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Abstract: A large volume of high-dimensional genetic data has been produced in modern medicine
and biology fields. Data-driven decision-making is particularly crucial to clinical practice and relevant
procedures. However, high-dimensional data in these fields increase the processing complexity and
scale. Identifying representative genes and reducing the data’s dimensions is often challenging. The
purpose of gene selection is to eliminate irrelevant or redundant features to reduce the computational
cost and improve classification accuracy. The wrapper gene selection model is based on a feature set,
which can reduce the number of features and improve classification accuracy. This paper proposes a
wrapper gene selection method based on the slime mould algorithm (SMA) to solve this problem.
SMA is a new algorithm with a lot of application space in the feature selection field. This paper
improves the original SMA by combining the Cauchy mutation mechanism with the crossover
mutation strategy based on differential evolution (DE). Then, the transfer function converts the
continuous optimizer into a binary version to solve the gene selection problem. Firstly, the continuous
version of the method, ISMA, is tested on 33 classical continuous optimization problems. Then, the
effect of the discrete version, or BISMA, was thoroughly studied by comparing it with other gene
selection methods on 14 gene expression datasets. Experimental results show that the continuous
version of the algorithm achieves an optimal balance between local exploitation and global search
capabilities, and the discrete version of the algorithm has the highest accuracy when selecting the
least number of genes.

Keywords: gene selection; slime mould algorithm; Cauchy mutation; crossover and mutation;
medical diagnosis

1. Introduction

Microarray technology [1,2] is a new analytical tool that simultaneously measures the
expression levels of thousands of genes in a single experiment, greatly helping researchers
understand disease at the genetic level. However, the gene expression data are all high-
dimensional, and the number of features is much larger than the number of samples [3,4]. A
large number of unrelated and complex features will reduce the computational performance
and waste computational resources, which is not conducive to the classification of gene
expression [5–7]. The application of feature selection in genes, namely gene selection, is a
screening technology to reduce unrelated genes and gene dimensions [8–10]. Through this
technology, feature size can be effectively reduced, and classification performance can be
improved [11–13].

Feature selection is an essential technology in data processing and machine learning [7,14].
The essence is to pick out the relatively optimal features from the raw data so that the
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data go from high to low dimensions [15,16]. The commonly used (classical) feature
selection methods can be divided into filter, wrapper, embedded, and hybrid methods [17].
Filter methods typically select features independently and evaluate individual features
without providing a practical evaluation across feature subsets, which may ignore the
correlation between feature combinations [18–21]. Because it does not use any algorithm,
the computation is less, leading to the failure to find the optimal gene subset. The wrapper
method relies on the classification algorithm to select the feature subset, which can obtain
the ideal effect, but the calculation cost is high [22–24]. Embedded methods usually use
some machine learning algorithms and models for training and then select the best feature
subset through the classifier algorithm [25]. When extracting features, it needs to train
the model to automatically obtain the corresponding threshold value, which is realized by
the algorithm with a built-in feature selection method. The hybrid method combines the
advantages of the filter and wrapper methods to determine the optimal subset of a given
cardinality by independent measurement and select the final subset in the optimal subset
using a mining algorithm [26–29].

Optimization methods can be approximated or deterministic [30], and their model can
be single objective and multi-objective, including multiple objective algorithms that can
deal with multiple objectives at once [31,32]. In recent years, since the wrapper method
based on the meta-heuristic algorithm or its variants can find an acceptable solution,
that is, the approximate optimal subset of features, it has been widely used in feature
selection [33,34]. In this study, we tried to use an improved slime mould algorithm (SMA),
called ISMA, to develop an efficient wrapper gene selection method for finding the smallest
feature subset. The optimization algorithm proposed in this paper is aimed at the shortcom-
ings and characteristics of the original SMA, using the main operators of the SMA, but some
of the operators use binary conversion to adapt to the genetic selection problem because the
original version of the algorithm was created to solve the continuity problem. SMA is a new
meta-heuristic algorithm recently proposed by Li et al. [35], which is used to deal with con-
tinuous global optimization and engineering design problems. It is an optimal algorithm
used to simulate the dynamic vibration behavior of slime mould in dispersive foraging and
food searching. This method consists of three search patterns with different morphologic
variations, which are mathematically expressed using a unique model. The mathematical
model of SMA mainly adopts the adaptive weight to simulate the propagation wave of
the biological oscillator and generates positive feedback during the optimization process,
which helps form an optimal exploration trajectory of the optimal solution with good
searchability. In addition, the survey and results confirm that SMA achieves a balanced
competitive advantage between global exploration and local exploitation. Notably, it shows
a superior tendency towards local exploitation. With the help of adaptive weighting and
efficient and reasonable structure, SMA can provide significantly enhanced performance
compared to many recognized advanced algorithms, such as whale optimization algo-
rithm (WOA), gray wolf optimization (GWO), grasshopper optimization algorithm (GOA),
moth-flame optimization (MFO), ant lion optimizer (ALO), bat algorithm (BA), salp swarm
algorithm (SSA), sine cosine algorithm (SCA), particle swarm optimization (PSO), and
differential evolution (DE) [36]. Other examples include biogeography-based learning
particle swarm optimization (BLPSO) [37], comprehensive learning particle swarm op-
timizer (CLPSO) [38], improved grey wolf optimization (IGWO)[39], and binary whale
optimization algorithm (BWOA) [40], etc. Therefore, SMA has been applied in engineering
design problems [35,41], solar photovoltaic cell parameter estimation [42,43], multi-spectral
image segmentation [44], numerical optimization [45], prediction problems [46,47], support
vector regression parameter adjustment [48] and other aspects. This algorithm is a suffi-
ciently effective meta-heuristic optimization algorithm, but it may have the shortcoming of
local optimal convergence and slow convergence speed when dealing with some complex
problems. Therefore, there are some challenges in improving the optimization capability of
SMA and expanding its application value.
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In order to alleviate the shortcomings of traditional SMA and strengthen the trend of
coordination between global exploration and local exploitation, an advanced SMA variant
was proposed based on the reasonable integration of Cauchy mutation (CM) and crossover
mutation (MC). After the initial search agent is generated, the solution is updated in three
phases. First, execute the search process of SMA and update the search agent. The Cauchy
mutation strategy is adopted in the second stage to adjust the SMA-based search agent.
Finally, the optimal search agent is selected from the previous generation of search agents
through a crossover mutation strategy. In addition, we convert the continuous version of
ISMA to a discrete ISMA with a transfer function. Tests on gene expression data sets have
shown that BISMA has significant advantages over some advanced gene selection methods
and is very effective. It shows that ISMA can effectively solve high-dimensional complex
gene problems, which makes improving SMA more valuable.

The main contributions in this paper can be summarized as follows:

(1) An improved slime mould algorithm (ISMA) is proposed to solve continuous global
optimization problems and high-dimensional gene selection problems.

(2) The performance of the ISMA algorithm is verified by comparing it with several
famous optimization algorithms.

(3) Different transfer functions are used to transform the proposed ISMA into a discrete
version of BISMA, and they are compared to choose the most suitable transfer function
for the binary ISMA optimizer.

(4) The optimal BISMA version was selected as a gene selection optimizer to select the
optimal gene subset from the gene expression data set.

(5) The performance of the selected method is verified by comparing it with several other
advanced optimizers.

The rest of this article is as follows: The second part introduces the work of gene
selection and meta-heuristic algorithms. In the third section, Cauchy mutation and a
crossover mutation strategy based on the DE algorithm are introduced in detail, and ISMA
is proposed. In the fourth section, a series of comparative experiments between ISMA
and other similar algorithms are introduced. In the fifth part, we design the structure of
wrapper gene selection for discrete ISMA. In the sixth part, we discuss the application of
BISMA and other related algorithms in gene selection. In the seventh part, we discuss a
summary of the proposed work as well as its shortcomings and implications. The eighth
part gives a brief description of the work of this paper and points out the future direction
of the work.

2. Related Works

The dimensions of microarray data are often extremely asymmetric and highly re-
dundant, and most genes are considered to be irrelevant to the category under study.
Traditional classification methods cannot effectively process such data. Many researchers
have achieved good results using machine learning techniques to process gene expression
data sets.

2.1. Machine Learning for Gene Selection

Singh et al. [49] proposed a hybrid improved chaotic emperor penguin (CEPO) al-
gorithm based on the Fisher criterion, ReliefF, and extreme learning machine (ELM) for
microarray data analysis. In this paper, the Fisher criterion and ReliefF method were
first used as gene selection filters, and then relevant data were used to train the ELM to
obtain a better model. Banu et al. [50] used the fuzzy clustering method to assign initial
values to each gene and then predicted the likelihood of belonging to each cluster to carry
out gene selection. The comparative experimental results show that the fuzzy clustering
algorithm performs well in gene prediction and selection. Chen et al. [51] proposed a
support vector machine for binary tumor diagnosis, extending the three kinds of support
vector machines to improve the performance of gene selection. At the same time, lasso,
elastic net, and other sparse regression methods were introduced for cancer classification
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and gene selection. Mahendran et al. [52] conducted an extensive review of recent work on
machine learning-based selection and its performance analysis, classified various feature
selection algorithms under supervised, unsupervised and semi-supervised learning, and
discussed the problems in dealing with high and low sample data. Tan et al. [53] proposed
an integrated machine learning approach to analyze multiple gene expression profiles of
cervical cancer to find the genomes associated with it, with the expectation that it could
help in diagnosis and prognosis. The gene expression data were identified effectively
through the analysis of three steps.

