which correspond to more than half of the total global
production of dyes, represent a major part of artificial dyes [4,5]. Due to their complex
molecular structure, synthetic dyes are known to be refractory to temperature [6], and very
stable; hence, they are not easily biodegradable [7]. Subsequently, dye-contaminated water
discharged by industries is one of the major water pollution issues threatening drinking
water supplies [8].

Huge efforts and numerous physical, chemical, and biological remediation methods
have been devoted to the treatment of the aquatic environment [9]. In particular, phys-
ical processes, including adsorption, show promising and long-term sustainable efficacy
in treating dye-contaminated water [10]. Indeed, adsorbent materials are very capable of
eliminating contaminants [11]. By definition, adsorption is a surface phenomenon in which
a solute adheres to a solid sorbent. The solute can be an atom, ion, or molecule in a gas or
liquid state. Adsorption processes have several advantages over other methods, such as
filtration, precipitation, coagulation, reverse osmosis, ion exchange, and oxidative processes.
In addition, adsorption processes are effective against a wide range of pollutants while
keeping a simple design and a low cost [12–14]. When dye-contaminated waters, hydrophilic
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materials, and functional materials are considered, there is a tendency to favor better im-
proved adsorption results. Recently, the use of composite hydrogels for adsorption has been
the focus, thanks to their promising properties in comparison to conventional hydrogels or
some other hydrophilic materials [10]. Due to their three-dimensional network structure
and polymeric hydrophilicity, hydrogels are able to adsorb large quantities of water and to
swell while preserving their structures. This is due to individual polymer chains that are
chemically or physically cross-linked [10]. These composites can also be enriched with a
variety of functional groups to further improve the adsorption of dyes and heavy metal ions
from aqueous media.

Recently, composite hydrogels containing metal oxide nanoparticles (MONPs) have
been extensively prepared as they have been used in different areas, including environmen-
tal remediation [15–17]. The use of these composites in the treatment of dye-contaminated
water has received particular attention [10,18,19]. MONPs have numerous characteristics,
such as specific adsorption properties [20], magnetic features, and redox capabilities. There-
fore, in addition to their ability to improve hydrogels’ electrical, mechanical, and thermal
properties, MONPs have been used to enhance adsorption selectivity and catalytic activity
in pollutant species degradation [21,22]. By adjusting the external magnetic field, they
can also allow for remote control of swelling and analyte adsorption/desorption. In fact,
composite hydrogels containing magnetic MONPs can reversibly change shape and volume
in response to external magnetic fields [23–25]. Because an external magnetic field imposes
attractive/repulsive forces, the movements of the embedded magnetic nanoparticles di-
rect the polymeric chains’ contraction and distention [26]. As a result, liquid diffusion
throughout the hydrogel matrix can be tailored, influencing the adsorption/desorption
of the concerned solutes, such as dye molecules. The ability to easily recover from the
treated media using magnets represents one more advantage for composite hydrogels
containing magnetic compounds when compared to the use of more arduous processes,
such as filtration, sedimentation, or centrifugation [27,28].

Principal component analysis (PCA) with several parameters was used to assess
the adsorption efficiency of composite hydrogels containing MONPs in wastewater dye
removal. PCA is generally used to reduce the parameters of a dataset by generating linear
combinations of the original parameters, and thus to identify the main parameters required
to enhance and improve a given process [29–31]. Following the huge number of parameters
affecting the effectiveness of composite hydrogels containing MONPs for wastewater
treatment, a PCA study can be implemented to pursue intercorrelation in parameters
associated with adsorption efficiency. In this work, we used the same methodology as our
previously published work on dye removal using graphene oxide hydrogels [29]. Herein,
we conduct our analysis on 27 different MONPs hydrogel composites, and we examine
the intercorrelation between five parameters, namely pH, adsorbent dosage (D), time to
reach equilibrium (ET), adsorption surface (qm), and the content of MONPs in the hydrogel
(MONP%). To the best of our knowledge, this is the first statistical and artificial intelligence
study that has been used to assess the adsorption efficiency of MONPs containing hydrogels
for dye removal.

