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Abstract: Convolutional neural networks have a broad spectrum of practical applications in
computer vision. Currently, much of the data come from images, and it is crucial to have an
efficient technique for processing these large amounts of data. Convolutional neural networks
have proven to be very successful in tackling image processing tasks. However, the design of
a network structure for a given problem entails a fine-tuning of the hyperparameters in order
to achieve better accuracy. This process takes much time and requires effort and expertise from
the domain. Designing convolutional neural networks’ architecture represents a typical NP-hard
optimization problem, and some frameworks for generating network structures for a specific image
classification tasks have been proposed. To address this issue, in this paper, we propose the hybridized
monarch butterfly optimization algorithm. Based on the observed deficiencies of the original monarch
butterfly optimization approach, we performed hybridization with two other state-of-the-art swarm
intelligence algorithms. The proposed hybrid algorithm was firstly tested on a set of standard
unconstrained benchmark instances, and later on, it was adapted for a convolutional neural network
design problem. Comparative analysis with other state-of-the-art methods and algorithms, as well as
with the original monarch butterfly optimization implementation was performed for both groups
of simulations. Experimental results proved that our proposed method managed to obtain higher
classification accuracy than other approaches, the results of which were published in the modern
computer science literature.

Keywords: swarm intelligence; monarch butterfly optimization; hybridized monarch butterfly
optimization; convolutional neural networks; neuroevolution; network optimization

1. Introduction

Convolutional neural networks (CNNs) [1] are a special type of deep learning models that have
demonstrated high performance on different types of digital image processing tasks. CNNs are
used for image recognition, image classification, object detection, pose estimation, face recognition,
eye movement analysis, scene labeling, action recognition, object tracking, etc. [2–8].

CNNs have become a fast-growing field in recent years, though their evolution started much
earlier. In 1959, Hubel and Wiesel [9] published one of the most influential papers in this area.
They conducted many different experiments with the aim to understand how neurons work in the
visual cortex. They found that the primary visual cortex in the brain has a hierarchical organization
with simple and complex neurons and the visual processing always starts with simple structures such
as oriented edges, and the complex cells receive input from the lower-level simple cells.

The first example of an artificial neural network model, the Neocognitron, was introduced by
Fukushima in 1980 [10]. The Neocognitron had the same logic with simple and complex cells that were
discovered by Hubel and Wiesel. Fukushima built up a hierarchy with alternative layers of simple cells
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(S-cells) and complex cells (C-cells), where the simple and complex cells show similar characteristics to
the visual cortex’s simple and complex cells. The simple cells contain parameters that are modifiable,
and the complex cells, on top of them, performed pooling. At that time, backpropagation was not
applied to the architecture. Later, in 1989, LeCun applied backpropagation on the Neocognitron
artificial neural network, resulting in a 1% error rate and about a 9% reject rate on zip code digits [11].
LeCun further optimized the network in 1998 by utilizing an error gradient-based learning algorithm.

The first deep convolutional network was introduced in 2012 by Alex Krizhevsky, and the
network is named AlexNet [12]. It achieved notable results, and this achievement has brought about a
revolution in computer vision. The use of graphical processing units (GPUs) enabled great successful
results, as well as the use of the ReLU activation function, data augmentation, and the dropout
regularization technique.

Many studies focus on novel architecture development, which has achieved higher classification
accuracy, and some of the most well-known modern networks are GoogleNet [13], ResNet [14],
DenseNet [15], and SENet [16].

1.1. Convolutional Neural Networks and Hyperparameters’ Optimization

CNNs consist of a sequence of different layers. The layers in the architecture mimic the visual
cortex mechanism in the brain. The essential layers of the CNN are the convolutional layers,
pooling layers, and dense layers. In every CCN, the first layer takes the input image and convolves
it by filters, and upon the result, the activation function is applied. In this way, low-level features
are extracted from the image, the resulting output becomes the input for the next layer, and each
consequent layer extracts more and more complex, higher level features. The pooling layer is used for
downsampling, and its kind is max or average pooling. At the end, the architecture has one or more
flattened dense layers, and the final one classifies the image.

During the network training, in the weight learning process, the loss function should be optimized.
For this purpose, in the modern literature, many optimizers have been proposed, such as stochastic
gradient descent, momentum, Adam, rmsprop, adadelta, adagrad, and adamax [17–19]. Over-fitting
occurs in the network, when the difference between the training accuracy and test accuracy is high;
in other words, the network learns specific data, and the model is unable to predict new input data.
To avoid this, different regularization techniques can be used. Some of the practical regularization
methods are L1 and L2 regularization [20], dropout [21], drop connect [22], batch normalization [23],
early stopping, and data augmentation.

The transfer function (activation function) that is applied to the convolved result is used for
mapping the input to a non-linear output. Some of the most widely utilized transfer functions are
sigmoid, tanh, and rectified linear unit (ReLU) [24]. ReLU represents the de facto standard in the
transfer function choice, and its value is calculated as f (x) = max(x, 0).

The operation in the convolutional layer and the activation function application can be defined as follows:

z[l]i,j,k = a(w[l]
k x[l]i,j + b[l]k ) (1)

where the resulting feature map (activation map) is represented by z[l]i,j,k, wk is the kth filter, xi,j denotes

the input at the i, j location, and b is the bias term. The superscript l denotes the lth layer, and the
activation function is represented as a(·).

For further reading about general CNNs’ foundations and principles, please refer to [12,25].
The accuracy of any CNN depends on its structure, which in turn depends on the values of

variables known as hyperparameters [26]. Some of the hyperparameters include the number of
convolutional and fully-connected (dense) layers, the number of kernels and kernel size of each
convolutional layer, weight regularization in the dense layers, the batch size, the learning rate,
the dropout rate, the activation function, etc. With the goal of establishing satisfying classification
accuracy for each particular problem instance, a CNN with specific structure (design) should be found.
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The universal rule for finding the optimal network structure for a given problem does not exist, and
the only way to create a CNN that will perform satisfactorily for a specific task is by utilizing the
“trial and error” approach. Unfortunately, with each trial, the generated network should be trained and
tested, and these processes are very time consuming and resource intensive.

In accordance with the above, the process of generating an optimal (in most cases, near optimal)
CNN network structure for a specific task represents one of the most important challenges and
issues from this domain, and it is known in the literature as the hyperparameter optimization
problem [27]. Since there are many CNN hyperparameters, as more and more hyperparameters
are used in optimization, the difficulty of the problem grows exponentially. That is why this challenge
is categorized as an NP-hard task.

As in the case of any NP-hard challenge, the application of deterministic algorithms for tackling
CNN hyperparameters’ optimization tasks is not plausible, and to solve it, it is necessary to employ
stochastic methods and algorithms. Researchers world-wide have recognized the need for developing
a framework that will generate, train, and test different CNN architectures with the goal of finding one
that is the most suitable for a specific task by using metaheuristic approaches [28–30]. The process of
automatically discovering the most suitable CNN structures (CNN hyperparameters’ optimization)
for a specific tasks by using evolutionary, as well as other nature-inspired metaheuristics is known in
the modern computer science literature as “neuroevolution” [31].

As part of the research that is presented in this paper, we also tried to develop such a framework
by taking into account various CNN hyperparameters and by utilizing the enhanced version of one
promising and recent swarm intelligence metaheuristic. The details of swarm intelligence methods,
as well as the relevant literature review are given in Section 2.

1.2. Research Question, Objectives, and Scope

The research proposed in this paper is based on and represents an extension of our previously
conducted experiments and simulations from this domain [32–34]. In our most current previous
published research [34], we enhanced and adapted two swarm intelligence metaheuristics to generate
CNN architectures automatically and tested them on an image classification task. In this research,
during the optimization process, we utilized the following CNN hyperparameters: the number of
convolutional layers with the number of filters and the kernel size for each layer, as well as number
the size of the dense layers.

Inspired by the approaches presented in [31], in the research that is proposed in this paper,
with the objective to generate network structures that will perform a given classification task with
higher accuracy than other networks, we included more CNN hyperparameters for the optimization
process than previously presented works from this domain [29,30,34]: the number of convolutional
layers along with the number of kernels, the kernel size and activation function of each convolutional
layer, the pooling size, the number of dense (fully-connected) layers with the number of neurons,
the connectivity pattern, the activation function, the weight regularization, the dropout for each dense
layer, as well as the batch size, the learning rate, and the rule as general CNN hyperparameters.
We tried to generate state-of-the-art CNN structures by employing the hybridized monarch butterfly
optimization (MBO) algorithm, since the original MBO [35] has proven to be a robust method for
solving various NP-hard optimization challenges [36,37].

In our current, as well as in previous research with the MBO metaheuristics [38–40], we noticed
some deficiencies, which were particularly emphasized in the exploration phase of the search
process. However, by conducting empirical simulations with the basic MBO, we also noticed that
the exploitation phase, as well as the balance between intensification and diversification could be
further enhanced. For that reason, to tackle the CNN hyperparameter optimization problem, in this
paper, we present newly developed hybridized MBO metaheuristics that obtains significantly better
performance in terms of convergence and the results’ quality than the original MBO approach.
The developed hybrid MBO incorporates mechanisms from two well-known swarm algorithms,
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artificial bee colony (ABC) and the firefly algorithm (FA), to address the shortcomings of the
original MBO.

In this paper, we present two sets of experiments. In the first group of simulations, the developed
hybridized MBO is firstly tested on a set of standard unconstrained benchmarks, and comparative
analysis with the original MBO, as well as one other state-of-the-art improved MBO approach is
performed, the results of which were published in respected international journals [41]. We followed a
good research practice in such a way that when a new method has been developed, before testing it
on a practical problem, it should be tested on a wider benchmark set to evaluate its performance in
more depth.

Afterwards, the proposed hybrid MBO was adapted and tested for the CNN design problem,
and the results were compared with recent state-of-the-art approaches that were tested under
the same experimental conditions and for the same image classification benchmark dataset [31].
Moreover, since the implementation of the original MBO for this problem has not been found in
the modern literature, with the goal of more precise evaluation of the proposed hybridized MBO
improvements over the original version, we also implemented basic MBO for this problem and
performed a comparative analysis. The CNN structures generated were evaluated against the
well-known image classification domain, hand-written recognition. For testing purposes, we utilized
the MNIST database. The main reason for using this database was the fact that MNIST has been
extensively reviewed and used for evaluating many methods, including the algorithms presented
in [31], and that we have used them as a direct comparison with our proposed hybrid MBO approach.