Zhou et al. [54] proposed an improved discretized particle swarm optimization algo-
rithm for feature selection. In their work, a modest pre-screening process is first applied to
obtain fewer features; then, a better cutting combination is found through the encoding
and decoding method based on PSO and the local search strategy guided by probability
to obtain the desired feature subset. Zohre Sadeghian et al. [55] proposed a three-stage
feature selection method based on the S-BBOA algorithm. In the first stage, the minimum
redundancy—maximum new classification information (MRMNCI) feature selection was
used to remove 80% of the irrelevant and redundant features. The best feature subset was
chosen using IG-BBOA in the second step. Furthermore, the similarity ranking approach
was used to choose the final feature subset. Veredas Coleto-Alcudia et al. [56] proposed a
new hybridization method based on the dominance degree artificial bee colony algorithm
(ABCD) to investigate the problem of gene selection. The method combines the first step
of gene screening with the second part of the optimization algorithm to find the optimal
subset of genes for the classification task. The first step is to use the Analytic Hierarchy
Process (AHP) to select the most relevant genes in the dataset through five sequencing
methods. In this way, gene filtering reduces the number of genes that need to be managed.
For the second step, gene selection can be divided into two objectives: minimizing the
number of selected genes and maximizing classification accuracy. Lee et al. [57] embedded
the formal definition of correlation into Markov coverage (MB) and established a new
multi-feature sequencing method, which was applied to high-dimensional microarray
data, enhancing the efficiency of gene selection and, as a result, the accuracy of microarray
data classification.

2.2. Swarm Intelligence for Gene Selection

Alok Kumar Shukla et al. [4] created TLBOGSA, a hybrid wrapper approach that
combines the features of the Teaching Learning based Optimization (TLBO) and the Gravity
Search Algorithm (GSA). TLBOGSA was updated with a new encoding approach that
transformed the continuous search space into the binary search space, resulting in the
binary TBSA. First, significant genes from the gene expression dataset were chosen using
the minimal redundancy and maximum correlation (mRMR) feature selection approach.
Then, using a wrapper strategy, information genes were chosen from the reduced data gen-
erated by the mRMR. They developed the gravitational seeking mechanism in the teaching
stage to boost the evolutionary process’s searching capabilities. The technique selected
the most reasonable genes using a Naive Bayes classifier as a fitness function, which is
useful for accurate cancer classification. Based on the phase diagram approach, Elahe
Khani et al. [58] suggested a unique gene selection algorithm, and Ridge logistic regression
analysis was performed to evaluate the likelihood that the genes belong to a stable group
of genes with excellent classification ability. To address the problems, a methodology for
the final selection of the selected set is suggested. The model’s performance was assessed
using the B632+ error estimation approach. To identify genes from gene expression data
and valuable information genes from cancer data genes, a decision tree optimizer based
on particle swarm optimization was presented by Chen et al. [59]. Experimental results
demonstrate that this strategy outperforms different popular classifiers, including sup-
port vector machines, self-organizing mapping, and back propagation neural networks.
Dabba et al. [10] developed the Quantum MFO (QMFOA), a swarm intelligent gene se-
lection technique based on the fusion of quantum computing with the MFO, to discover
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a relatively small subset of genes for high-precision sample classification. The QMFOA
gene selection algorithm has two stages: the first is preprocessing, which acquires a prepro-
cessing gene set by measuring the redundancy and correlation of genes, and the second
is hybrid combination and gene selection, which utilizes several techniques such as MFO,
quantum computing, and support vector machine. To select a limited, representative
fraction of cancer-related genetic information, Mohamad et al. [60] developed an enhanced
binary particle swarm optimization for gene selection. The velocity of particles is incorpo-
rated in this approach to give the rate of particle position change, and the particle position
update rule is presented. The experimental findings show that the suggested technique
outperforms the classic binary PSO in terms of classification accuracy while picking fewer
genes (BPSO).

3. The Proposed ISMA
3.1. SMA

Several swarm intelligence optimization techniques have appeared successively in
recent years, such as slime mould algorithm (SMA) [35], Harris hawks optimization
(HHO) [61], hunger games search (HGS) [62], Runge Kutta optimizer (RUN) [63], colony
predation algorithm (CPA) [64], and weighted mean of vectors (INFO) [65]. Due to
the simplicity and efficiency of swarm intelligence algorithms, they have been widely
used in many different fields, such as image segmentation [66,67], the traveling sales-
man problem [68], feature selection [69,70], practical engineering problems [71,72], fault
diagnosis [73], scheduling problems [74–76], multi-objective problems [77,78], medical
diagnosis [79,80], economic emission dispatch problems [81], robust optimization [82,83],
solar cell parameter identification [84], and optimization of machine learning models [85].
Among them, SMA is a new bionic stochastic optimization problem, simulating slime mold
behavior and morphological changes during foraging. At the same time, SMA used weight
to simulate the positive and negative feedback effects of slime mould propagation waves
during foraging behavior to construct a venous network with different thicknesses. The
morphology of the slime mould changed with the three search patterns: proximity to food,
wrap around food, and oscillation.

From the brief description of SMA shown in Figure 1, the random value rand helps
to find the optimal solution. The slime moulds were randomly distributed in any direc-
tion to search for solutions (food), and when rand < z, there was no venous structure.
During the search phase, when rand ≥ z and r < p, individuals form diffuse venous
structures to access food. The adaptive change of decision parameter p ensures better
adaptability of the transition from the exploration stage to the exploitation stage. During
the exploitation phase, when r ≥ p, the individual encapsulates the solution (food) through
venous fibrillation.

Figure 1. A brief description of SMA.
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Based on the following significant parameters, a specific mathematical model of SMA
can be constructed to represent the three contraction modes of slime mould:

X(t + 1) =


rand·(UB− LB) + LB, rand < z
Xb(t) + vb(t)·(W·XA(t)− XB(t)), r < p
vc(t)·X(t), r ≥ p

(1)

where X(t) and X(t + 1) represent the position vectors of slime mould during iteration
t and (t + 1), respectively. UB and LB indicate the upper and lower boundaries of the
search space, respectively. Xb denotes the position vector of the individual with the highest
fitness (highest concentration). XA(t) and XB(t) indicate the position vectors of random
individuals selected from the slime mould during iteration t. rand and r are random values
between 0 and 1. The parameter z is set to 0.03 as in the original literature.

In addition, the decision parameter p can be calculated as follows:

p = tanh tanh |S(i)− DF| (2)

where S(i) indicates the fitness of the ith individual in the slime mould X, i ∈ 1, 2, · · · , N.
N. denotes the size of the population. DF represents the best fitness, which is attained
during all of the iterations.

W is the weight vector of slime mould, which can be obtained from the following
equation. This vector mimics the rate at which slime mould shrinks around food for
different food masses.

W(Smell Index(i)) =

1 + r· log
(

bF−SmellOrder(i)
bF−wF + 1

)
, condition

1− r· log
(

bF−SmellOrder(i)
bF−wF + 1

)
, otherwise

(3)

[SmellOrder, Smell Index] = sort(S)

where bF and wF are the best and worst fitness obtained in the current iteration, respectively.
Smell Index and SmellOrder denote, respectively, the fitness sort order (smallest problems
sorted in ascending order) and the corresponding fitness value. condition indicates the first
half of SmellOrder and is also the overall fitness ordering value. condition simulates the
individuals adjusting their search patterns dynamically according to the quality of things.

The collaborative interaction between the parameters vb and vc can simulate the
selection behavior of slime mould. vb denotes a random value in the interval [−a, a]. The
parameter vc represents a decrease in the number of iterations within the interval [−b, b].

a = arctanh
(

1−
(

t
Max_iter

))
(4)

b = 1−
(

t
Max_iter

)
(5)

where Max_iter indicates the maximum number of iterations.
The simplified pseudo-code of SMA is listed in Algorithm 1. We can find more specific

descriptions in the original literature.

Algorithm 1: Pseudo-code of SMA

Begin
Initialize the parameters: Max_iter, N
Initialize slime mould population X
While t ≤ Max_iter

Calculate the fitness of each individual in the slime mould
Update best fitness and the Xb
Calculate the weight W according to Equation (3)
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Calculate a according to Equation (4)
Calculate b according to Equation (5)
For i = 1, 2, · · · , N (each search agent)

Update p according to Equation (2)
Update vb, vc based on a and b, respectively
Update the positions according to Equation (1)

EndFor
iteration = iteration + 1

EndWhile
Return the best fitness and Xb

End

3.2. The Cauchy Mutation Operator

In this section, we will briefly introduce the Cauchy mutation. The Cauchy density
function can be described as:

ft(x) =
1
π

t
t2 + x2 ,−∞ < x < ∞ (6)

where t > 0 and is the proportional parameter, and the distribution function is expressed
as follows:

Ft(x) =
1
2
+

1
π

arctan
( x

t

)
(7)

By increasing the search range in each generation, individuals can be guaranteed to
find better solutions in a wider range, thus avoiding local optimization. Therefore, Cauchy
mutation was selected as an improved mechanism.

In the original SMA based on Equations (6) and (7), the version using the Cauchy
mutation operation is expressed as:

xi_cauchy = xi × (1 + Cauchy) (8)

where Cauchy is the random number of the distribution obtained by the Cauchy distri-
bution, xi is a position in the SMA at the time of the current iteration, xi_cauchy is the
corresponding position of xi after Cauchy mutation. The introduction of the Cauchy muta-
tion mechanism improves the foraging behavior of slime mould searching the unknown
space, so the quality of SMA solutions can be enhanced by using the Cauchy operator in
the simulation process.