2. Results and Discussion

PCA analysis was conducted on previously published data (Table 1) from the study of
Pereira et al. [10]. Figure 1 presents the PCA bi-plot for previously published data on the
physical and chemical properties of various composite hydrogels containing MONPs used
for dye removal from water [10]. The first two PCs were responsible for 61.89% of the total
variance (37.15% for PC1 and 24.74% for PC2) (Figure 1). When the physical and chemical
properties of composite hydrogels containing MONPs (and derivatives) were considered,
they yielded similar results to those of PCA [29]. This indicates that the PCA approach
is equally efficient for both dataset approaches. ET provided the highest contribution to
PC1 for the factor MONP% and accounted for 76% of its total contribution. The high
contribution of MONP% was surprising, given that fewer data for this factor were provided
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following the various investigated samples (Table 1). In terms of PC2, pH was the most
significant factor, accounting for 70% of its total contribution. The large disparity in factor
contribution following the first two PCs indicates the representability of the investigated
physical and chemical properties for the various hydrogels under consideration. MONP%
and ET had a strong positive influence along PC1, with no to minor positive influence
along PC2. This could probably indicate a high correlation between the necessary time to
reach equilibrium, from one side, and the carbon content, from the other side. Nonetheless,
this could not be confirmed or infirmed following the shortage in data with regard to the
carbon content. For pH, it showed a high positive influence along PC2, with no influence
along PC1. As for qm, it showed an average negative influence, and a positive influence
along PC1, and PC2. Interestingly, D showed nearly no influence on either PC.

Table 1. Physical and chemical properties data of different composite hydrogels containing MONPs
used for the removal of dyes from water (adapted with permission from Pereira et al. Ref [10]).

MONPs Composite Hydrogel Composite # MONP% D ET qm pH Ref

CTS@ Fe3O4 1 - 1 400 142 7 [32]
ALG@Yttrium 2 - 2 30 1087 6 [33]

Collagen-g-PAAc-co-NVP/Fe3O4@SiO2 3 - 0.05 150 199 7 [34]
PAAm-co-AAc/TiO2 4 20 1 - 2.2 - [35]

PAAm/TiO2 5 0.5 - 600 132 6.5 [36]
St-g-PAAc/ZnSe 6 - 1 30 189 6 [37]

PAAc/Co3O4 7 - 0.5 30 837 - [38]
PEGDMA-rGO/Fe3O4@cellulose 8 30 2.5 720 112 7.4 [39]

CTS/Fe3O4@κ-CARR 9 - 2 30 123 5.5 [40]
CTS/MMT/γFe2O3 10 - 100 180 82 - [41]

Collagen-g-PAAc-co-NVP/Fe3O4@SiO2 11 - 0.05 125 202 7 [34]
PVPA/Fe3O4@SiO2 12 0 1.4 - 14 - [42]

AMPS/NIPAAm/Fe3O4 13 0 1 10 833 7 [43]
AMPS/NIPAAm/Cu2O 14 0 1 35 341 7 [43]

AMPS/NIPAM/Fe3O4·Cu2O 15 0 1 5 746 7 [43]
Cellulose/κ-CARR/TiO2 16 0.7 115 7 [44]

ALG/AgNPs 17 1 120 214 - [45]
CMSt/PVA/Fe3O4 18 10 600 24 7 [46]
PAAm/CTS/Fe3O4 19 0.1 125 1603 7 [47]

Cellulose/Fe3O4-diatomite 20 0.7 30 102 10 [48]
HPG@Fe3O4 21 4 30 459 8 [49]

PAAc-co-AAm/Co3O4·Cu2O 22 0.5 40 238 7 [50]
PAAc-g-ALG/TiO2 23 0.6 1157 7 [51]

HPG@Fe3O4 24 4 30 400 7 [49]
PMOA/ATP/Fe3O4 25 3 400 1.7 4.6 [52]

PAAc-g-salep/AgNPs 26 1 20 93 2 [53]
PVPA/Fe3O4@SiO2 27 1.4 16 - [42]

MONP% = Content of metal oxide (and derivatives) (wt-%) in the composite hydrogel. D = Adsorbent dosage
(g/L). ET = time necessary to achieve the equilibrium condition (min). qm = Adsorption capacity (mg/g).

Individuals can be clustered in three ways (blue, red, and yellow) based on the different
trends found in the samples (Figure 1). Surprisingly, the red cluster contained the vast
majority of the samples examined. This cluster, along with D, qm, and pH, was positively
correlated, indicating that these properties had the greatest influence on the investigated
hydrogels. It put together samples 4, 12, 26, and 27 for the yellow cluster. All investigated
factors had a negative to low correlation with these samples. This suggests that these
hydrogels could be used in situations where low pH, adsorbent dosage (D), time to reach
equilibrium (ET), and adsorption surface (qm) are required. Only samples 8 and 18 were
collected for the blue cluster because they were positively correlated with ET and MONP%.
Interestingly, both hydrogels included ferric oxide in their composite structure, despite
the fact that this feature is not unique to them. In summary, when the entire dataset was
considered, the PCA presentation demonstrated an acceptable presentation of the truth
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(around 60% of the total variance; Figure 1). However, one shortcoming may arise from
the fact that MONP% was missing for the majority of the investigated hydrogels. This will
almost certainly create a bias in the differences. As a result, overcoming this problem is as
simple as ignoring the MONP% portion.
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Figure 1. PCA for all datasets. Small empty bullets represent the 27 investigated hydrogels containing
MONPs. Large gray bullets represent different physical and chemical properties.