According to the subject of research that was conducted for the purpose of this paper, the basic
research question can be formulated as follows: Is it possible to generate state-of-the-art CNN
architectures that will establish better classification accuracy than other known CNN structures
by utilizing enhanced swarm algorithms and by taking into account more CNN hyperparameters in
the optimization process?

The objective and scope of the proposed research is twofold. The primary objective is to
develop an automated framework for “neuroevolution” based on swarm intelligence methods that
will design and generate CNN architectures with superior performance (accuracy) for classification
tasks. Besides our previously conducted research [32–34], other research has also addressed this
NP-hard task [28–30,42,43]. However, as already noted above, contrary to all enumerated works,
in the proposed research in this paper, we included more hyperparameters in the optimization process,
as in [31]. Incorporating more hyperparameters makes the search space exponentially larger, as well as
the optimization process itself.

The secondary objective of the proposed research is to enhance the basic MBO algorithm by
overcoming its deficiencies. The basic motivation for utilizing this method is that the MBO, even in its
original implementation, obtains outstanding performance, and our basic assumption is that the MBO
in the enhanced version can potentially take its place as one of the best nature-inspired algorithms.

1.3. Structure of the Paper

The remainder of this paper is organized as follows. Section 2 provides insights into similar research
from the CNN design domain that can be found in the modern computer science literature, followed by
Section 3, in which we present the original, as well as the proposed hybrid MBO metaheuristics along
with the detailed explanations regarding the observed drawbacks of the basic MBO approach.

In order to establish a better structure for the paper, the details of the experiments (simulations)
conducted are organized into two sections, Sections 4 and 5. First, in Section 4, we present the details of
the simulation environment and the datasets that are utilized in the simulations for the unconstrained
benchmarks, as well as for the CNN hyperparameters’ optimization. Afterwards, the obtained results
along with the visual representation and comparative analysis with other state-of-the-art methods
for both types of experiments (unconstrained benchmark and practical CNN design) are given in
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Section 5. In the final Section 6, we provide a summary of the research conducted along with the
scientific contributions and insights into the future work in this promising domain.

2. Swarm Intelligence Algorithms and Related Work

Swarm intelligence metaheuristics belong to a wider family of nature-inspired stochastic
algorithms. Swarm algorithms’ mechanisms that guide and direct the optimization process are
inspired by natural systems, like colonies of ants, hives of bees, groups of bats, herds of elephants, etc.
These methods start execution with a pseudo-random initial population, which is generated within
the lower and upper boundaries of the search space. Afterwards, the initial population is improved in
an iteration-based approach.

In each iteration, two major processes guide the search process: exploitation (intensification)
and exploration (diversification). Intensification performs the search in the neighborhood of existing
solutions, while exploration tries to investigate unknown areas of the search space. Exploitation and
exploration equations are specific for each swarm algorithm, and they model an approximation of the
real-world system. One of the major issues that has been addressed in many papers, in every swarm
intelligence algorithm, is the exploitation-exploration trade-off [44,45].

Many successful implementations of swarm intelligence algorithms in original and
improved/hybridized forms, which were validated against standard unconstrained (bound-constrained)
and constrained benchmarks, as well as on many practical challenges, can be found in the
modern literature sources. Some of the more well-known swarm algorithms include ant colony
optimization (ACO) [46], particle swarm optimization (PSO) [47], artificial bee colony (ABC) [45,48],
the firefly algorithm (FA) [49,50], cuckoo search (CS) [51,52], the bat algorithm (BA) [53], the whale
optimization algorithm (WOA) [54], elephant herding optimization (EHO) [55–58], and many
others [59–67]. Moreover, some of the practical problems and challenges for which swarm intelligence
approaches managed to obtain state-of-the-art results include the following: path planning [68,69],
portfolio optimization [70,71], wireless sensor network node localization [72,73], the radio frequency
identification network (RFID) planning problem [74–76], cloud computing [39,77–79], image segmentation
and threshold [80–82], as well as many others [83–88].

The other group of algorithms, which also belongs to the family of nature-inspired methods,
are evolutionary algorithms (EA). The EA approaches model the process of biological evolution by
applying selection, crossover, and mutation operators to the individuals from the population. In this
way, only the fittest solutions manage to “survive” and to propagate into the next generation of the
algorithm’s execution. The most prominent subcategories of EA are genetic algorithms (GA) [89],
evolutionary programming (EP) [90], and evolutionary strategies [91].

Based on the literature survey, swarm intelligence and EA methods have been applied to the
domain of CNN hyperparameters’ optimization and neuroevolution with the goal of developing
an automatic framework that will generate an optimal or near-optimal CNN structure for solving a
specific problem. However, due to the complexity of this task and computer resource requirements,
many of them have tried to optimize only a few CNN hyperparameters, while the values of the
remaining parameters were set to be fixed (static).

Two interesting PSO-based algorithms for CNNs design were presented in [27,92]. In [92], basic PSO
was improved with gradient penalties for the generated optimal CNN structure. The proposed method
was validated against three emotion states of subjects that were collected using EEG signals and managed
to obtain significant results. An orthogonal learning particle swarm optimization (OLPSO), that was
shown in [27], was used for optimizing the values of hyperparameters for VGG16 and VGG19 CNNs that
were applied to the domain of plant disease diagnosis. The OLPSO outperformed other state-of-the-art
methods that were validated for the same dataset in terms of the classification accuracy.

Four swarm intelligence algorithms, FA, BA, CS, and PSO, that were implemented and adapted for
addressing the over-fitting problem, were presented in [43]. By using these approaches, this issue was
overcome by establishing a proper selection of the regularization parameter dropout. All algorithms
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were tested against the well-known MNIST dataset for image classification, and satisfying accuracy
was obtained. Another new PSO method for generating adequate CNN architecture was shown
in [26]. The canonical PSO for CNN (cPSO-CNN) managed to adapt to the variable ranges of
CNN hyperparameters by improving the canonical PSO exploration capability and redefining PSO’s
scalar acceleration coefficients as vectors. The cPSO-CNN was compared with seven outstanding
methods for the same image classification task and obtained the best results in terms of classification
accuracy, as well as computational costs. In [28], by applying a PSO-based method, the authors
managed to generate CNNs with a better configuration than AlexNet for five image classification
tasks. Hybrid statistically-driven coral reef optimization (HSCRO) for neuroevolution was proposed
in 2020 [93]. This method was used for optimizing the VGG-16 model for two different datasets,
CIFAR-10 and CINIC-10, and managed to generate CNNs with a lighter architecture along with an
88% reduction of the connection weights.

A method that successfully combines GA and CNNs for non-invasive classification of glioma using
magnetic resonance imaging (MRI) was proposed in [94]. The authors developed an automatic framework
for neuroevolution by evolving the architecture of a deep network using the GA method. Based on the
results for the two test studies, the proposed method proved to be better than its competitors. In [95],
the authors presented a method for generating a differentiable version of the compositional pattern
producing network (CPP), called the DPPN. Microbial GAs are used to create DPNNs with the goal
of replicating CNN structures. Recently, an interesting project for an automating deep neural network
architecture, called DEvol, was established [96]. DEvol supports a variable number of deep, as well as
convolutional layers. According to the presented documentation, the framework managed to obtain a test
error rate of 0.6% on the MNIST dataset, which represents the state-of-the-art result.

3. Proposed Method

As was already stated in Section 1.2, for tackling the CNN hyperparameter optimization problem,
in this paper, we propose a hybridized version of the MBO swarm intelligence metaheuristics. In this
section, we first describe the original MBO algorithm and, afterwards, present the devised hybrid
method. Moreover, in this section, we also give the details of the original MBO’s drawbacks that our
hybrid approach addresses.

3.1. Original Monarch Butterfly Optimization Algorithm

The first version of the MBO was proposed by Wang et al. in 2015 [35]. The algorithm was
motivated by the monarch butterfly migration process. In the very first paper, where the MBO was
presented for the first time, the authors compared the MBO to five other metaheuristic algorithms
and evaluated it on thirty-eight benchmark functions [35]. The MBO achieved better results on all
instances than the other five metaheuristics.

Monarch butterflies live in two different places, in the northern USA and southern Canada,
and they migrate to Mexico. There are two behaviors in how they change their location: by the
migration operator and the butterfly adjusting operator, respectively. That is to say, these two operators
define the search direction of each individual in the population.

The basic rules of the algorithm, which perform approximation of the real system, include the
following [35]:

1. The population of the individuals is in two different locations (Land 1 and Land 2);
2. The offspring are created on both places, by utilizing the migration operator;
3. If the new individual has better fitness than the parent monarch butterfly, it will replace the old solution;
4. The solutions with the best fitness value remain unchanged for the next iteration.
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3.1.1. Migration Operator

The entire population, denoted as SN (solution number), of monarch butterfly individuals
(solutions) is divided into two sub-populations, Sub-population 1 (SP1) and Sub-population 2 (SP2).
SP1 and SP2 correspond to the two lands where they are located, Land 1 and Land 2, respectively.

SP1 = ceil(p · SN) (2)

SP2 = SP− SP1 (3)

where p represents the individual’s migration ratio in the Sub-population 1.
The process of migration is executed in the following way:

xt+1
i,j =

xt
r1,j if r ≤ p,

xt
r2,j otherwise

(4)

where the jth element of the ith individual at iteration t + 1 is denoted by xt+1
i,j . xt

r1,j and xt
r2,j represent

the locations of r1 and r2 individuals, which are randomly selected from SP1 and SP2, respectively at
iteration t, and j corresponds to the jth component.

The parameter r decides whether the jth element of the new solution will be selected from
Sub-population 1 or Sub-population 2. The value of r is calculated as the product of a random number
between zero and one (rand) and the period of migration (peri).

r = rand · peri (5)

where the suggested peri value is 1.2 [35].