3.3. The Mutation and Crossover Strategy in DE

During the optimization procedure, the major operations are mutation and crossover.
Each solution xi = { xi1, xi2, xi3, . . . , xin} is a vector of n dimensions.

A. Mutation

A mutant vector can be generated via the mutation operator ?i according to selected
components from randomly nominated vectors xa, xb, and xc, where a 6= b 6= c 6= i. The
mathematical equation can be represented as follows:

ui = xa + F ∗ (xb − xc) (9)

where F is a random number that is able to control the mutation’s perturbation size.

B. Crossover

The crossover operator may construct a trial vector vi by applying crossover to a
mutant vector, where the trial vector is constructed by randomly selecting items from the
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mutant ui and the target vector xi depending on the probability ratio Pc. The math formula
appears such as this:

vij =

{
uij ; rand ≤ Pc or j = j0

xij; otherwise
(10)

The probability feature Pc controls the diversity of the swarm and relieves the risk of
local optima, and j0 is an index between [1,2,3, . . . , Np], which guarantees that vi obtains
at least one component from ui.

3.4. The Hybrid Structure of the Proposed ISMA

Considering that the original SMA may not converge to some suboptimal solutions
precociously or face the risk of falling into local optimal solutions, the improved algorithm
ISMA proposed in this paper combines two strategies, Cauchy mutation and crossover mu-
tation based on DE, to promote the coordination of global exploration and local exploitation
and forms a new SMA variant, namely ISMA. The structure of the proposed ISMA is shown
in Figure 2, which is demonstrated in Algorithm 2. Under the ISMA framework, these two
strategies are used, in turn, to generate the new search agent and the best agent with the
best solution in the current iteration. Figure 2 depicts the ISMA process. As illustrated in
the picture, the position of each agent may be rebuilt when the location of each agent is
updated according to Equation (1), implying that each agent achieves the best solution in a
larger search space.

Figure 2. The framework of the proposed ISMA.

The position update based on SMA is to solve the position vector of slime mould
according to the optimization rules of SMA, as detailed in Section 2.1. This phase produces
a population based on SMA. The Cauchy-based mechanism and the crossover mutation
mechanism are based on the behavior of the Cauchy-based mutation operation and the
crossover mutation operation shown in Section 2.2 to adjust the position vector of an SMA-
based individual to produce a new SMA-based population. In this stage, the advantages of
Cauchy and the crossover mutation mechanism in the exploration stage are utilized to make



Biomedicines 2022, 10, 2052 9 of 34

up for the shortcomings of the SMA exploration. Considering both mechanisms’ effects on
search ability, this means increasing population size and thus population diversity. The
research shows that this stage not only helps to promote the coordination of exploration and
exploitation capabilities but also helps to improve the quality of solutions and accelerate
the convergence rate.

Algorithm 2: Pseudo-code of ISMA

Begin
Initialize of the parameters: Max_iter, N
Initialize of slime mould population X
While t ≤ Max_iter

Calculate the fitness for each individual in slime mould
Update Xb and the best fitness
Calculate the weight W,a,b according to Equations (3)–(5)
For i = 1 : N

Update p using Equation (2)
Update vb, vc based on a and b, respectively
Update the positions by Equation (1)

EndFor
Use Cauchy mutation strategy to update the best individual and the best fitness
Adopt MC strategy to update the best individual and the best fitness
iteration = iteration + 1

EndWhile
Return the best fitness and Xb as the best solution

End

3.5. Computational Complexity

The proposed SMA structure mainly includes the following parts: initialization, fitness
evaluation, fitness sorting, weight updating, position updating based on SMA strategy,
position updating based on Cauchy mutation strategy, and position updating based on
crossover mutation strategy, where N is the number of cells of slime mould, D is the
dimension of function, and T is the maximum number of iterations. The computational
complexity of initialization is O(D). In the process of evaluation and sorting of fitness, the
computational complexity is O(N + NlogN). The computational complexity of updating
the weight is O(N × D). The computational complexity of the location update process
based on SMA is O(N × D). Similarly, the computational complexity of the location
updating process based on the Cauchy mutation mechanism and cross mutation mechanism
is O(N × D). Therefore, the total computational complexity of ISMA is O(D + T × N ×
(1 + 4D + logN)).

4. Experimental Design and Analysis of Global Optimization Problem

To evaluate successive versions of ISMA, we considered two experiments to com-
pare the methods presented in this section with several other competitors. We used
23 continuous benchmark functions (including 7 unimodal functions, 6 multimodal func-
tions, and 10 fixed-dimensional multimodal functions) and 10 typical CEC2014 benchmark
functions (2 hybrid functions and 8 composition functions) for a total of 33 benchmark
cases. Experiment 1 is a series of SMA variants with different update strategies: ISMA,
CSMA, and MCSMA. The best SMA variants are obtained by comparing them with the
original SMA and DE algorithm. Experiment 2 is to compare the ISMA algorithm with
8 other advanced optimization algorithms, including multi-population ensemble differ-
ential evolution (MPEDE) [86], successful history-based adaptive DE variants with linear
population size reduction (LSHADE) [87], particle swarm optimization with an aging
leader and challengers (ALCPSO) [88], comprehensive learning particle swarm optimizer
(CLPSO) [38], chaos-enhanced sine cosine-inspired algorithm (CESCA) [89], improved grey
wolf optimization (IGWO) [39], whale optimization algorithm with β-hill climbing (BHC)
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algorithm and associative learning and memory (BMWOA) [90], modified GWO with
random spiral motions, simplified hierarchy, random leaders, oppositional based learning
(OBL), levy flight (LF) with random decreasing stability index, and greedy selection (GS)
mechanisms (OBLGWO) [91]. In this study, all experimental evaluations were conducted
on a Windows 10(64-bit) operating system with 32GB RAM, Intel(R) Xeon(R) Silver 4110
CPU @ 2.40 GHz 2.10 GHz (dual processor), and MATLAB R2014a coding.

Tables A1–A4 contain information on 23 benchmark functions and 10 classic CEC2014
benchmark functions. It can be seen that the information of the 33 functions used in the
experiment contains a wide variety of problems. These capabilities can be used not only
to verify the local exploitation ability and global exploration ability but also to verify the
ability to balance the two abilities. In addition, to reduce algorithm randomness’s impact
on the experiment [92], we conducted 30 independent tests for each test case. In order to
exclude the influence of other factors on the experiment, all the test algorithms were run
under the same settings and conditions [93–95]. The maximum function evaluation was set
as 300,000, and the population size was 30.

In addition, statistical results such as mean and standard deviation (std) are used to
represent the global optimization ability and robustness of the evaluation method. The
Wilcoxon signed-rank test at the significance level of 0.05 was used to measure the degree of
improvement, which was statistically significant. It is worth noting that the label ‘+/=/−’
in the results indicates that ISMA is significantly superior to, equal to, or worse than other
competitors. For a comprehensive statistical comparison, the Friedman test was used to
see whether the performance of all the comparison algorithms on the baseline function
differed and was statistically significant. The mean ranking value (ARV) of the Friedman
test was used to evaluate the average performance of the investigated method. It is worth
noting that a reliable comparison must involve more than 5 algorithms for more than
10 test cases [96].

4.1. Comparison between SMA Variant and Original SMA and DE Algorithm

In this section, to prove the superiority of the Cauchy mutation mechanism and the
combination of mutation and crossover strategies in DE, we compare the three combinations
of the two mechanisms and the original SMA with the DE algorithm. The comparison
results are shown in Tables A5–A7, and the algorithm convergence curve is shown in
Figure 3.

As the results show in Tables A5 and A6, ISMA clearly outperforms the other mecha-
nism combinations and the original SMA and DE algorithms, as ISMA outperforms almost
all algorithms in handling most of the test functions. As can be seen from the ARV of
Friedman’s test in Table A7, ISMA can be considered the first algorithm when comparing
the five algorithms. Mean and std in Table A5 also indicate the superiority of ISMA in
F1–F6, F9–F14, F26–28, and F30–33 functions. ISMA ranks 2nd in F7, F15–F17, F19–25, and
F29. According to the statistical significance of p-values in Table A6, almost all values in the
SMA column are less than 0.05, indicating that ISMA has significantly improved the origi-
nal SMA algorithm. The final optimization effect of F1–3, F9–11 and F26–28 functions by
CSMA and MCSMA is the same as that by ISMA. In summary, the results of the Wilcoxon
signed-rank test show that, statistically, ISMA has significantly improved performance
compared with other algorithms. The results show that the addition of the Cauchy mutation
strategy and crossover mutation strategy based on DE is beneficial to ISMA’s exploitation
ability and exploration ability and the balance between ISMA’s exploitation ability and
exploration ability.

The convergence analysis can show which optimizer as an iterative method can reach
better quality results within a shorter time [97,98]. Figure 3 shows the convergence curves
of the comparison method on 12 functions. We can intuitively find that, compared with
the original SMA, DE, and other two SMA variants, the ISMA using the two mechanisms
has a better effect. Combining the two mechanisms makes the SMA avoid falling into the
local optimal solution and can obtain the global optimal solution. The overall advantage of
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ISMA is significant because of the positive effect of the Cauchy mutation mechanism and
the crossover mutation strategy on SMA, which highlights the optimization capability of
the proposed method.

Figure 3. Convergence curves of the SMA variants and the original SMA and DE algorithms on
twelve functions.