The PCA bi-plot for the physical and chemical properties of the investigated hydrogels,
excluding MONP%, is shown in Figure 2. The first two PCs were responsible for 67.87%
of the total variance (40.18% for PC1 and 27.69% for PC2; Figure 2). The higher variance
score, in comparison to the PCA bi-plot in Figure 1, indicates that the strategy used was
effective. ET and qm were the factors that contributed the most to PC1, accounting for
82.85% of the total contributions. In terms of PC2, D contributed the most (67.62%), with
pH having a moderate influence (30% of the PC2 contribution; Figure 2). Similar to the
case in Figure 1, a high discrepancy in the factors’ contributions is scored. Figure 2 shows a
higher distribution of the factors, which is interesting. On one side of PC1, qm had a strong
positive influence, while ET had a strong negative influence. D had a significant positive
influence on PC2. Both positive influences on pH were observed in both PCs.
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Figure 2. PCA for all datasets. Small empty bullets represent the 27 investigated hydrogels containing
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Individually, and similarly to the “all dataset” case, three distinct clusters can be
identified when MONP% is considered (Figure 2). The majority of the samples were found
in the red cluster, which is positively correlated with both pH and qm. The yellow cluster
contained a smaller number of samples than the red cluster. It included samples 1, 4, 5, 8,
12, 18, 25, and 27, all of which showed a strong positive correlation with ET. Interestingly,
more samples were more likely to be influenced by the time to reach equilibrium when
MONP% was excluded. Only hydrogel samples 10 and 16 were found in the blue cluster,
which was positively correlated with D. Nonetheless, the lack of data input for these two
samples makes a non-speculative conclusion about the origin of this proximity impossible.
In summary, when the MONP% was excluded, the dataset’s representativeness increased.
This is demonstrated by the greater contribution of total variance in Figure 2 than in
Figure 1. A “separation of individuals” approach was used to improve the presentation of
the dataset. The goal was to perform a PCA on each cluster to gain a better understanding
of the similarities and differences between the hydrogel samples under consideration.

Figure 3 presents the PCA bi-plot for the physical and chemical properties of the
samples of the red cluster in Figure 2. The first two PCs accounted for 62.58% of the
total variance (35.48% for PC1, and 27.19% for PC2; Figure 3). For the factors, the highest
contribution was scored for D and ET, along PC1 (46.38% and 47.57%, respectively). For
PC2, the highest contribution was scored for qm and pH (52.47% and 41.74%, respectively).
Interestingly, a high distribution of the factors can be noticed, as in the case of Figure 2. ET
had a strong positive influence on one side of PC1, while D had a strong negative influence
on the other. Both pH and qm had a significant positive influence along PC2, with a minor
positive influence along PC1.
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Figure 3. PCA for all datasets. Small bullets represent the 15 investigated hydrogels containing
MONPs (red cluster components of Figure 2). Large gray bullets represent different physical and
chemical properties, with the exclusion of metallic oxide nanoparticles (MONP%).

For individuals, four different clusters were distinguished. The red cluster contained
samples 2, 7, 13, 15, 20, and 23 and showed a positive correlation along qm and pH factors.
The blue cluster contained samples 3, 11, and 17 and showed a positive correlation along the
ET. The yellow cluster only contained samples 21 and 24 and showed a positive correlation
with factor D. As for the green cluster, it contained samples 6, 9, 14, and 22 and showed
a negative correlation along all of the investigated factors. Even though the red cluster
PCA presented a lower variance than the “all dataset” approach, it similarly showed a
higher distribution of the factors along the first two PCs, and it distinctively showed a
high distribution of the individuals (four clusters in Figure 3, rather than three clusters in
Figure 2). This allows for a better distinction between the different features and conditions
of the different investigated hydrogel composites.
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Figure 4 depicts the PCA bi-plot for the physical and chemical properties of the
samples in the yellow cluster of Figure 2. When only these samples were considered, a
higher presentation of the total variance was observed, with a variance of 91.89% (64.11%
for PC1 and 27.78% for PC2; Figure 4). This demonstrates the effectiveness of the strategy
used, as more focus on “similar” individuals’ results in a greater ability to compare them.
In the case of PC1, the factors with the highest contributions were pH and ET (36.8% and
30.56%, respectively). In terms of PC2, D had the highest contribution (57.72 percent of
the total contribution of PC1), while qm had a moderate contribution of 40% (Figure 4).
When compared to the original PCA in Figure 2, a lower distribution of the factors were
seen along the bi-plot of the yellow cluster. As a result, all of the factors were located on
the positive side of PC1, with qm on the positive side of PC2 and D on the negative side. It
had no effect on pH or ET along PC2.
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Figure 4. PCA for all datasets. Small bullets represent the 15 investigated hydrogels containing
MONPs (yellow cluster components of Figure 2). Large gray bullets represent different physical and
chemical properties, with the exclusion of metallic oxide nanoparticles (MONP%).