3.1.2. Butterfly Adjusting Operator

The second mechanism to guide the individuals toward the optimum within the search space is
the butterfly adjusting operator. In this process, if rand ≤ p, the position will be updated according to
the following formula:

xt+1
i,j = xt

best,j (6)

where the jth parameter of the fittest solution at iteration t is denoted by xt
best,j; and the monarch

butterflies’ updated position is indicated by xt+1
i,j .

Contrariwise, if the random number is greater than the ratio of migration (rand > p), the position
update proceeds according to the following formula:

xt+1
i,j = xt

r3,j (7)

where xt
r3,j indicates the jth element of a randomly selected solution from Sub-population 2 in the

current iteration.
Furthermore, if the uniformly distributed random number is greater than the adjusting rate

(butterfly adjusting rate, BAR) , the individual is updated based on the next equation:

xt+1
i,j = xt+1

i,j + α× (dxj − 0.5) (8)

where dxj represents the walk step of the ith individual; dx is obtained by Lévy flight:

dx = Levy(xt
i ) (9)

The scaling factor α is calculated as follows:
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α = Smax/t2 (10)

where the upper limit of the walk step that an individual can take at a time is represented by Smax and
t points out the current iteration.

The parameter α is responsible for the right balance between intensification and diversification.
If its value is larger, the exploration (diversification) is predominant; on the other hand, if the value of
α is smaller, the search process is executed in favor of intensification (exploitation).

The pseudo-code of the basic MBO version is shown in Algorithm 1.

Algorithm 1 . Basic MBO pseudo-code.

Randomly initialize the population of SP solutions (monarch butterflies)
Initialize the parameters: migration ratio (p), migration period (peri), adjusting rate (BAR),

and maximum step size (Smax)
Fitness evaluation
Set t, the iteration counter, to one, and define the maximum number of iterations (MaxIter)
while t < MaxIter do

Sort the solutions according to their fitness value
Divide the whole population into two sub-populations (SP1 and SP2)
for all i = 1 to SP1 (all individuals in Sub-population 1) do

for all j = 1 to D (all elements of the ith individual) do

Generate rand (a random number), and calculate the value of r by using Equation (5)
if r ≤ p then

Choose an individual from SP1, and create the jth element of the new solution by utilizing

Equation (4)
else

Choose an individual from SP2, and create the jth element of the new solution by utilizing

Equation (4)
end if

end for
end for
for all i = 1 to SP2 (all individuals in Sub-population 2) do

for all j = 1 to D (all elements of the ith individual) do

Generate rand (a random number), and calculate the value of r by using Equation (5)
if r ≤ p then

Create the jth element of the new solution by utilizing Equation (6)
else

Choose an individual from SP2, and create the jth element of the new solution by utilizing

Equation (7)
if r > BAR then

Apply Equation (8)
end if

end if
end for

end for
Merge the two sub-populations into one population
Evaluate the fitness of the new solutions
t = t + 1

end while
Return the best solution
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3.2. Hybridized Monarch Butterfly Optimization Algorithm

Recently, we developed improved and hybridized versions of MBO. All devised implementations
showed better performance than the original MBO, and they were successfully applied to one practical
problem [39] and also evaluated against global optimization benchmarks [38,40].

As also noted in our previous research that the major drawbacks of the basic MBO included
the lack of exploration power and the inadequate balance (trade-off) between the intensification and
diversification [38–40]. However, we have recently been conducting additional simulations with
the original MBO and concluded that also the exploitation phase, as well as the balance between
exploration and exploitation could be further improved.

For that reason, similar to our previous MBO’s improvements, we incorporated the ABC
exploration mechanism, as well as the ABC’s control parameter, which adjusts the intensification [97].
Furthermore, with the goal of facilitating the exploitation phase of the original MBO, we adopted the
search equation from the FA metaheuristics, which proved to be very efficient [49]. Based on the performed
hybridization, we named the newly devised approach MBO-ABC firefly enhanced (MBO-ABCFE).

To incorporate all changes, MBO-ABCFE utilizes three more control parameters than the original
MBO algorithm. The first parameter is the exhaustiveness parameter (exh). In every iteration,
when a solution cannot be improved, its trial value is incremented. When a trial for a particular
solution reaches the threshold value of exh, a new random solution is generated according to the
following formula:

xi,j = φ · (ubj − lbj) + lbj, (11)

where the upper and lower bound of the jth element are denoted by ubj and lbj. φ is a random number
from the uniform distribution.

The “exhausted” solution is then replaced with the newly generated random individual. In this
way, the exploration capability of the original MBO is enhanced.

However, this approach can be dangerous. For example, if this exploration mechanism is triggered
in late iterations of the algorithm’s execution (with the assumption that the search has converged to
the optimal region), then possibly good solutions may be replaced with random ones. To avoid this,
we included the second control parameter, the discarding mechanism trigger (dmt). By utilizing the
dmt parameter, we established the stop condition for ABC’s exploration. In other words, if the current
iteration number (t) is greater than the value of dmt, the ABC’s exploration is not executed.

Moreover, it is also dangerous to perform “too aggressive” exploitation in early phases of algorithm’s
execution. In this way, if the algorithm has not converged to the optimal region, the search may be stuck in
some of the suboptimal domains of the search space. To adjust the exploitation and to avoid the scenario
of converging to suboptimal regions, we adopted one more parameter from the ABC metaheuristics,
the modification rate (MR). This parameter is used within the search procedure of Sub-population 1,
and it is applied only if the θ ≤ MR condition is met. The value of θ is a randomly generated number
between zero and one. We note that the best value for MR of 0.8 was established in previous research
[48,97]. In our implementation, this value is hard coded and cannot be adjusted by the user.

Finally, the third control parameter, the firefly algorithm process (FAP), which is included in the
proposed implementation, is used to control whether or not the FA’s search equation will be triggered.

The exploitation equation for the FA search is formulated as follows [49]:

xt+1
i = xt

i + β0r−γr2
i,j(xj − xi) + α(κ − 0.5) (12)

where the randomization parameter α, as well as parameters β0 and γ represent basic FA search
parameters. The notation κ denotes the random number between zero and one. According to the
previous experiments, as well as the recommendations from the original FA paper [49], the values of α,
γ, and β0 were set to 0.5, 1.0, and 0.2, respectively, and they were hard coded, so they could not be
changed by the user.

For more details on the firefly algorithm, refer to [49].
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The parameter FAP is generated for each solutions’ parameter, and its value is between zero and
one. If its value is less than 0.5, the firefly search equation will be utilized, otherwise standard MBO’s
search equations will be used.

Finally, we note that the MR parameter and the FA search equations are only utilized in
Sub-population 1 of the algorithm.

Taking into account all the presented details regarding the proposed MBO-ABCFE metaheuristics,
the pseudo-code is given in Algorithm 2, while the flowchart diagram is depicted in Figure 1.

Initialization

Start

t = t+1

Fitness evaluation

Divide the population into two sub-
populations

For each solution and each element of
each solution in SP1

θ ≤ MR FAP < 0.5 r ≤ p

Update the solution
by FA search eq.

Update the solution's
element with random

SP2 element

Y

Y

N N

Y

Fitness evaluation

Old solution has
 better fitness? trial = trial + 1

Y

For each solution in SN

t ≤ dmt trial ≥ exh   Replace the solution with
new random solution

Y

Termination
criteria met?

Return the best
solution

End

Merge SP1 and SP2

N

For each solution and each element of
each solution in SP1

r ≤ p
Update the element with

the element of the current
best solution

Update the solution's
element with random

SP2 element

Update the element
by weighted Levy

flight

Update the solution's
element with random

SP1 element

YN

r > BAR

Y

N
Fitness evaluation

Old solution has
 better fitness? trial = trial + 1

Y

N

Y

N N

Y

N

Sub-population 1 (SP1)

Sub-population 2 (SP2)

Whole population (SN)

N

Figure 1. Monarch butterfly optimization-ABC firefly enhanced (MBO-ABCFE) flowchart.
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Algorithm 2 . MBO-ABCFE pseudocode.

Randomly initialize the population of SN solutions (monarch butterflies); initialize the parameters:

migration ratio (p), migration period (peri), adjusting rate (BAR), maximum step size (Smax),

exhaustiveness parameter (exh), discarding mechanism trigger (dmt), and modification rate (MR);

Evaluate the fitness; set t, the iteration counter, to one and trial to zero, and define the maximum

number of iterations (MaxIter)
while t < MaxIter do

Sort the solutions according to their fitness value
Divide the whole population into two sub-populations (SP1 and SP2)
for all i = 1 to SP1 (all individuals in Sub-population 1) do

for all j = 1 to D (all elements of the ith individual) do

Generate a random number between zero and one for θ
if θ ≤ MR then

if FAP<0.5 then

Generate a new component by using Equation (12)
else

Generate rand (a random number), and calculate the value of r by using Equation (5)
if r ≤ p then

Choose a solution from SP1, and create the jth element of the new solution by Equation (4)
else

Choose a solution from SP2, and create the jth element of the new solution by Equation (4)
end if

end if
end if

end for
Evaluate the fitness, and make a selection between the new and old solution based on the fitness

value; if the old solution has better fitness, increment the parameter trial by one
end for
for all i = 1 to SP2 (all individuals in Sub-population 2) do

for all j = 1 to D (all elements of the ith individual) do

Generate rand (a random number), and calculate the value of r by using Equation (5)
if r ≤ p then

Create the jth element of the new solution by utilizing Equation (6)
else

Choose an individual from SP2, and create the jth element of the new solution by Equation (7)
if r > BAR then

Apply Equation (8)
end if

end if
end for
If the old solution has better fitness, increment the parameter trial by one

end for
Merge the two sub-populations into one population
for all solutions in SN do

if t ≤ dmt then

Discard the solutions for which the condition trial ≥ exh is satisfied, and replace them with

randomly created solutions by utilizing Equation (11)
end if

end for
Evaluate the fitness of the new solutions
Adjust the value of the parameter Smax by using Equation (10)
t = t + 1

end while
Return the best solution
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4. Simulation Setup

As noted in Section 1.3, two sections of this paper are devoted to experimental (practical)
simulations. In this first experimental section, we show the control parameter setup of the proposed
MBO-ABCFE and the dataset details utilized in unconstrained benchmark simulations and for the
CNNs’ neuroevolution (hyperparameter optimization) challenge.