4.2. Comparison with Advanced Algorithms

In this experiment, we compare ISMA with several typical advanced algorithms, such
as MPEDE [86], LSHADE [87], ALCPSO [88], CLPSO [38], BMWOA [90], CESCA [89],
IGWO [39] and OBLGWO [91], in order to fully prove the ability of the proposed algorithm
to avoid local optimal and global exploration. These include two superior DE variants, two
often-computed PSO variants, and variants of WOA, GWO, and SCA.

Tables A8–A10 record the results of the comparison between ISMA and eight advanced
algorithms. As can be seen from the comparison results in Table A10, among ISMA and
8 other advanced meta-heuristic algorithms, the average Freidman test result of ISMA is
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3.7075758, ranking first, followed by CLPSO. The statistical results in Table A8 show that
among all the comparison algorithms, the std of ISMA on more test functions is 0, so it can
be seen that ISMA is more stable. In addition, the comparison results of specific functions
show that ISMA has a stronger ability to deal with complex functions and mixed functions
than other advanced algorithms. The mean and std in Table A8 also indicate the superiority
of ISMA in F1–6, F9–15, F26–28 and F30–33 functions. ISMA also ranks high in the F7,
F21–23. In addition, Table A9 shows the Wilcoxon signed-rank test results between ISMA
and other advanced algorithms. It can be seen that ISMA outperforms other algorithms on
most of the benchmark functions, especially CESCA, which outperforms CESCA on 90.9%
of the functions. As a result, ISMA is superior to other strong competitors.

The convergence curves of all nine algorithms over 12 functions shown in Figure 4
show that the convergence rate of ISMA is competitive with other more advanced methods,
which always converge to local optimum earlier than ISMA. It can be proved that the ISMA
algorithm has a strong ability to avoid local and global searches, and ISMA can produce
more accurate solutions.

Figure 4. Convergence curves of the ISMA and the other advanced algorithms on twelve functions.
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To sum up, the optimization power of ISMA is reflected in the overall superior perfor-
mance of ISMA in different types of functions compared to the more challenging advanced
methods. The combination of the Cauchy mutation mechanism and crossover mutation
strategy based on the DE algorithm enables the proposed ISMA to obtain a higher quality
solution in the optimization process and makes exploration and exploitation in a better
equilibrium state.

5. The Proposed Technique for Gene Selection

In this section, the proposed ISMA is applied to the gene selection problem, which
makes improving the proposed algorithm more practical. For this purpose, we transform
the continuous ISMA into a discrete version, namely the BISMA of the wrapper method, to
solve the gene selection problem for binary optimization tasks.

5.1. System Architecture of Gene Selection Based on ISMA

The procedure of selecting or generating some of the most significant features from a
set of features in order to lower the dimension of the training dataset is known as feature
selection. Many fields with large data sets want to be able to reduce the dimensions of
application data, such as gene selection for high-dimensional gene expression data sets
in the medical field. The task of gene selection is to reduce the number of irrelevant and
unimportant genes, identify the most relevant genomes with the greatest classification
accuracy, reduce the cost of high computing costs and improve the accuracy of disease
analysis. The continuous ISMA optimizer is converted to binary ISMA (BISMA) using the
transfer function (TF) for the gene selection problem. The machine learning algorithm was
used as a classifier to evaluate the ability of BISMA to identify discriminant genes and
eliminate irrelevant, redundant genes in high-dimensional gene expression datasets. In
addition, cross-validation (CV) was used to evaluate the optimality of selected gene subsets
for classification during the evaluation process.

5.2. Fitness Function

Gene selection is a process that uses the least subset of genes to obtain the optimal
classification accuracy, and both goals need to be achieved simultaneously. Therefore, in
order to meet each objective, the fitness function expressed in Equation (11) can be designed
to comprehensively evaluate the candidate solutions by using classification accuracy and
the number of selected genes.

f it = α× (1− Acc) + β ×
(

DR
D

)
(11)

where Acc indicates the classification accuracy of the classifier (machine learning method),
so (1− Acc) is the error rate of the classifier. The weighting factors α and β are the importance
of error rate and the number of selected genes, respectively, and α ∈ [0,1], β = 1 − α. D is the
total number of genes in the exponential data set, and the numerator DR is the number of
genes filtered by the proposed gene selection optimizer. In this study, α and β were set to
0.95 and 0.05, respectively.

5.3. Implementation of Discrete BSSMA

The proposed ISMA optimizer searches for the optimal solution in a continuous search
space in previous work. Gene selection is a binary problem. The transfer function restricts
the continuous search space to 0 or 1. When the value is 0, it means not selected, and when
the value is 1, it means selected.

Individuals with binary position vectors are initialized through a random threshold,
as shown below:

xd
i =

{
0, rand ≤ 0.5
1, rand > 0.5

(12)
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where xd
i is the i-th gene on the d-th dimension of the position vectors of the slime mould.

In addition, the transfer function (TF) is a suitable converter that can convert a continu-
ous optimization algorithm to a discrete version without changing the algorithm’s structure
because it is convenient and efficient [99]. There are 8 types of TFs, which can be divided
into S-shaped and V-shaped according to their shapes. Their mathematical formulae and
graphical descriptions are shown in Table A11.

For an S-shaped family, a gene of the position vector at the next iteration can be
converted according to the TFS1-TFS4 shown in Table A11 as follows:

xd
i (t + 1) =

1, rand < T
(

xd
i (t + 1)

)
0, rand ≥ T

(
xd

i (t + 1)
) (13)

where T
(

xd
i (t + 1)

)
represents the probability value of the i-th gene on the d-th dimension

at the next iteration.
For a V-shaped family, the gene of the position vector at the next iteration can be

converted according to the TFV1-TFV4 shown in Table A11 as follows:

xd
i (t + 1) =

¬xd
i (t + 1), rand < T

(
xd

i (t + 1)
)

xd
i (t + 1), rand ≥ T

(
xd

i (t + 1)
) (14)

6. Experimental Design and Discussion on Gene Selection
6.1. Experimental Design

In this experiment, two kinds of comparison results are used to evaluate the optimiza-
tion ability of the proposed algorithm. In the first assessment, we studied BISMA with
different TFs to determine the best version of BISMA out of the eight TFs. The resulting
BISMA is compared with other mature meta-heuristic optimizers in the second evaluation.
Fourteen gene expression datasets were used in the two case studies. Table A12 lists the
detailed characteristics of these microarray datasets, including the number of samples, the
number of genes per sample, and the number of categories. These 14 representative gene
datasets have been widely used to test a variety of gene selection optimizers to evaluate
their performance.

In addition, to obtain more convincing results, this paper also considers the Leave-
One-Out cross-validation (LOOCV) to validate the gene selection process. A sample in the
data set is taken as the test set to verify the classification accuracy of the classifier, while the
rest of the sample is taken as the training set to be trained with the classifier. The number of
validations per dataset is equal to the size of the test dataset. The KNN classifier is used for
classification tasks. For KNN, let the field size k in KNN be 1. The test method of distance
D is as follows:

D(x, y) = (∑N
K (xk − yk))

1
2 (15)

To be fair in comparison [100–102], each evaluation and comparison involving BISMA
was performed on the same computing environment, namely Intel(R) Xeon(R) Silver 4110
CPU @ 2.40 GHz 2.10 GHz (two processors) and 8 GB RAM (Windows 10)(64-bit). MATLAB
R2014a software was used to test the algorithm. For each algorithm, we set the maximum
number of iteration agents and the number of search agents to 50 and 20, respectively. It
was run 10 times independently. The initial parameters of all algorithms are identified as
their original reference parameters.

6.2. The Proposed BISMA with Different TFs

Considering the effect of TF on the performance of the gene selection optimizer, we
developed eight BISMA optimizers using eight different TFs and evaluated their effec-
tiveness in finding the optimal gene from each gene dataset listed in Table A10. These
eight TFs include four S-shaped and four V-shaped TFs, as shown in Table A11. This
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assessment helps to obtain the best binary version of BISMA to the gene selection issue.
Tables A13–A16 show the average number of selected genes, the average error rate, the
average fitness, the average calculation time, and the corresponding std and AVR of the 8
developed versions of the BISMA optimizer.

The average number of selected genes produced by each version of BISMA on the
14 datasets is shown in Table A13. The number of genes required by BISMA based on
V-shaped was the least among all versions of BISMA. As can be seen from the ARV value,
the average number of selected genes of BISMA based on TFV4 was the least and ranked
the first, while the four BISMA based on V-shaped were ranked as the first four, and the
number of selected genes was significantly lower than that of BISMA based on S-shaped.

Table A14 records the average classification error rates of the eight versions of BISMA
on the baseline gene dataset. Judging from the average ranking value, BISMA with TFV4 is
significantly better than other competitors. The four V-shaped BISMAs obtained an average
error of 0 in 57% of the gene data sets, indicating the stability of feature selection based on
V-shaped BISMA. Meanwhile, BISMA based on V4 obtained an error of 0 and a standard
deviation of 0 on 85.7% of gene data sets. Therefore, from the average error rate, the
ability of BIMSA with V-shaped TFs to solve the gene selection task is due to its S-shaped
TFs counterpart.

According to the average fitness test results reported in Table A15, it can be found that
BISMA_V3 achieved the best fitness on about 42.9% of the baseline gene data set, which was
slightly better than BISMA_V3 and significantly better than other competitors. However,
from the ranking mean, BISMA_V4 ranked first, followed by BISMA_V3, BISMA_V1,
BISMA_V2, BISMA_V1, BISMA_S2, BISMA_S3, and BISMA_S4. The fitness results also
showed that TFs of the V-shaped family were better than that of the S-shaped family.