Individuals were divided into three clusters; the red cluster contained samples 1, 5,
and 8, and had a high positive correlation with qm, pH, and ET. The blue cluster contained
only hydrogel sample 18 and demonstrated a strong positive correlation with D. The
yellow cluster contained samples 4, 12, 25, and 27, and it was located on the opposite
side of the different factors (along the negative side of PC2). Given the high variance, it is
safe to assume that the composite hydrogel CMSt/PVA/Fe3O4 should be used with high
adsorbent doses. For CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose, it
should be used where high pH, time to reach equilibrium, and adsorption capacity were
implemented. For PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and
PVPA/Fe3O4@SiO2, it should be used where all of the investigated factors are low.

3. Conclusions

In this study, we performed principal component analysis (PCA) for a better un-
derstanding of the correlation between several chemical and physical properties. The
properties in-hand are: (a) Time to reach equilibrium (ET), (b) water acidity (pH), (c) Adsor-
bent dosage (D), and (d) adsorption capacity (qm). In order to seek a higher presentation
of the dataset, a “separation of individuals” approach was acquired. The aim was to per-
form a PCA on each of the clusters to better seek the similarities and dissimilarities of the
investigated hydrogel composites. Interestingly, a higher presentation of the total variance
was shown in one of the cases, making the PCA-biplot reliable for seeking solid conclu-
sions. The PCA (Figure 4) showed different potential applications for some of the investi-
gated hydrogels. In fact, CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose
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should be used where high pH, time to reach equilibrium, and adsorption capacity are
encountered. For PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and
PVPA/Fe3O4@SiO2, it should be used where all of the investigated physical and chemical
properties are at low magnitudes. A shortcoming arising from this study resides in the ne-
glecting of structural differences between azo dyes compounds. In fact, we aimed to focus
on the physical and chemical features of the adsorbent. Therefore, we have assumed that
all azo dyes compounds have similar adsorption properties. Hence, it could be interesting
to investigate the influence of adsorbent molecular discrepancies in further investigations.

4. Methodology

The purpose of this study is to apply PCA to a previously published study by Pereira
et al. [10] (Table 1) in order to better understand the differences in the functioning of
multiple metal oxide nanoparticle (MONP)-based hydrogels based on their adsorption
properties. PCA is regarded as a technique for identifying patterns among variables. The bi-
dimensional statistical approach failed to reveal these patterns. It presents an unsupervised
machine-learning method because, once applied, no prior knowledge of the data or the
investigated phenomena is assumed. A unit-weighting vector (Wj) and the original data
matrix M with m × n dimensions (m: number of variables, n: number of datasets) are used
to express the jth PC matrix (Pj) [31,54,55].

Pj = WM =
i=0

∑ Wji Mi (1)

where W is the loading coefficient and M is the n-dimensional data vector. M(Var(M)),
which is obtained by projecting M to W, should be maximized as follows:

Var(M) =
1
n

(
WT M

)
(WM)T =

1
n

WT MMTW (2)

MaxVar(M) = Max
((

1
n

)
WT MMTW

)
(3)

Since 1
n MMT is the same as the covariance matrix of M(cov(M)), Var(M) can be

expressed as follows:
Var (M) = WTcov (M) W (4)

The Lagrangian function can be defined using the Lagrange multiplier method, which
is as follows:

L = WT (5)

L = WTcov(M)W − δ
(

WTW − 1
)

(6)

Because the weighting vector is a unit vector, “WTW − 1” is assumed to be equal
to zero in Equation (6). As a result, the maximum value of Var(M) can be calculated by
equating the derivative of the Lagrangian function (L) with respect to W, as follows:

dL
dW

= 0 (7)

cov(M)W − δW = (cov(M)− δI)W = 0 (8)

where, δ: eigenvalue of cov(M), W: eigenvector of cov(M).
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