4.1. Parameter Settings and Dataset for Unconstrained Simulations

The proposed hybridized swarm intelligence-based MBO-ABCFE algorithm was first applied
to 25 unconstrained benchmark functions. In this way, we first wanted to establish the performance
comparison and improvements of the original MBO approach on a wider set of functions.

Benchmark functions used in this paper were also used for testing purposes of the original
MBO [35]. We also wanted to compare the proposed hybridized MBO with one other improved MBO
implementation, the greedy strategy and self-adaptive crossover operator (GCMBO) [41], and we
included this approach as well in the comparative analysis. In these simulations, the algorithm was
executed in 50 independent runs.

Additionally, the proposed method was compared with other metaheuristics (hybrid ABC/MBO
(HAM) [98], ABC, ACO, and PSO). In this way, we wanted to establish a better validation of the
proposed method by comparing it with other state-of-the-art metaheuristics, the results of which were
presented in the modern literature. In these simulations, the algorithm was tested on 12 benchmark
functions over 100 runs.

For the purpose of making a fair comparison between the proposed MBO-ABCFE and the original
MBO and GCMBO algorithms, as well as with other approaches, we performed the simulations under
the same simulation condition and under the same dataset as in [35,41,98].

The population size (SN) was set to 50, the migration ratio (p) to 5/12, the migration period (peri)
to 1.2, the adjusting rate (BAR) to 5/12, and the maximum step size (Smax)to 1. The value of two
sub-populations, Land 1 and Land 2, were set to 21 and 29, respectively. The newly introduced control
parameters of the hybridized MBO-ABCFE algorithm were adjusted as follows: the exhaustiveness
(exh) was initialized to the value of four the, and discarding mechanism trigger (dmt) was set to 33.
As noted in Section 2, the value of the FAP parameter was randomly generated for each solution
component. The values of ABC and FA specific parameters, the MR, α, γ, and β0, were hard coded
and set to 0.8, 0.5, 1.0, and 0.2, respectively.

Satisfying values of control parameters exh and dmt were determined by executing the algorithm
many times for standard benchmarks. There was no universal rule for determining the optimal values
of the metaheuristics’ control parameters, and the “trial and error” approach was the only option.

However, in the case of the MBO-ABCFE algorithm, after many trials, we derived the expression
for calculating the value of the exh parameter:

exh = round(
maxIter

Np
· 4), (13)

where round() represents a simple function that rounds the argument to the closest integer value.
Moreover, in the case of MBO-ABCFE, we found that the value of the dmt parameter could be

calculated by using the formula: round(maxIter/1.5).
The values of ABC and FA specific parameters, the MR, α, γ, and β0, were taken from the original

papers [49,97]. In these articles, the authors suggested optimal values of these parameters that had
also been determined empirically.

We also note that in order to obtain satisfying results, the control parameters’ values should
be adjusted for a particular problem or type of problem. For example, if with one set of the control
parameters’ values, the algorithm establishes a promising result when tackling Problem A, it does not
necessarily mean that with the same parameter adjustments, satisfying results will be accomplished
for Problem B as well.
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The complete list of control parameters is displayed in Table 1.

Table 1. MBO-ABCFE parameters.

Parameter Notation Value

Population of the solutions SN 50
Sub-population 1 SP1 21
Sub-population 2 SP2 29
Ratio of migration p 5/12
Period of migration peri 1.2
Max step size Smax 1.0
Butterfly adjusting rate BAR 5/12
Exhaustiveness exh 4
Discarding mechanism trigger dmt 33
Rate of modification MR 0.8
Initial value for randomization parameter α 0.5
Light absorption coefficient γ 1.0
Attractiveness at r=0 β0 0.2

In the original FA implementation [49], the trade-off between exploration and exploitation
depended on the value of the α parameter, and it was dynamically adjusted during the run of an
algorithm. In the proposed MBO-ABCFE metaheuristics, we used the same approach by utilizing the
following equation [49,50,70,71,99]:

α(t) = (1− (1− ((10−4/9)1/tmax ))) · α(t− 1), (14)

where tmax denotes the maximum number of iterations in one run. At the early stages of a run,
the value of α was greater (higher exploration power), and as the search progressed during iterations,
the value of α decreased (the exploitation power increased, and the exploration decreased).

The formulations of benchmark functions (dataset) that were utilized in the simulations are given
in Table 2.

Table 2. Benchmark function details.

ID Function Name Function Definition

F1 Ackley f (x) = −20e(−0.2
√

1
n ∑n

i=1 x2
i ) −−e(

1
n ∑n

i=1 cos(2πxi)) + 20 + e(1)

F2 Alpine f (x) = ∑n
i=1 |xi sin (xi) + 0.1xi|

F3 Brown f (x) = ∑n−1
i=1 (x2

i )
(x2

i+1+1) + (x2
i+1)

(x2
i +1)

F4 Dixon and Price f (x) = (x1 − 1)2 + ∑n
i=2 i

(
2x2

i − xi−1
)2

F5 Fletcher–Powell f (x) = 100
{
[x3 − 10θ (x1, x2)]

2 +
(√

x2
1 + x2

2 − 1
)2}

+ x2
3

where 2πθ (x1, x2) =


tan−1 x2

x1
if x1 ≥ 0

π + tan−1 x2
x1

otherwise

F6 Griewank f (x) = 1 + ∑n
i=1

x2
i

4000 −∏n
i=1 cos( xi√

i
)

F7 Holzman 2 function f (x) = ∑n
i=1 ix4

i

F8 Lévy 3 function f (x) = ∑5
i−1 i cos((i− 1)x1 + i)∑5

j=1 j cos((j + 1)x2 + j)

F9 Pathological function f (x) = ∑n−1
i=1

[
0.5 +

sin2
(√

100x2
i +x2

i+1

)
−0.5

1+0.001(x2
i −2xi xi+1+x2

i+1)
2

]
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Table 2. Cont.

ID Function Name Function Definition

F10 Generalized Penalized Function 1 f (x) = π
n ×

{
10 sin2 (πy1) + ∑n−1

i=1 (yi − 1)2 [1 + 10 sin2 (πyi+1)
]
+ (yn − 1)2

}
+

+∑n
i=1 u (xi, a, k, m)

where yi = 1 + 1
4 (xi + 1) , u (xi, a, k, m) =


k (xi − a)m if xi > a
0 if − a ≤ xi ≤ a
k (−xi − a)m if xi < −a

a = 10, k = 100, m = 4

F11 Generalized Penalized Function 2 f (x) = 0.1×
{

sin2 (3πx1) + ∑n−1
i=1 (xi − 1)2 [1 + sin2 (3πxi+1)

]
+

+ (xn − 1)2 [1 + sin2 (2πxn)
] }

+ ∑n
i=1 u (xi, a, k, m)

where u (xi, a, k, m) =


k (xi − a)m if xi > a
0 if − a ≤ xi ≤ a
k (−xi − a)m if xi < −a

a = 5, k = 100, m = 4

F12 Perm f (x) = ∑n
k=1[∑

n
i=1(ik + β)(( xi

i )
k − 1)]2

F13 Powel f (x) = (x1 + 10x2)
2 + 5 (x3 − x4)

2 + (x2 − 2x3)
4 + 10 (x1 − x4)

4

F14 Quartic with noise f (x) = ∑n
i=1 ix4

i + random(0, 1)

F15 Rastrigin f (x) = ∑n
i=1[x

2
i − 10 cos(2πxi) + 10]

F16 Rosenbrock f (x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2]

F17 Schwefel 2.26 f (x) = ∑n
i=1[−xi sin(

√
|xi|)]

F18 Schwefel 1.2 f (x) = ∑n
i=1

(
∑i

j=1 xj

)2

F19 Schwefel 2.22 f (x) = ∑n
i=1 |xi|+ ∏n

i=1 |xi|
F20 Schwefel 2.21 f (x) = max {|xi| , 1 ≤ i ≤ n}
F21 Sphere f (x) = ∑n

i=1 x2
i

F22 Step f (x) = ∑n
i=1(bxic+ 0.5)2

F23 Sum function f (x) = ∑n
i=1 ix2

i

F24 Zakharov f (x) = ∑n
i=1 x2

i + (∑n
i=1 0.5ixi)

2 + (∑n
i=1 0.5ixi)

4

F25 Wavy 1 f (x) = 1
n ∑n

i=1 1− cos (10xi) e−
1
2 x2

i

4.2. Parameters’ Settings and Simulation Setup for Cnns’ Neuroevolution Simulations

Since the original MBO has not been previously tested on the CNN neuroevolution problem,
with the aim of comparing the performance of our proposed MBO-ABCFE with the original algorithm,
we also implemented and adapted the basic version for CNNs’ simulations. The same values of the
algorithms’ control parameters that were used in unconstrained simulations were utilized in CNNs’
neuroevolution experiments for both methods, MBO and MBO-ABCFE.

It was already mentioned in the previous subsection that with one set of control parameters’
values, metaheuristics were not able to tackle every NP-hard challenge successfully, and parameter
adjustments should be made for each particular problem. There is always a trade-off; for example,
when tweaking some algorithm parameters, the performance could be enhanced for Problem A, but at
the same time, the performance may be degraded for Problem B. That is the basic assumption behind
testing the algorithm first on a wider set of benchmark functions, before applying it to the concrete
NP-hard challenge.

In this case, the proposed MBO-ABCFE approach with the control parameters’ settings that were
shown in the previous subsection managed to obtain satisfying results on a wider set of tests. Guided
by this, we assumed that with the same parameter adjustment, MBO-ABCFE would also be able to
obtain promising results when tackling CNNs’ neuroevolution. Since CNNs’ neuroevolution is a very
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resource intensive and time consuming task, we would need a sophisticated hardware platform to
perform simulations with different MBO-ABCFE control parameter settings for this NP-hard challenge.

Thus, we note that the proposed MBO-ABCFE potentially would be able to obtain even better
results in tackling CNNs’ neuroevolution with some other control parameters’ values; however, we will
investigate this in some of our future research from this domain.