Similarly, it can be seen from the calculated time that, except for V1, the version of the
V-shaped TFs takes less time to run than the version of the S-shaped TFs. In particular, the
first-place V4 takes much less time on average than the second-place V3. The calculation
overhead of BISMA_V4 with the best average ranking value is lower than that of the other
versions over all the benchmark datasets.

As shown in Tables A13–A16, the BISMA version with TFV4 was superior to other
versions in terms of the average number of selected genes, average error rate, average
fitness, and average time cost, and the BISMA version with TFV4 was far superior to the
second in terms of average time cost. In comparing S-shaped and V-shaped, V-shaped can
achieve better results than S-shaped. Therefore, the transfer function TFV4 was chosen as
the best choice to establish a BISMA optimizer with better stability for genetic problems. In
this case, BISMA_V4 is used to represent BISMA, which is further evaluated by comparison
in the following sections.

6.3. Comparative Evaluation with Other Optimizers

In this section, the superiority of the proposed BISMA optimizer is evaluated by
comparing it with several state-of-the-art meta-heuristic approaches. These algorithms
considered to be meta-heuristics are bGWO [103], BGSA [104], BPSO [99], bALO [105],
BBA [106], BSSA [107], bWOA [108], BSMA, the binary form of the original SMA [35], and
BISMA, the discrete version of the improved ISMA. Table A17 shows the parameter settings
for the relative comparison optimizer.

Tables A18–A21 show the selected genes’ statistical results in terms of length, error
rate, fitness and computational time. According to the average gene length in Table A18,
the proposed BISMA had the least number of selected genes on 57.1% of the gene datasets,
while bWOA had the least number of selected genes on 42.9% of the gene datasets. It can
be seen that in the 14 data sets, BISMA and bWOA are far more competitive than other
algorithms in reducing the data dimensions.

The results of the mean error rate are shown in Table A19, which shows the superiority
of the proposed BISMA. BISMA achieves the minimum mean error rate on 85.7% of the
gene data sets and only performs slightly worse on Lung_Cancer and Tumor_14. bGWO
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showed the best error rate on the Tumor_14 gene dataset, while bWOA showed competing
results on the Lung_Cancer gene dataset. From the perspective of the ARV index, BISMA
ranked first, followed by bWOA, bGWO, BISMA, BGSA, BPSO, bALO, BSSA, and BBA.

The fitness of the important measurements shown in Table A20 comprises the weighted
error rate and the number of genes selected by weighting. It is clear that the performance
of the proposed BISMA is superior to other competitors on 64.3% of the gene data sets. The
average fitness of BISMA and bWOA on 14 gene datasets was significantly better than that
of the other algorithms.

In addition, according to the std values shown in Tables A18–A20, BISMA showed
better performance, satisfactory standard deviation and excellent average fitness values in
most of the gene data sets tested, which indicated that BISMA was more stable than bALO,
BSSA, BBA, etc. There is a big gap between the overall performance of BISMA, BSMA,
bWOA, and bGWO and the overall performance of BGSA, BPSO, bALO, BBA, and BSSA,
and the first four optimizers are obviously better than the last five.

As can be seen from the average calculation time results shown in Table A21, the
proposed BISMA has the highest time cost, and the time complexity of BSMA and bWOA
with better performance is also relatively high, indicating the increase in calculation time
cost caused by the improvement of performance. The time cost of BISMA was influenced
by the introduced Cauchy mutation and the crossover mutation strategy based on DE. As
shown in Table A21, the calculation time of the original SMA is also relatively expensive,
which is also the reason for the high cost of BISMA time.

Compared with other gene selection optimizers, it is found that BISMA is the best one.
Although the result is not ideal in terms of calculation time, BISMA is expected to select the
optimal gene subset on the vast majority of microarray data sets to obtain the best fitness
and the best classification error rate without the loss of meaningful genes. This fact proves
that the combination of Cauchy mutation and crossover mutation strategy based on DE
guarantees the improvement of global exploration in the proposed BISMA to achieve a
more effective balance between local exploitation and global exploration.

7. Discussions

In this part, the ISMA algorithm proposed in this paper is discussed, and its advantages
and existing points can be improved. In the original SMA, the global exploration ability
of slime moulds was not strong, and they would fall into local optimum in the face of
some problems, limiting the algorithm’s use. In this paper, Cauchy mutation (CM) and
cross mutation are introduced to update the population, increasing the global exploration
space and avoiding falling into local optimum. Experiments show that the effect of a
dual mechanism is better than that of a single mechanism, and ISMA is better than some
advanced optimization algorithms.

However, ISMA exposes some common shortcomings of random optimizers in certain
areas. As seen in Tables A5 and A8, when processing some multimodal functions, the algo-
rithm’s performance is sometimes poor due to the randomness of the crossover mutation
mechanism. The search speed is slow in global exploration and local exploitation.

A binary algorithm (BISMA) performs feature selection in feature selection optimiza-
tion problems on 14 data sets. The experimental results show that the proposed algorithm
exhibits smaller average fitness and lower classification error rates while selecting fewer
features. However, the introduction of Cauchy mutation and cross mutation mechanism
brings good effects but also leads to a long running time of the algorithm, and the time
complexity is the highest among all comparison algorithms.

According to the study [109], Ornek et al. combined the position update of the sines
and cosines algorithm with the slime mold algorithm. In these updates, various sines
and cosines algorithms are used to modify the oscillation process of slime molds. Ex-
perimental results show that the algorithm has good exploration and exploitation ability.
Gurses et al. [110] applied a new hybrid slime mold algorithm, the Simulated Annealing
Algorithm (HSMA-SA), to structural engineering design problems. Experimental results
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demonstrate the feasibility of the proposed algorithm in solving shape optimization prob-
lems. Cai et al. [111] proposed an artificial slime mold algorithm to solve the traffic network
node selection problem, and the experimental results are of great significance to studying
traffic node selection and artificial learning mechanisms. These ideas can be used as a
reference to improve the shortcomings of ISMA in the future so that it can be applied in
more fields, such as dynamic module detection [112,113], road network planning [114], in-
formation retrieval services [115–117], drug discovery [118,119], microgrids planning [120],
image dehazing [121], location-based services [122,123], power flow optimization [124],
disease identification and diagnosis [125,126], recommender system [127–130], human
activity recognition [131], and image-to-image translation [132].

8. Conclusions

In this study, based on the basic SMA, an improved ISMA version is proposed, and
the combination of the Cauchy mutation and crossover mutation strategy based on the DE
algorithm is used to improve the SMA so as to achieve the coordination between global
exploration and local exploitation. We first evaluate the effectiveness of the continuous
version of the ISMA algorithm on 33 benchmark evaluation functions to deal with global
optimization problems, compared with some advanced swarm intelligence algorithms. The
results show that ISMA has a strong global exploration capability. In order to verify the
performance of ISMA in practical application, the BISMA was obtained by mapping ISMA
into binary space through the transfer function and then applied to the feature selection
problem of 14 commonly used UCI datasets. In order to understand the optimal conversion
function of the ISMA variant, we compared the number of selected genes, average error
rate, average fitness, and computational cost. It can be seen that BISMA_V4 is superior
to other versions. Therefore, BISMA_V4 is regarded as the final method to solve the gene
selection problem. We compare BISMA_V4 with binary SMA, binary GWO, and several
other advanced methods. The experimental results show that BISMA can select fewer
features and obtain higher classification accuracy.

Therefore, we believe that the proposed BISMA is a promising gene selection technique.
There are several ways to extend the work we have conducted. We can consider applying
BISMA to other high-dimensional data sets and study the effectiveness of BISMA on other
data sets. Secondly, other strategies can be used to improve the SMA and improve the
coordination between the SMA global exploration and local exploration. Thirdly, interested
researchers can apply SMA to more areas, such as financial forecasting, optimization of
photovoltaic parameters, and other engineering applications. Finally, we can extend the
application of ISMA to multi-objective optimization, image segmentation, machine learning,
and other fields.
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Appendix A

See Tables A1–A21.

Table A1. Descriptions of unimodal benchmark functions.

Function Dim Range f min

f1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0
f2(x) = ∑n

i=1| xi| + Πn
i=1|xi| 30 [−10, 10] 0

f3(x) = ∑n
i=1

(
Σi

j−1xj

)2 30 [−100, 100] 0

f4(x) = maxi{ | xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0
f5(x) = ∑n−1

i=1 [100
(

xi+1 − x2
i
)2 + (xi − 1)2] 30 [−30, 30] 0

f6(x) = ∑n
i=1([xi + 0.5])2 30 [−100, 100] 0

f7(x) = ∑n
i=1 ix4

i + random[0,1) 30 [−128, 128] 0

Table A2. Descriptions of multimodal benchmark functions.

Function Dim Range f min

f8(x) = ∑n
i=1 − xisin

(√
|xi|

)
30 [−500, 500] −418.9829 × 30

f9(x) = ∑n
i=1[x

2
i − 10cos(2πxi) + 10] 30 [−5.12, 5.12] 0

f10(x) = −20 exp{−0.2
√

1
n Σn

i=1xi } − exp{ 1
n Σn

i=1 cos(2πxi)} + 20 + e 30 [−32, 32] 0

f11(x) = 1
4000 Σn

i=1x2
i −Πn

i=1cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

f12(x) = π
n {10sin(ay1)+ ∑n−1

i=1 (yi − 1)2[1+10sin2(πyi+1)]+
(yn − 1)2+ ∑n

i=1 µ(xi, 10, 100, 4)
}

yi = 1 + xi+1
4

µ(xi, a, k, m) =


k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m x < −a

30 [−50, 50] 0

f13(x) = 0.01
{

sin2 (3πxi)+∑n
i=1(xi − 1)2[1+sin2(3πxi + 1)]+

(xn − 1)2[1+sin2(2πxn)]+ ∑n
i=1 µ(xi, 5, 100, 4)

30 [−50, 50] 0

Table A3. Descriptions of fixed-dimension multimodal benchmark functions.

Function Dim Range f min

f14(x) =

(
1

500 + Σ25
j=1

1
j+Σ2

j=1(xi−aij)
6

)−1
2 [−65, 65] 1

f15(x) = Σ11
i=1[ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]
2

4 [−5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

i +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10(1 − 1

8π )cos x1 + 10 2 [−5, 5] 0.398

f18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)] × [30 +
(2x1 − 3x2)

2×(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]
2 [−2, 2] 3

f19(x) = −∑4

i=1
ci exp

(
−∑3

j=1
aij

(
xj − Pij

)2
)

3 [1, 3] −3.86

f20(x) = −∑4

i=1
ci exp

(
−∑6

j=1
aij

(
xj − Pij

)2
)

6 [0, 1] −3.32

f21(x) = −∑5

i=1
[(X− ai)(X− ai)

T + ci]
−1 4 [0, 10] −10.1532

f22(x) = −∑7

i=1
[(X− ai)(X− ai)

T + ci]
−1 4 [0, 10] −10.4028

f23(x) = −∑10

i=1
[(X− ai)(X− ai)

T + ci]
−1 4 [0, 10] −10.5363
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Table A4. Descriptions of CEC2014 functions. (Search range: [−100, 100]D).

Function Class Functions Optimum

F24 Hybrid Hybrid Function 5 (N = 5) 2100
F25 Hybrid Function 6 (N = 5) 2200
F26

Composition

Composition Function 1 (N = 5) 2300
F27 Composition Function 2 (N = 3) 2400
F28 Composition Function 3 (N = 3) 2500
F29 Composition Function 4 (N = 5) 2600
F30 Composition Function 5 (N = 5) 2700
F31 Composition Function 6 (N = 5) 2800
F32 Composition Function 7 (N = 3) 2900
F33 Composition Function 8 (N = 3) 3000

Table A5. The SMA variants are compared with the original SMA and DE algorithms.

F1 F2 F3

mean std mean mean std mean

ISMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

SMA 3.2559 × 10−44 1.7833 × 10−43 1.7856 × 10−44 3.2559 × 10−44 1.7833 × 10−43 1.7856 × 10−44

CSMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

MCSMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

DE 1.8673 × 10−159 4.1198 × 10−159 1.3001 × 10−94 1.8673 × 10−159 4.1198 × 10−159 1.3001 × 10−94

F4 F5 F6

mean std mean mean std mean

ISMA 0.0000 × 100 0.0000 × 100 1.5210 × 10−20 0.0000 × 100 0.0000 × 100 1.5210 × 10−20

SMA 9.1947 × 10−44 5.0362 × 10−43 4.5273 × 10−1 9.1947 × 10−44 5.0362 × 10−43 4.5273 × 10−1

CSMA 0.0000 × 100 0.0000 × 100 1.0735 × 100 0.0000 × 100 0.0000 × 100 1.0735 × 100

MCSMA 5.5509 × 10−247 0.0000 × 100 3.7675 × 100 5.5509 × 10−247 0.0000 × 100 3.7675 × 100

DE 6.3804 × 10−15 1.3750 × 10−14 3.2827 × 101 6.3804 × 10−15 1.3750 × 10−14 3.2827 × 101

F7 F8 F9

mean std mean mean std mean

ISMA 5.2004 × 10−5 4.4680 × 10−5 6.5535 × 104 5.2004 × 10−5 4.4680 × 10−5 6.5535 × 104

SMA 1.8109 × 10−3 1.9112 × 10−3 −1.256 × 104 1.8109 × 10−3 1.9112 × 10−3 −1.256 × 104

CSMA 1.0466 × 10−5 7.1026 × 10−6 6.5535 × 104 1.0466 × 10−5 7.1026 × 10−6 6.5535 × 104

MCSMA 2.8153 × 10−4 1.4821 × 10−4 −1.256 × 104 2.8153 × 10−4 1.4821 × 10−4 −1.256 × 104

DE 2.4715 × 10−3 4.9474 × 10−4 −1.244 × 104 2.4715 × 10−3 4.9474 × 10−4 −1.244 × 104

F10 F11 F12

mean std mean mean std mean

ISMA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 8.8818 × 10−16 0.0000 × 100 0.0000 × 100

SMA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 8.8818 × 10−16 0.0000 × 100 0.0000 × 100

CSMA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 8.8818 × 10−16 0.0000 × 100 0.0000 × 100

MCSMA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 8.8818 × 10−16 0.0000 × 100 0.0000 × 100

DE 7.7568 × 10−15 9.0135 × 10−16 0.0000 × 100 7.7568 × 10−15 9.0135 × 10−16 0.0000 × 100

F13 F14 F15

mean std mean mean std mean

ISMA 1.3498 × 10−32 5.5674 × 10−48 9.9800 × 10−1 1.3498 × 10−32 5.5674 × 10−48 9.9800 × 10−1

SMA 4.8249 × 10−3 7.4218 × 10−3 1.3350 × 100 4.8249 × 10−3 7.4218 × 10−3 1.3350 × 100

CSMA 4.3078 × 10−3 6.3340 × 10−3 1.2955 × 100 4.3078 × 10−3 6.3340 × 10−3 1.2955 × 100

MCSMA 1.3498 × 10−32 5.5674 × 10−48 9.9800 × 10−1 1.3498 × 10−32 5.5674 × 10−48 9.9800 × 10−1

DE 1.3498 × 10−32 5.5674 × 10−48 1.0311 × 100 1.3498 × 10−32 5.5674 × 10−48 1.0311 × 100
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Table A5. Cont.