In order to reduce the computation time, the values of all hyperparameters were discretized and
defined within lower and upper bounds. To determine the set of values for each hyperparameter,
we used the Gray code substring. The same strategy was utilized in [31].

Furthermore, since the approach presented in [31] was used for direct comparative analysis with
our proposed MBO-ABCFE, we included the same hyperparameters in CNNs’ neuroevolution and
used the same experimental environment setup as in [31].

In the following two subsections, we describe in detail the calculation of the convolutional
layer and dense (fully-connected) layer sets of parameters, as well as the setup of the general CNN
hyperparameters.

4.2.1. Configuration of the Convolutional Layer

The convolutional layer (Cl) consists of a set of five hyperparameters:

Cl = {nc, n f , fs, ac, ps} (15)

The number of convolutional layers (nc) is calculated as:

nc = 1 + q (16)

where q = 0, 1, 2, 3; hence, the set of the number of convolutional layers is nc = {1, 2, 3, 4}.
The number of filters (n f ) is defined as follows:

n f = 2q+1 (17)

where q = 0, 1, 2, 3, 4, 5, 6, 7; consequently, the set is described as n f = {2, 4, 8, 16, 32, 64, 128, 256}.
The filter size ( fs) is determined as:

fs = 2 + q (18)

where q = 0, 1, 2, 3, 4, 5, 6, 7; accordingly, the set of possible solutions of the filter size is defined as
fs = {2, 3, 4, 5, 6, 7, 8, 9}.

The type of the activation function (ac) has two possible values, ac = q, where q is zero or one.
If the value is zero, the ReLU function is utilized; otherwise, if the value of q is equal to one, a linear
activation function is selected.

Finally, the pooling layer size (ps) is calculated as:

ps = 2 + q (19)

where q = 0, 1, 2, 3, 4, 5, 6, 7; accordingly the set of possible solutions of pooling layer size is defined as
ps = {2, 3, 4, 5, 6, 7, 8, 9}.

4.2.2. Configuration of the Fully-Connected Layer

The second category of hyperparameters is the fully-connected layer (FCl), which contains six
hyperparameters, and this set is defined as:

FCl = { f cs, cp, nu, a f , wr, d} (20)

The number of fully-connected layers is denoted by f cs, and its set is determined by the formula:
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f cs = 1 + q (21)

where q is zero or one; accordingly, the set is f cs = {1, 2}.
The connectivity pattern (cp) has three possible values, 0, 1, or 2. If the value is zero, rnn is used;

if the value is one, lstm is employed; in case the value is two, the dense layer is employed.
The number of hidden units is defined as:

nu = 23+q (22)

where nu represents the hidden unit number and parameter q takes values between zero and seven,
which results in a set nu = {8, 16, 32, 64, 128, 256, 512, 1024}.

The type of activation function in the final layers (a f ) has two possible values, ac = q, where q is
zero or one. If the value is zero, the ReLU function is utilized; otherwise, if the value is equal to one,
a linear activation function is selected.

Weight regularization (wr) is defined as:

wr = q (23)

if q is equal to zero, no regularization technique used; if it is one, L1 regularization is applied; if q is
two, L2 regularization is employed; and if it has a value of three, L1L2 is utilized.

In the case of the dropout (d) hyperparameter, the following formula is used: d = q/2.
Further, we implemented two options: if the value of q is set to zero, the dropout method is not
utilized, and if the value of q is one, the dropout is applied in the fully-connected layer with the
dropout rate of 0.5, which is hard coded.

4.2.3. Configuration of the General Hyperparameters

The set of general hyperparameters contains the batch size, learning rule, and learning rate,
which can be described as follows:

Gh = {bs, lr, α} (24)

The size of the mini-batches are determined by the formula:

bn = 25 · 2q (25)

where q = 0, 1, 2, 3.; as a result, the elements of the batch size set are bs = {25, 50, 100, 200}
The selection of the learning rule is made between eight different optimizers; it is defined as:

lr = q (26)

where lr indicates the optimizer and q can have a value between zero and seven; if q = 0, sgd is used;
if q = 1, momentum is used; if q = 2, Nesterov is used; if q = 3, adagard is used; if q = 4, adamax is
used; if q = 5, Adam is used; if q = 6, adadelta is used; if q = 7, rmsprop is used.

In the case of the learning rate (α), we defined eight different rates. The set of learning rates is
defined as α = {1 · 10−5, 5 · 10−5, 1 · 10−4, 5 · 10−4, 1 · 10−3, 5 · 10−3, 1 · 10−2, 5 · 10−2}.

4.2.4. Benchmark Dataset

The well-known MNIST [100] benchmark dataset was used for the evaluation purposes of the
proposed MBO-ABCFE and original MBO. The MNIST database is an extensive database that contains
grayscale images of handwritten digits ranging from zero to nine. The database includes 70,000
labeled images with a size of 28 × 28 pixels. The MNIST database is a subset of an even larger
dataset of the NIST Special Database. Initially, the images in the NIST dataset had a size of 20 × 20
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pixels, while preserving their aspect ratio, by using anti-aliasing technique, the images were centered
in a 28 × 28 pixel image. In our simulation, we split the dataset into training, validation, and test
sets. For training purposes, fifty-thousands samples were used, while for validation and testing,
10,000 images. Examples of the digit images are shown in Figure 2.

Figure 2. Example images of the MNIST database.

5. Experimental Results and Discussion

In this section, first we present the result of the proposed MBO-ABCFE algorithm on unconstrained
benchmark function experiments and the comparison with other metaheuristics. Afterward, the CNN
design’s experimental results are presented.

Basic MBO and the proposed hybridized MBO-ABCFE were implemented and developed in Java
Development Kit 11 (JDK 11) in the IntelliJ IDE (Integrated Development Environment). To evaluate
the proposed method, the CNN framework was implemented in a deep learning programming library,
the Deeplearning4j library. The simulation tests were performed on a 6 x NVIDIA GTX 1080 graphical
processing unit (GPU) and machine with Intel R© CoreTM i7-8700K CPU, 32GB RAM, and Windows 10 OS.

Since the CNNs’ neuroevolution challenge is very resource intensive, to speed up the
computations, we used CUDATM technology and executed our code on six GPUs in parallel, instead of
the CPU.

5.1. Experiments on Unconstrained Benchmark Functions

The unconstrained benchmark function experiment was conducted to test the performance of the
proposed MBO-ABCFE algorithm on 25 standard benchmark problems with 20 and 40 dimensions.
The obtained results were first compared to the original MBO [35] and one other variant of the MBO,
the GCMBO [41] algorithm. Furthermore, the proposed method was compared with hybrid ABC/MBO
(HAM), ABC, ACO, and PSO state-of-the-art approaches on 12 test functions with 20 dimensions.

For more details about the benchmark functions, please refer to Table 2.
Due to the stochastic behavior and random nature of swarm intelligence algorithms, their

performance cannot be judged based on a single run. Thus, the experimental results were calculated
on average for 50 independent runs, and the additional comparison with four metaheuristics was
calculated on average for 100 runs.

The obtained experimental results of the objective function and the comparison of statistical
results in the comparative analysis with basic MBO and GCMBO on 20-dimensional test instances
are shown in Table 3, while the results on 40-dimensional benchmarks are presented in Table 4.
The comparison with four other state-of-the-art metaheuristics is given in the Table 5. In both tables,
the best solutions are shown in boldface. As can be seen from the presented tables, we took the
best, mean, standard deviation, and worst metrics for performance evaluations, while in the third
comparative analysis, we present the best and mean results for each of the comparative algorithms.
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The results of the basic MBO and GCMBO were retrieved from [41]. In this paper, the authors
used the number of fitness function evaluations (FFEs) as the termination condition (8000 FFEs for
20-dimensional and 16,000 FFEs for 40-dimensional tests) with 50 solutions in the population. Moreover,
the authors executed 50 independent runs for each benchmark. We also show the averaged results in
50 independent runs of our proposed MBO-ABCFE in this comparative analysis (Tables 3 and 4).

Simulation results for HAM, ABC, ACO, and PSO were taken from [98]. Here, we used the
number of iterations (generations), which was set to 50, as the termination condition. We also show
results averaged over 100 independent runs of the algorithm’s execution. To make a fair comparative
analysis between HAM, ABC, ACO, PSO, and our proposed MBO-ABCFE in this comparative analysis
(Table 5), we also show the average results over 100 runs. Here, we note that we could not perform a
comparison for all 25 benchmarks as in the case of the comparative analysis with the basic MBO and
GCMBO, since not all testing results were available in [98].

In all performed comparative analyses (Tables 3–5), we utilized 50 iterations as the termination
condition, as in [98].

Table 3. Scientific results of MBO, GCMBO, and MBO-ABCFE on 20-dimensional problems averaged
over 50 runs.

ID Global Minimum
MBO GCMBO MBO-ABCFE

Best Mean StdDev Worst Best Mean StdDev Worst Best Mean StdDev Worst

F1 0 0.01 11.43 6.43 18.83 6.7× 10−16 4.24 4.62 14.57 0.00 2.21 2.96 11.47
F2 0 7.7× 10−5 7.51 10.37 39.49 2.2 × 10−16 0.03 0.20 1.44 0.00 0.01 0.15 1.06
F3 0 1.6× 10−5 48.58 102.82 494.07 2.2× 10−16 0.66 3.06 21.46 0.00 0.32 2.28 8.39
F4 0 155.44 1.2× 108 1.0× 108 3.2 ×108 0.18 1.0× 107 1.0× 107 4.4 ×107 0.07 1.59 × 103 2.87 × 103 8.29 × 103

F5 0 1.2 ×105 3.0 ×105 1.1 ×105 6.6 ×105 2.5 ×104 1.2 ×105 5.3 ×104 2.6 ×105 1.19 ×103 2.81 ×103 4.22 ×103 9.85 ×103

F6 0 1.01 93.72 94.71 342.68 1.00 20.74 21.69 83.11 1.00 28.52 30.74 97.51
F7 0 2.3 ×10−4 6.2 ×104 5.9 ×104 1.9 ×105 1.2 ×10−6 1.9 ×103 3.6 ×103 1.8 ×104 7.21 ×10−10 382.21 425.32 954.22
F8 0 2.5 ×10−7 20.58 33.27 113.39 2.2 ×10−16 2.11 5.00 20.12 0.00 1.18 3.85 9.53
F9 0 0.04 1.62 0.94 3.51 2.2 ×10−16 0.79 0.77 2.98 0.00 0.47 0.53 1.52

F10 0 2.5 ×10−9 3.2 ×107 6.5 ×107 2.8 ×108 9.8 ×10−12 3.1 ×105 1.2 ×106 7.5 ×106 5.28 ×10−15 5.97 ×103 1.84 ×104 5.74 ×104

F11 0 1.6 ×10−7 7.9 ×107 1.3 ×108 4.6 ×108 2.2 ×10−16 1.1 ×106 5.6 ×106 3.9 ×107 0.00 3.1 ×104 2.8 ×104 9.7 ×105

F12 0 2.3 ×1046 5.9 ×1050 1.1 ×1051 6.0 ×1051 5.7 ×1046 1.5 ×1051 2.0 ×1051 6.0 ×1051 5.87 ×1028 4.58 ×1032 8.54 ×1032 9.57 ×1033

F13 0 0.04 2.1 ×103 1.9 ×103 6.4 ×103 2.2 ×10−16 435.79 562.68 2.8 ×103 0.00 211.20 429.32 895.25
F14 0 1.2 ×10−14 36.86 35.96 134.22 2.2 ×10−16 0.09 0.31 1.90 0.00 0.03 0.15 1.07
F15 0 4.7 ×10−6 41.18 36.19 119.22 2.2 ×10−16 7.71 8.49 28.26 0.00 3.52 5.69 18.28
F16 0 1.9 ×10−3 969.30 1.7 ×103 7.8 ×103 2.2 ×10−16 69.97 116.50 414.22 0.00 45.37 87.31 311.20
F17 0 1.99 3.0 ×103 1.9 ×103 5.6 ×103 2.5 ×10−4 1.0 ×103 1.0 ×103 3.7 ×103 4.68 ×10−3 2.31 ×105 5.41 ×105 3.25 ×106

F18 0 1.4 ×10−4 2.5 ×104 1.5 ×104 5.5 ×104 0.05 1.1 ×104 8.5 ×103 3.3 ×104 0.02 8.32 ×103 8.42 ×103 9.35 ×103

F19 0 8.87 ×10−4 20.08 22.86 75.65 2.20 ×10−16 2.46 4.61 20.45 0.00 1.27 3.81 18.65
F20 0 0.76 30.53 20.87 77.54 0.13 26.63 18.90 61.74 0.08 15.21 16.78 58.32
F21 0 9.72 ×10−7 20.49 39.06 147.90 2.20 ×10−16 0.12 0.43 2.55 0.00 0.09 0.18 1.72
F22 0 1.00 22.74 35.69 125.00 1.00 1.72 2.94 20.00 1.00 0.89 1.31 17.21
F23 0 4.30 1.81 ×103 1.39 ×103 4.32 ×103 2.20 ×10−16 120.90 165.80 816.90 0.00 79.25 112.52 297.52
F24 0 6.36 ×10−3 328.80 223.90 831.40 2.40 ×10−5 137.20 128.70 452.90 1.38 ×10−8 52.68 85.36 584.32
F25 0 0.04 320.00 281.20 1.07 ×103 3.43 ×10−3 108.60 142.30 578.80 1.68 ×10−7 54.33 118.32 225.36

Table 4. Scientific results of MBO, GCMBO, and MBO-ABCFE on 40-dimensional problems averaged
over 50 runs.

ID Global Minimum
MBO GCMBO MBO-ABCFE

Best Mean StdDev Worst Best Mean StdDev Worst Best Mean StdDev Worst

F1 0 0.01 14.68 5.63 19.10 6.94 ×10−5 8.19 5.25 16.33 8.52 ×10−8 3.21 4.92 12.28
F2 0 4.18 ×10−3 37.36 35.50 103.00 2.20 × 10−16 1.76 4.53 22.85 0.00 0.18 2.17 18.71
F3 0 0.13 6.2 ×108 2.4 ×109 1.35 ×1010 7.30 ×10−7 23.87 53.71 294.60 1.54 ×10−15 19.38 24.71 117.32
F4 0 1.58 1.0 ×109 8.5 ×108 2.65 ×109 1.32 ×103 1.2 ×108 1.3 ×108 5.22 ×108 0.36 8.39 ×105 1.21 ×108 6.17 ×106

F5 0 1.45 ×106 2.7 ×106 7.2 ×105 4.71 ×106 4.14 ×105 8.4 ×105 2.2 ×105 1.28 ×106 0.83 7.12 ×103 3.56 ×104 2.83 ×105

F6 0 1.00 341.06 287.07 827.20 1.00 65.66 71.85 262.60 1.00 73.16 132.58 285.36
F7 0 3.86 5.1 ×105 3.9 ×105 1.24 ×106 2.20 ×10−16 4.7 ×104 5.1 ×104 2.07 ×105 0.00 0.39 0.97 5.69 ×103

F8 0 2.15 ×10−7 103.80 118.35 392.30 3.28 ×10−9 12.24 18.15 60.17 2.65 ×1013 0.69 8.63 58.24
F9 0 0.08 5.73 3.08 10.69 0.02 1.97 1.67 5.79 0.06 2.05 2.98 7.51

F10 0 3.00 ×10−8 2.9 ×108 3.3 ×108 1.04 ×109 3.97 ×10−11 1.7 ×106 4.0 ×106 2.10 ×107 8.67 ×10−15 8.37 ×104 4.72 ×104 5.31 ×106

F11 0 3.69 ×10−7 5.3 ×108 6.3 ×108 1.89 ×109 2.01 ×10−8 1.1 ×107 3.0 ×107 1.46 ×108 9.75 ×10−11 4.38 ×105 6.33 ×105 1.57 ×107

F12 0 1.70 ×10124 1.4 ×10127 3.4 ×10127 1.34 ×10128 7.52 ×10116 1.1 ×10127 2.3 ×10127 1.34 ×10128 8.15 ×1025 5.74 ×1028 8.91 ×1028 1.35 ×1031

F13 0 3.04 7.3 ×103 7.9 ×103 2.56 ×104 2.20 ×10−16 1.7 ×103 2.1 ×103 8.23 ×103 0.00 0.09 1.12 ×103 1.97 ×103

F14 0 3.81 ×10−9 272.95 231.23 641.30 2.20 ×10−16 11.60 19.85 97.64 0.00 8.11 14.92 32.15
F15 0 3.66 ×10−3 162.21 113.05 317.92 2.20 ×10−16 32.20 25.02 99.73 0.00 71.98 115.32 458.21
F16 0 0.02 7.3 ×103 8.0 ×103 2.3 ×104 2.20 ×10−16 298.88 449.49 1.4 ×103 0.00 115.21 389.27 536.25
F17 0 0.21 8.4 ×103 3.8 ×103 1.4 ×104 5.09 ×10−4 3.9 ×103 2.5 ×103 8.1 ×103 0.05 0.81 5.32 ×103 1.58 ×104

F18 0 18.87 1.2 ×105 6.9 ×104 3.0 ×105 0.35 4.9 ×104 3.5 ×104 1.2 ×105 0.01 1.2 ×103 1.13 ×103 3.91 ×104

F19 0 5.77 ×10−3 88.24 67.55 177.00 2.20 ×10−16 13.94 20.79 71.94 0.00 8.21 15.32 38.27
F20 0 0.48 40.07 27.64 91.91 0.36 36.74 25.71 83.00 0.07 21.92 19.24 48.25
F21 0 2.71 ×10−5 123.60 115.50 307.50 2.20 ×10−16 7.96 16.57 63.77 0.00 4.85 7.36 41.28
F22 0 1.00 117.90 120.80 326.00 1.00 13.02 19.16 80.00 1.00 8.52 17.23 56.34
F23 0 1.18 1.27 ×104 7.61 ×103 2.24 ×104 3.38 ×10−3 2.26 ×103 1.84 ×103 7.56 ×103 1.15 ×10−7 23.54 45.89 98.54
F24 0 0.03 2.45 ×105 1.45 ×106 1.06 ×107 2.31 600.70 314.90 1.14 ×103 0.01 81.37 96.24 248.54
F25 0 15.61 1.53 ×103 981.90 3.32 ×103 8.33 ×10−3 507.40 368.30 1.48 ×103 1.25 ×10−5 123.11 251.25 652.54
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Table 5. Scientific results of HAM, ABC, ACO, PSO, and MBO-ABCFE on 20-dimensional problems
averaged over 100 runs.

ID Global Minimum
HAM ABC ACO PSO MBO-ABCFE

Best Mean Best Mean Best Mean Best Mean Best Mean

F1 0 2.46 ×10−2 5.08 ×10−2 8.44 1.42 ×101 1.16 ×101 1.50 ×101 1.36 ×101 1.61 ×101 0.00 0.72
F6 0 9.87 ×10−5 2.15 ×10−3 1.43 1.33 ×101 4.49 1.34 ×101 4.31 ×101 8.21 ×101 1.00 7.35
F10 0 5.64 ×10−2 1.19 ×10−1 1.66 ×10−1 1.72 ×104 1.57 ×10−32 8.26 ×107 1.53 ×105 7.23 ×106 3.12 ×10−25 4.32 ×102

F11 0 4.94 ×10−1 7.50 ×10−1 4.13 ×10−1 1.54 ×105 1.35 ×10−32 1.60 ×108 4.01 ×106 2.73 ×107 0.00 2.83
F14 0 4.69 5.79 6.85 1.10 ×101 1.22 ×10−1 1.12 7.58 ×10−1 3.39 0.00 0.03
F15 0 3.99 4.46 ×101 3.09 ×101 6.72 ×101 1.02 ×102 1.59 ×102 1.29 ×102 1.65 ×102 0.00 3.52
F16 0 7.54 ×102 1.79 ×105 7.54 ×102 1.79 ×105 8.56 ×102 1.91 ×103 2.22 ×102 6.13 ×102 0.00 35.21
F18 0 3.93 4.21 ×102 8.92 ×103 1.62 ×104 2.78 ×103 7.95 ×103 3.17 ×103 8.54 ×103 0.02 2.19 ×102

F19 0 7.66 ×10−2 1.38 ×10−1 9.01 ×10−1 3.21 1.49 ×101 4.98 ×101 2.52 ×101 4.76 ×101 0.00 1.27
F20 0 2.67 ×10−2 5.58 ×10−2 4.12 ×101 6.07 ×101 1.91 ×101 3.97 ×101 3.20 ×101 5.30 ×101 0.01 9.21
F21 0 8.07 ×10−4 2.26 ×10−3 7.13 ×10−2 3.66 1.33 ×101 3.32 ×101 1.46 ×101 2.45 ×101 0.00 0.09
F22 0 5.07 5.16 8.03 ×101 1.41 ×103 5.33 ×102 1.96 ×103 5.39 ×103 9.09 ×103 0.79 0.98

The obtained simulation results demonstrated that the proposed hybrid MBO-ABCFE improved
the performance of the original MBO algorithm since MBO-ABCFE outperformed MBO on all 25
benchmark functions for both 20- and 40-dimensional problems. It was also observed from the
results that MBO-ABCFE was significantly better than GCMBO. In the case of the 20-dimensional
problem, MBO-ABCFE outperformed GCMBO in 23 out of 25 benchmark functions. In the case of a
40-dimensional problem, MBO-ABCFE established better performance indicators than GCMBO in 22
out of 25 test instances.