F16 F17 F18

mean std mean mean std mean

ISMA −1.032 × 100 1.2770 × 10−8 3.9838 × 10−1 −1.032 × 100 1.2770 × 10−8 3.9838 × 10−1

SMA −8.2436 × 10−1 4.1923 × 10−1 4.1640 × 10−1 −8.2436 × 10−1 4.1923 × 10−1 4.1640 × 10−1

CSMA −1.031 × 100 1.1109 × 10−3 4.1829 × 10−1 −1.031 × 100 1.1109 × 10−3 4.1829 × 10−1

MCSMA −1.031 × 100 6.5572 × 10−4 3.9865 × 10−1 −1.031 × 100 6.5572 × 10−4 3.9865 × 10−1

DE −1.031 × 100 6.7752 × 10−16 3.9789 × 10−1 −1.031 × 100 6.7752 × 10−16 3.9789 × 10−1

F19 F20 F21

mean std mean mean std mean

ISMA −3.863 × 100 1.1037 × 10−4 −3.163 × 100 −3.863 × 100 1.1037 × 10−4 −3.163 × 100

SMA −3.782 × 100 9.4398 × 10−2 −2.958 × 100 −3.782 × 100 9.4398 × 10−2 −2.958 × 100

CSMA −3.795 × 100 7.9965 × 10−2 −2.901 × 100 −3.795 × 100 7.9965 × 10−2 −2.901 × 100

MCSMA −3.861 × 100 1.9880 × 10−3 −3.042 × 100 −3.861 × 100 1.9880 × 10−3 −3.042 × 100

DE −3.862 × 100 2.7101 × 10−15 −3.321 × 100 −3.862 × 100 2.7101 × 10−15 −3.321 × 100

F22 F23 F24

mean std mean mean std mean

ISMA −1.040 × 101 3.3560 × 10−6 −1.054 × 101 −1.040 × 101 3.3560 × 10−6 −1.054 × 101

SMA −1.032 × 101 9.7684 × 10−2 −1.044 × 101 −1.032 × 101 9.7684 × 10−2 −1.044 × 101

CSMA −9.877 × 100 1.2268 × 100 −1.041 × 101 −9.877 × 100 1.2268 × 100 −1.041 × 101

MCSMA −1.040 × 101 6.2358 × 10−6 −1.054 × 101 −1.040 × 101 6.2358 × 10−6 −1.054 × 101

DE −1.040 × 101 1.8067 × 10−15 −1.053 × 101 −1.040 × 101 1.8067 × 10−15 −1.053 × 101

F25 F26 F27

mean std mean mean std mean

ISMA 3.4989 × 103 2.2734 × 102 2.5000 × 103 3.4989 × 103 2.2734 × 102 2.5000 × 103

SMA 1.0429 × 104 2.8215 × 104 2.5169 × 103 1.0429 × 104 2.8215 × 104 2.5169 × 103

CSMA 4.7397 × 103 1.2900 × 103 2.5000 × 103 4.7397 × 103 1.2900 × 103 2.5000 × 103

MCSMA 3.6251 × 103 1.8988 × 102 2.5000 × 103 3.6251 × 103 1.8988 × 102 2.5000 × 103

DE 2.3554 × 103 8.2085 × 101 2.6152 × 103 2.3554 × 103 8.2085 × 101 2.6152 × 103

F28 F29 F30

mean std mean mean std mean

ISMA 2.7000 × 103 0.0000 × 100 2.7147 × 103 2.7000 × 103 0.0000 × 100 2.7147 × 103

SMA 2.7000 × 103 0.0000 × 100 2.7732 × 103 2.7000 × 103 0.0000 × 100 2.7732 × 103

CSMA 2.7000 × 103 0.0000 × 100 2.7172 × 103 2.7000 × 103 0.0000 × 100 2.7172 × 103

MCSMA 2.7000 × 103 0.0000 × 100 2.7788 × 103 2.7000 × 103 0.0000 × 100 2.7788 × 103

DE 2.7066 × 103 8.5796 × 10−1 2.7003 × 103 2.7066 × 103 8.5796 × 10−1 2.7003 × 103

F31 F32 F33

mean std mean mean std mean

ISMA 3.0000 × 103 0.0000 × 100 3.1000 × 103 3.0000 × 103 0.0000 × 100 3.1000 × 103

SMA 4.1186 × 103 1.9606 × 103 2.8989 × 107 4.1186 × 103 1.9606 × 103 2.8989 × 107

CSMA 3.0000 × 103 0.0000 × 100 3.1000 × 103 3.0000 × 103 0.0000 × 100 3.1000 × 103

MCSMA 5.4386 × 103 1.1178 × 103 4.0742 × 107 5.4386 × 103 1.1178 × 103 4.0742 × 107

DE 3.6286 × 103 2.4807 × 101 1.2080 × 105 3.6286 × 103 2.4807 × 101 1.2080 × 105

Table A6. Wilcoxon signed-rank test results between the SMA variants and the original SMA and
DE algorithms.

Function SMA CSMA MCSMA DE

F1 1.7344 × 10−6 1.0000 × 100 1.0000 × 100 1.7344 × 10−6

F2 1.7344 × 10−6 1.0000 × 100 1.0000 × 100 1.7344 × 10−6

F3 1.7344 × 10−6 1.0000 × 100 1.0000 × 100 1.7344 × 10−6



Biomedicines 2022, 10, 2052 21 of 34

Table A6. Cont.

Function SMA CSMA MCSMA DE

F4 1.7344 × 10−6 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6

F5 1.7344 × 10−6 1.7344 × 10−6 2.3438 × 10−2 1.7344 × 10−6

F6 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.0000 × 100

F7 2.3534 × 10−6 4.0715 × 10−5 2.6033 × 10−6 1.7344 × 10−6

F8 1.6503 × 10−1 1.2720 × 10−1 1.3851 × 10−1 1.6268 × 10−1

F9 1.0000 × 100 1.0000 × 100 1.0000 × 100 5.0000 × 10−1

F10 1.0000 × 100 1.0000 × 100 1.0000 × 100 1.0135 × 10−7

F11 1.0000 × 100 1.0000 × 100 1.0000 × 100 1.0000 × 100

F12 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.0000 × 100

F13 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.0000 × 100

F14 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.0000 × 100

F15 2.8786 × 10−6 2.6033 × 10−6 6.7328 × 10−1 3.5888 × 10−4

F16 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F17 1.2381 × 10−5 8.4661 × 10−6 9.5899 × 10−1 1.7344 × 10−6

F18 7.3433 × 10−1 4.0483 × 10−1 1.1973 × 10−3 1.7344 × 10−6

F19 1.7344 × 10−6 1.7344 × 10−6 2.6033 × 10−6 1.7344 × 10−6

F20 6.3391 × 10−6 6.3391 × 10−6 2.6033 × 10−6 1.7344 × 10−6

F21 1.7344 × 10−6 1.7344 × 10−6 9.0993 × 10−1 3.1123 × 10−5

F22 1.7344 × 10−6 1.7344 × 10−6 1.9569 × 10−2 1.7344 × 10−6

F23 1.7344 × 10−6 1.7344 × 10−6 4.2843 × 10−1 1.7344 × 10−6

F24 6.9838 × 10−6 2.5967 × 10−5 3.1618 × 10−3 1.7344 × 10−6

F25 3.1123 × 10−5 1.1265 × 10−5 4.2767 × 10−2 1.7344 × 10−6

F26 2.5000 × 10−1 1.0000 × 100 1.0000 × 100 4.3205 × 10−8

F27 5.0000 × 10−1 1.0000 × 100 1.0000 × 100 1.7344 × 10−6

F28 1.0000 × 100 1.0000 × 100 1.0000 × 100 1.7344 × 10−6

F29 6.5213 × 10−6 1.8326 × 10−3 1.6789 × 10−5 1.7344 × 10−6

F30 3.7896 × 10−6 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6

F31 4.8828 × 10−4 1.0000 × 100 2.5631 × 10−6 1.7344 × 10−6

F32 7.8125 × 10−3 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6

F33 3.7896 × 10−6 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6

+/=/− 25/8/0 16/16/1 15/18/1 16/7/10

Table A7. Average ranking values using the Friedman test.

Algorithm ISMA SMA CSMA MCSMA DE

AVR 2.256060606 3.847979798 3.202525253 2.90959596 2.783838384
rank 1 5 4 3 2

Table A8. Comparison of the numerical results obtained by ISMA and other advanced methods.

F1 F2 F3

mean std mean mean std mean

ISMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

MPEDE 5.6838 × 10−223 0.0000 × 100 2.0352 × 10−109 5.6838 × 10−223 0.0000 × 100 2.0352 × 10−109

LSHADE 8.6954 × 10−203 0.0000 × 100 2.6224 × 10−85 8.6954 × 10−203 0.0000 × 100 2.6224 × 10−85

ALCPSO 4.5530 × 10−186 0.0000 × 100 1.0128 × 10−6 4.5530 × 10−186 0.0000 × 100 1.0128 × 10−6

CLPSO 2.7917 × 10−34 2.0632 × 10−34 5.6730 × 10−21 2.7917 × 10−34 2.0632 × 10−34 5.6730 × 10−21

CESCA 1.0264 × 103 7.6509 × 102 7.2069 × 100 1.0264 × 103 7.6509 × 102 7.2069 × 100

IGWO 0.0000 × 100 0.0000 × 100 5.4179 × 10−260 0.0000 × 100 0.0000 × 100 5.4179 × 10−260

BMWOA 8.7826 × 10−4 1.9389 × 10−3 8.5362 × 10−3 8.7826 × 10−4 1.9389 × 10−3 8.5362 × 10−3

OBLGWO 2.6476 × 10−281 0.0000 × 100 5.6311 × 10−142 2.6476 × 10−281 0.0000 × 100 5.6311 × 10−142
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F4 F5 F6

mean std mean mean std mean

ISMA 0.0000 × 100 0.0000 × 100 5.6931 × 10−12 0.0000 × 100 0.0000 × 100 5.6931 × 10−12

MPEDE 1.3923 × 10−5 2.6447 × 10−5 1.1960 × 100 1.3923 × 10−5 2.6447 × 10−5 1.1960 × 100

LSHADE 1.3040 × 10−4 2.3249 × 10−4 5.3155 × 10−1 1.3040 × 10−4 2.3249 × 10−4 5.3155 × 10−1

ALCPSO 2.6029 × 10−5 3.4443 × 10−5 2.5603 × 101 2.6029 × 10−5 3.4443 × 10−5 2.5603 × 101

CLPSO 1.3451 × 100 2.6110 × 10−1 6.5461 × 10−1 1.3451 × 100 2.6110 × 10−1 6.5461 × 10−1

CESCA 2.0286 × 101 7.5303 × 100 2.4759 × 105 2.0286 × 101 7.5303 × 100 2.4759 × 105

IGWO 7.5149 × 10−26 4.1158 × 10−25 2.3186 × 101 7.5149 × 10−26 4.1158 × 10−25 2.3186 × 101

BMWOA 3.6139 × 10−3 3.9430 × 10−3 3.9781 × 10−3 3.6139 × 10−3 3.9430 × 10−3 3.9781 × 10−3

OBLGWO 2.7133 × 10−157 1.4861 × 10−156 2.6112 × 101 2.7133 × 10−157 1.4861 × 10−156 2.6112 × 101

F7 F8 F9

mean std mean mean std mean

ISMA 9.4873 × 10−5 6.6385 × 10−5 6.5535 × 104 9.4873 × 10−5 6.6385 × 10−5 6.5535 × 104

MPEDE 3.2148 × 10−3 1.6021 × 10−3 −1.187 × 104 3.2148 × 10−3 1.6021 × 10−3 −1.187 × 104

LSHADE 6.5393 × 10−3 5.0546 × 10−3 −1.895 × 103 6.5393 × 10−3 5.0546 × 10−3 −1.895 × 103

ALCPSO 9.6181 × 10−2 3.9035 × 10−2 −1.147 × 104 9.6181 × 10−2 3.9035 × 10−2 −1.147 × 104

CLPSO 2.6752 × 10−3 7.7407 × 10−4 −1.256 × 104 2.6752 × 10−3 7.7407 × 10−4 −1.256 × 104

CESCA 5.3895 × 10−1 3.4475 × 10−1 −3.901 × 103 5.3895 × 10−1 3.4475 × 10−1 −3.901 × 103

IGWO 2.7827 × 10−4 2.2936 × 10−4 −7.436 × 103 2.7827 × 10−4 2.2936 × 10−4 −7.436 × 103

BMWOA 1.1610 × 10−3 8.5016 × 10−4 −1.257 × 104 1.1610 × 10−3 8.5016 × 10−4 −1.257 × 104

OBLGWO 2.3640 × 10−5 2.4037 × 10−5 −1.253 × 104 2.3640 × 10−5 2.4037 × 10−5 −1.253 × 104

F10 F11 F12

mean std mean mean std mean

ISMA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 8.8818 × 10−16 0.0000 × 100 0.0000 × 100