There were two test problems where all three algorithms showed similar performance.
The GCMBO outperformed Griewank and Schwefel 2.26 functions on 20 dimensions, and
Griewank, Pathological, and Schwefel 2.26 functions on 40 dimensions. For the Griewank function,
on 20 dimensions, the best result was identical for MBO-ABCFE and GCMBO, and for the Schwefel
2.26 function, the best result was identical for all three metaheuristics. For Griewank and Schwefel
2.26 functions, on 40 dimensions, the best results were identical for MBO, GCMBO, as well as
MBO-ABCFE. Finally, it is important to remark that there was no problem where MBO outperformed
MBO-ABCFE.

The results presented in Table 5 proved the effectiveness of MBO-ABCFE. The algorithm
outperformed all other compared metaheuristic algorithm for both best and mean indicators, in seven
out of 12 test functions. In test instances with ID 11, 18, and 20, MBO-ABCFA was not able to establish
the best values for the mean indicator; however, it showed the best performance compared to all
other competitors for the best indicator. Only in the case of Griewank and Generalized Penalized
Function 1 (benchmarks with ID 6 and 10, respectively), HAM and ACO obtained better results than
our proposed MBO-ABCFE.

It should be noted that when the results were averaged over 100 runs (Table 5), for some
test instances, MBO-ABCFE established better values for the best and/or mean indicators than in
simulations with 50 runs (Table 3). This meant that when tested with more runs, MBO-ABCFE
performed even better.

We performed an analysis of the obtained results in simulations with 100 runs and noticed that
in tests instances when the global optimum was reached, in many runs, the algorithm managed to
converge to the optimal solution, and that in turn also improved the mean values. The implications
of this were that MBO-ABCFE had a strong exploration in early iterations (ABC’s diversification
mechanism), when it converged to the optimal domain of the search space, while in later iterations,
due to FA’s exploitation ability, MBO-ABCFE performed a fine-tuned search in and around the
promising region of the search space.

Finally, in order to visually represent the improvements of the proposed MBO-ABCFE over
the original MBO, we tested MBO-ABCFE with 8000 and 16,000 FFEs for 20-dimensional and
40-dimensional benchmark instances, respectively, as was performed with the basic MBO in [41].
The convergence speed graphs for some test instances are shown in Figure 3. The convergence graphs
were generated by using the same number of FFEs as in [41].
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(a) F01 function with 8000 FFEs on 20D
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(b) F01 function with 16,000 FFEs on 40D
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(c) F06 function with 8000 FFEs on 20D
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(d) F06 function with 16,000 FFEs on 40D
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(e) F11 function with 8000 FFEs on 20D
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(f) F11 function with 16,000 FFEs on 40D
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(g) F17 function with 8000 FFEs on 20D
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(h) F17 function with 16,000 FFEs on 40D
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(i) F22 function with 8000 FFEs on 20D
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(j) F22 function with 16,000 FFEs on 40D

Figure 3. Convergence graphs. (FFE, fitness function evaluation): (a) F01 function with 8000 FFEs on
20D; (b) F01 function with 16,000 FFEs on 40D; (c) F06 function with 8000 FFEs on 20D; (d) F06 function
with 16,000 FFEs on 40D; (e) F11 function with 8000 FFEs on 20D; (f) F11 function with 16,000 FFEs on
40D; (g) F17 function with 8000 FFEs on 20D; (h) F17 function with 16,000 FFEs on 40D; (i) F22 function
with 8000 FFEs on 20D; (j) F22 function with 16,000 FFEs on 40D.
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As a general conclusion for the unconstrained tests, it could be stated that the proposed
MBO-ABCFE significantly improved the performance of the original MBO and also established
better performance metrics than the improved GCMBO, as well as than the other state-of-the-art
metaheuristic approaches, the results of which were retrieved from the most current computer science
literature sources. Consequently, MBO-ABCFE is promising for real-world applications.

5.2. Convolutional Neural Network Design Experiment

In the second part of the simulation experiments, we optimized the CNN hyperparameter
values by employing the original MBO algorithm and the proposed MBO-ABCFE metaheuristics.
The MBO-ABCFE framework that was develop for tackling CNNs neuroevolution was named
MBO-ABCFE-CNN.

The parameters that were subject to optimization were divided into three categories. The first
category included the hyperparameters of the convolutional layer; the second category included the
hyperparameters of the fully-connected (dense) layer; and the third category consisted of general CNN
hyperparameters.

In Table 6, we summarize the hyperparameter values for each category. For more details regarding
the hyperparameters’ setup, please refer to Section 4.2.

Table 6. Convolutional neural network hyperparameters.

Category Hyperparameter Notation

Convolutional layer Number of convolutional layers nc
Number of filters n f
Filter size fs
Activation function ac
Pooling layer size ps

Fully-connected layer Number of fully-connected layers f cs
Connectivity pattern cp
Number of units nu
Activation function a f
Weight regularization wr
Dropout d

General hyperparameters Batch size bs
Learning rule lr
Learning rate α

In order to reduce the computation time, the values of all hyperparameters were discretized and
defined within lower and upper bounds, and their detailed formulation is described in Section 4.

The population size (SN) in the optimization algorithm was set to 50 solutions, which corresponded
to the solution of the CNN structure (S), and it is defined as follows:

SN = {S1, S2, · · · , S50} (27)

where each CNN structure S consists of the three hyperparameter categories.
Each CNN structure is encoded as the following set:

S = {Cl , FCl , Gh} (28)

where Cl , FCl , and Gh denote sets of convolutional, fully-connected (dense), and general
hyperparameters, respectively.

In the convolution layer category (Cl), each convolutional layer consisted of nested
hyperparameters (number of filters, filter size, activation function, and pooling layer size).
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Similarly, in the fully-connected hyperparameter category, each FC-layer further contained
hyperparameters, such as connectivity pattern, number of hidden units, activation function, weight
regularization, and dropout. The third category, the general hyperparameters, had only one level,
with three hyperparameters: batch size, learning rule, and learning rate.

Each individual from the population (one CNN instance with specific hyperparameters)
represented a data structure that contained all values (attributes) for each hyperparameter and for
each CNN layer. In Figure 4, we show the proposed scheme for encoding the CNN structure.

Fully-connected layer
hyperparameters

General 
hyperparameters

Convolutional layer 
hyperparameters

Fc1

Fc2

Conv2

Conv3

Conv4

Conv1

bs

lr

α

cp

nu

af

wr

d

nf

fs

ac

ps

Figure 4. CNN structure encoding scheme.

In the initialization phase of the algorithm, first the initial population of CNN structures was
generated randomly, according to the following equation:

Si,j = minj + rand · (maxj −minj) (29)

where the jth parameter of the ith solution in the population is denoted by Si,j, rand is a random
number between zero and one, and minj, maxj are the lower and upper bounds of the jth parameter.

During the process of optimization, the algorithm searches for an optimal or near optimal
solution, and after 100 iterations, the algorithm generates optimal and/or near optimal CNN
structures. Similarly to [31], we implemented stop condition, and if there was no improvement,
the algorithm stopped after 30 iterations. By using the stop condition, we avoided wasting expensive
computational resources.

The reported CNN structure after each run was the solution with the best fitness value.
The objective function that should be minimized was the classification error rate of the corresponding
CNN architecture S. The fitness function was inversely proportional to the objective function, and it is
defined as follows:

F(S) =
1

1 + | f (S)| (30)

where F(S) denotes the fitness function of CNN structure S and f (S) indicates the objective function
of the corresponding structure.
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We used the same values of the metaheuristic control parameters in the CNN hyperparameter
optimization like in the unconstrained benchmark function experiment, and the summary of these
parameters is presented in Table 1.

In order to speed up the computation, the structure was trained in five epochs with 50% of the
data. After completion, the 20 best CNN architectures were fully trained in 30 epochs, and due to the
stochastic behavior, the training process was repeated 20 times for each structure. The statistical results
of the 20 best solutions (CNN architectures) of the MBO algorithm and MBO-ABCFE algorithm are
presented in Tables 7 and 8, respectively. The boxplots of the error rate distribution of best 20 solutions
generated by MBO and MBO-ABCFE algorithm are depicted in Figures 5 and 6, respectively.

Table 7. Classification error rate (in %) of the 20 best solutions (CNN architectures) of the MBO algorithm.

No. of Structures Mean StdDev Median Minimum Maximum

1 0.5015 0.0609 0.505 0.41 0.63
2 0.5200 0.0219 0.520 0.47 0.55
3 0.4995 0.0387 0.515 0.42 0.56
4 0.4845 0.0562 0.485 0.37 0.57
5 0.4330 0.0320 0.440 0.39 0.48
6 0.5110 0.0319 0.515 0.45 0.57
7 0.4035 0.0282 0.410 0.36 0.45
8 0.5340 0.0348 0.545 0.46 0.59
9 0.4520 0.0314 0.450 0.39 0.5

10 0.5470 0.0435 0.555 0.46 0.6
11 0.4535 0.0348 0.450 0.41 0.52
12 0.5080 0.0595 0.505 0.42 0.61
13 0.5085 0.0395 0.490 0.46 0.59
14 0.5685 0.0385 0.575 0.49 0.62
15 0.4650 0.0380 0.475 0.40 0.52
16 0.4965 0.0320 0.500 0.44 0.54
17 0.5570 0.0762 0.540 0.44 0.71
18 0.5765 0.0385 0.595 0.50 0.62
19 0.5510 0.0465 0.535 0.49 0.65
20 0.5185 0.0283 0.520 0.47 0.58

Table 8. Classification error rate (in %) of the 20 best solutions (CNN architectures) of the
MBO-ABCFE algorithm.

No. of Structures Mean StdDev Median Minimum Maximum

1 0.5250 0.0326 0.525 0.47 0.59
2 0.4775 0.0497 0.475 0.40 0.58
3 0.5215 0.0217 0.520 0.47 0.56
4 0.4490 0.0460 0.450 0.36 0.53
5 0.5030 0.0332 0.500 0.44 0.57
6 0.5155 0.0277 0.520 0.45 0.57
7 0.4925 0.0288 0.485 0.45 0.55
8 0.4745 0.0401 0.475 0.41 0.54
9 0.4355 0.0353 0.430 0.38 0.48

10 0.4385 0.0307 0.450 0.39 0.49
11 0.4520 0.0506 0.445 0.35 0.54
12 0.3650 0.0132 0.370 0.34 0.39
13 0.5055 0.0229 0.500 0.45 0.55
14 0.4680 0.0294 0.460 0.42 0.51
15 0.4600 0.0446 0.460 0.40 0.58
16 0.4960 0.0559 0.510 0.42 0.59
17 0.4800 0.0288 0.485 0.43 0.54
18 0.4855 0.0319 0.480 0.44 0.56
19 0.4120 0.0220 0.415 0.37 0.45
20 0.4400 0.0383 0.435 0.38 0.49
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Figure 5. Boxplot of the error rate distribution of the best 20 solutions generated by the MBO algorithm.
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Figure 6. Boxplot of the error rate distribution of the best 20 solutions generated by the MBO-ABCFE algorithm.

The minimum classification error rate of the 20 best CNN structure generated by the MBO
algorithm ranged between 0.36 % and 0.5%, with a median value of 0.44%; on the other hand,
the maximum classification error rate ranged between 0.45% and 0.71%, with a median value of
0.575%. In the case of the proposed MBO-ABCFE algorithm, the minimum classification error rate of
the 20 best CNN structures ranged between 0.34% and 0.47%, with a median value of 0.415%, and the
maximum classification error rate ranged between 0.39% and 0.59%, with a median value of 0.545%.

The best architecture resulted in a 0.36% error rate on the test set. The optimized architecture
consisted of two convolutional layers, the filter size in the first layer being 64 and in the second layer
128. The filter size was 5× 5 in the first layer and in the second 3× 3. The pooling layers’ size was 2× 2
after each convolution. In the convolution layers, as well as the FC layers, the ReLU activation function
was used. The architecture had only one full-connected layer before the classification layer, and it
had 1024 hidden units. As regularization, only a dropout with probability 0.5 of keeping was selected.
The batch size was 100, and the structure was trained by the adamax optimizer with a learning rate
α = 10−3. The best resulted architecture is depicted in Figure 7.
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Figure 7. CNN architecture.

The resulting structures, which were generated automatically by metaheuristics algorithms,
may have the same or similar structure and design as the traditional CNN structures. The main
difference was that when using evolutionary or some other metaheuristics, hyperparameters
optimization was performed automatically by the algorithm, instead of manually by performing
“trial and error”, as is the case in traditional approaches. In both cases (traditional and metaheuristics),
the main layers stacked on top of one another and formed the full structure; also, in both cases,
additional building blocks could be incorporated. The utilization of a metaheuristic approach allowed
the evolution of a better accuracy rate without manual modification of hyperparameter values, which
is the case in the traditional approach.

As already noted a few times, the state-of-the-art method that was presented and tested under the
same experimental conditions [31] was utilized as a direct comparison with our proposed MBO-ABCFE.
In [31], the neuroevolution framework by using GA and grammatical evolution was proposed.
The proposed framework managed to obtain the lowest classification error rate on the MNIST dataset
of 0.37%. Compared to this framework, the original MBO established slightly better performance,
resulting in a 0.36% error rate, while the proposed MBO-ABCFE managed to perform classification of
the MNIST dataset with only a 0.34% error rate.

A comparative analysis between the proposed MBO-ABCFE metaheuristics, MBO, and the
neuroevolution framework by using GA and grammatical evolution is given in Table 9. With the
goals of establishing more objective validation of the proposed MBO-ABCFE-CNN framework and
to provide a more informative and extensive review to the evolutionary computation and deep
learning communities, in the presented comparative analysis, we also included the results of some
traditional CNNs tested on the same dataset. All results were reported and retrieved from the relevant
literature sources.

Table 9. Comparative analysis of the classification error rate on the MNIST dataset.

Method Error Rate (%)

CNN LeNet -5 [1] 0.95
CNN (2 conv, 1 dense, ReLU) with DropConnect [22] 0.57
CNN (2 conv, 1 dense, ReLU) with dropout [22] 0.52
CNN (3 conv maxout, 1 dense) with dropout [101] 0.45
CNN with multi-loss regularization [102] 0.42
Verbancsics et al. [103] 7.9
EXACT [104] 1.68
DEvol [105] 0.60
Baldominos et al. [31] 0.37
MBO-CNN 0.36
MBO-ABCFE-CNN 0.34
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The visual representation of the comparative analysis between the proposed MBO-ABCFE-CNN
framework and some methods, the results of which are presented in Table 9, is given in Figure 8.

Figure 8. Visual representation of the comparative analysis.

It can be concluded that the proposed MBO-ABCFE approach is very promising in the application
of CNN design. The metaheuristic approach led to very good results, and it did not require expertise
in the domain of the convolutional neural network for fine-tuning the hyperparameters. Since the
design was done automatically, it would save the time and effort of the researchers who are conducting
the experiments.

6. Conclusions

Convolutional neural networks, as a fast growing field, have a wide range of applications in
different areas and represent important machine learning methods. One of their major limitations is
that a structure for a given problem requires the fine-tuning of the hyperparameter values in order to
achieve better accuracy. This process is very time consuming and requires a lot of effort and researchers
expertise in this domain.

In the literature survey, research that addressed this problem could be found. The general idea
was to develop an automatic framework for generating CNN structures (design) that would perform
specific classification tasks with high accuracy. Recently, the term “neuroevolution” for generating
such networks was proposed. Since the CNN hyperparameters’ optimization belongs to the group of
NP-hard challenges, all research has proposed heuristic and/or metaheuristics methods for its solving.

The research proposed in this paper is an extension of our previously conducted simulations and
experiments from this domain. However, in the research that was presented in this paper, with the
objective to generate network structures that would perform a given classification task with higher
accuracy than other networks, we included more CNN hyperparameters for the optimization process
than previously presented works from this domain: the number of convolutional layers along with the
number of kernels, the kernel size and activation function of each convolutional layer, the pooling size,
the number of dense (fully-connected) layers with the number of neurons, the connectivity pattern,
the activation function, weight regularization, the dropout for each dense layer, as well as the batch
size, learning rate, and rule as general CNN hyperparameters.

We tried to generate state-of-the-art CNN structures by developing an automatic framework
using hybridized MBO swarm intelligence metaheuristics, which was also proposed in this paper.
By conducting practical simulations with the original MBO, we noticed some deficiencies that
were particularly emphasized in its exploration process and in the established balance between
intensification and diversification. Moreover, we concluded that the basic MBO’s exploitation process
could be further improved. To address these issues, we hybridized the original MBO with ABC and
FA swarm algorithms. We first adopted the exploration mechanism and one parameter that adjusted
intensification from the ABC metaheuristics. Second, we incorporated a very efficient FA search
equation into our approach.
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In compliance with the established practice in the scientific literature, the proposed hybridized
MBO-ABCFE was firstly tested on a standard group of unconstrained benchmarks, and later, it was
applied to the practical CNNs’ neuroevolution problem. For the tests on unconstrained function
instances, we performed comparative analysis with the original MBO, as well as with one other
improved state-of-the-art MBO algorithm. Our proposed MBO-ABCFE proved to be a significantly
better approach in terms of convergence (mean values) and also in the results’ quality (best individuals).

In the second group of practical simulations, by using the proposed MBO-ABCFE, we developed
the framework for CNN hyperparameters’ optimization and performed tests on the standard MNIST
dataset. Since the implementation of the original MBO for this challenge was not found in the
literature survey, to establish a more precise comparative analysis, we also implemented original
MBO for this problem. The proposed hybrid metaheuristics was compared with several other
state-of-the-art methods that were tested on the same dataset and under the same experimental
conditions, and we obtained better classification accuracy. Moreover, the original MBO managed to
establish high classification accuracy.

The scientific contributions of the presented research can be summarized as follows:

• An automated framework for “neuroevolution” based on the hybridized MBO-ABCFE algorithm,
which managed to design and generate CNN architectures with high performance (accuracy) for
image classification tasks, was developed;

• In the CNN hyperparameters’ optimization problem, we included more CNN hyperparameters
than most previous works from this domain;

• We managed to enhance the original MBO approach significantly by performing hybridization
with other state-of-the-art swarm algorithms; and

• The original MBO was implemented for the first time for tackling CNNs’ optimization challenge.

The detailed description of the experimental conditions along with the control parameters’ values
were presented in this paper.

Since the domain of the proposed research represents a very promising area, in our future work,
we plan to continue research, experiments, and simulations with CNNs’ design challenge. We will also
try to improve other swarm intelligence algorithms and adjust them to tackle this problem. Moreover,
we plan to invest significant effort into developing frameworks that will include even more CNN
hyperparameters in the optimization process and perform tests on other datasets as well, like CIFAR-10,
SEED, and Semeion Handwritten Digits.
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