MPEDE 2.0353 × 100 6.7054 × 10−1 1.5065 × 10−2 2.0353 × 100 6.7054 × 10−1 1.5065 × 10−2

LSHADE 3.3455 × 10−14 3.7417 × 10−15 1.2274 × 10−2 3.3455 × 10−14 3.7417 × 10−15 1.2274 × 10−2

ALCPSO 8.3257 × 10−1 8.5957 × 10−1 1.7674 × 10−2 8.3257 × 10−1 8.5957 × 10−1 1.7674 × 10−2

CLPSO 1.2138 × 10−14 2.4831 × 10−15 0.0000 × 100 1.2138 × 10−14 2.4831 × 10−15 0.0000 × 100

CESCA 6.7169 × 100 1.9070 × 100 1.0700 × 101 6.7169 × 100 1.9070 × 100 1.0700 × 101

IGWO 4.6777 × 10−15 9.0135 × 10−16 0.0000 × 100 4.6777 × 10−15 9.0135 × 10−16 0.0000 × 100

BMWOA 4.6994 × 10−3 5.2250 × 10−3 1.7612 × 10−3 4.6994 × 10−3 5.2250 × 10−3 1.7612 × 10−3

OBLGWO 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 8.8818 × 10−16 0.0000 × 100 0.0000 × 100

F13 F14 F15

mean std mean mean std mean

ISMA 1.3498 × 10−32 5.5674 × 10−48 9.9800 × 10−1 1.3498 × 10−32 5.5674 × 10−48 9.9800 × 10−1

MPEDE 3.2626 × 10−1 9.4775 × 10−1 9.9800 × 10−1 3.2626 × 10−1 9.4775 × 10−1 9.9800 × 10−1

LSHADE 1.1303 × 10−1 4.0369 × 10−1 9.9800 × 10−1 1.1303 × 10−1 4.0369 × 10−1 9.9800 × 10−1

ALCPSO 1.1403 × 10−2 3.4415 × 10−2 9.9800 × 10−1 1.1403 × 10−2 3.4415 × 10−2 9.9800 × 10−1

CLPSO 1.3498 × 10−32 5.5674 × 10−48 9.9800 × 10−1 1.3498 × 10−32 5.5674 × 10−48 9.9800 × 10−1

CESCA 4.2932 × 105 6.0065 × 105 3.0471 × 100 4.2932 × 105 6.0065 × 105 3.0471 × 100

IGWO 1.6832 × 10−2 3.2997 × 10−2 9.9800 × 10−1 1.6832 × 10−2 3.2997 × 10−2 9.9800 × 10−1

BMWOA 1.7335 × 10−4 5.7395 × 10−4 9.9800 × 10−1 1.7335 × 10−4 5.7395 × 10−4 9.9800 × 10−1

OBLGWO 2.4316 × 10−2 3.9405 × 10−2 9.9800 × 10−1 2.4316 × 10−2 3.9405 × 10−2 9.9800 × 10−1

F16 F17 F18

mean std mean mean std mean

ISMA −1.032 × 100 6.9699 × 10−9 3.9808 × 10−1 −1.032 × 100 6.9699 × 10−9 3.9808 × 10−1

MPEDE −1.032 × 100 6.7752 × 10−16 3.9789 × 10−1 −1.032 × 100 6.7752 × 10−16 3.9789 × 10−1

LSHADE −1.032 × 100 6.7752 × 10−16 3.9789 × 10−1 −1.032 × 100 6.7752 × 10−16 3.9789 × 10−1

ALCPSO −1.032 × 100 5.6082 × 10−16 3.9789 × 10−1 −1.032 × 100 5.6082 × 10−16 3.9789 × 10−1

CLPSO −1.032 × 100 6.4539 × 10−16 3.9789 × 10−1 −1.032 × 100 6.4539 × 10−16 3.9789 × 10−1

CESCA −1.026 × 100 5.9057 × 10−3 7.0892 × 10−1 −1.026 × 100 5.9057 × 10−3 7.0892 × 10−1
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IGWO −1.032 × 100 2.2583 × 10−13 3.9789 × 10−1 −1.032 × 100 2.2583 × 10−13 3.9789 × 10−1

BMWOA −1.031 × 100 4.4024 × 10−16 3.9789 × 10−1 −1.031 × 100 4.4024 × 10−16 3.9789 × 10−1

OBLGWO −1.032 × 100 9.0832 × 10−9 3.9801 × 10−1 −1.032 × 100 9.0832 × 10−9 3.9801 × 10−1

F19 F20 F21

mean std mean mean std mean

ISMA −3.863 × 100 9.7215 × 10−5 −3.159 × 100 −3.863 × 100 9.7215 × 10−5 −3.159 × 100

MPEDE −3.863 × 100 2.7101 × 10−15 −3.271 × 100 −3.863 × 100 2.7101 × 10−15 −3.271 × 100

LSHADE −3.863 × 100 1.3042 × 10−4 −1.952 × 100 −3.863 × 100 1.3042 × 10−4 −1.952 × 100

ALCPSO −3.862 × 100 2.5243 × 10−15 −3.274 × 100 −3.862 × 100 2.5243 × 10−15 −3.274 × 100

CLPSO −3.863 × 100 2.7101 × 10−15 −3.322 × 100 −3.863 × 100 2.7101 × 10−15 −3.322 × 100

CESCA −3.610 × 100 1.6803 × 10−1 −2.176 × 100 −3.610 × 100 1.6803 × 10−1 −2.176 × 100

IGWO −3.863 × 100 1.0500 × 10−9 −3.251 × 100 −3.863 × 100 1.0500 × 10−9 −3.251 × 100

BMWOA −3.863 × 100 1.5134 × 10−14 −3.290 × 100 −3.863 × 100 1.5134 × 10−14 −3.290 × 100

OBLGWO −3.863 × 100 1.3281 × 10−6 −3.223 × 100 −3.863 × 100 1.3281 × 10−6 −3.223 × 100

F22 F23 F24

mean std mean mean std mean

ISMA −1.040 × 101 5.9774 × 10−6 −1.054 × 101 −1.040 × 101 5.9774 × 10−6 −1.054 × 101

MPEDE −9.542 × 100 2.2747 × 100 −9.817 × 100 −9.542 × 100 2.2747 × 100 −9.817 × 100

LSHADE −1.023 × 101 9.6292 × 10−1 −1.053 × 101 −1.023 × 101 9.6292 × 10−1 −1.053 × 101

ALCPSO −9.876 × 100 1.6093 × 100 −9.997 × 100 −9.876 × 100 1.6093 × 100 −9.997 × 100

CLPSO −1.040 × 101 5.7155 × 10−9 −1.054 × 101 −1.040 × 101 5.7155 × 10−9 −1.054 × 101

CESCA −1.091 × 100 4.2964 × 10−1 −1.172 × 100 −1.091 × 100 4.2964 × 10−1 −1.172 × 100

IGWO −9.166 × 100 2.2815 × 100 −1.018 × 101 −9.166 × 100 2.2815 × 100 −1.018 × 101

BMWOA −1.040 × 101 9.4634 × 10−11 −1.054 × 101 −1.040 × 101 9.4634 × 10−11 −1.054 × 101

OBLGWO −1.040 × 101 3.5332 × 10−5 −1.054 × 101 −1.040 × 101 3.5332 × 10−5 −1.054 × 101

F25 F26 F27

mean std mean mean std mean

ISMA 3.4696 × 103 1.5041 × 102 2.5000 × 103 3.4696 × 103 1.5041 × 102 2.5000 × 103

MPEDE 2.5483 × 103 2.1545 × 102 2.6152 × 103 2.5483 × 103 2.1545 × 102 2.6152 × 103

LSHADE 2.4214 × 103 1.2400 × 102 2.6152 × 103 2.4214 × 103 1.2400 × 102 2.6152 × 103

ALCPSO 2.6317 × 103 1.8339 × 102 2.6153 × 103 2.6317 × 103 1.8339 × 102 2.6153 × 103

CLPSO 2.4055 × 103 8.0140 × 101 2.6152 × 103 2.4055 × 103 8.0140 × 101 2.6152 × 103

CESCA 5.5650 × 103 9.4857 × 102 3.0675 × 103 5.5650 × 103 9.4857 × 102 3.0675 × 103

IGWO 2.5661 × 103 1.8331 × 102 2.6206 × 103 2.5661 × 103 1.8331 × 102 2.6206 × 103

BMWOA 2.9003 × 103 1.9433 × 102 2.5005 × 103 2.9003 × 103 1.9433 × 102 2.5005 × 103

OBLGWO 2.6973 × 103 2.3782 × 102 2.6188 × 103 2.6973 × 103 2.3782 × 102 2.6188 × 103

F28 F29 F30

mean std mean mean std mean

ISMA 2.7000 × 103 0.0000 × 100 2.7181 × 103 2.7000 × 103 0.0000 × 100 2.7181 × 103

MPEDE 2.7112 × 103 4.6410 × 100 2.7202 × 103 2.7112 × 103 4.6410 × 100 2.7202 × 103

LSHADE 2.7056 × 103 3.3938 × 100 2.7104 × 103 2.7056 × 103 3.3938 × 100 2.7104 × 103

ALCPSO 2.7124 × 103 5.0481 × 100 2.7553 × 103 2.7124 × 103 5.0481 × 100 2.7553 × 103

CLPSO 2.7072 × 103 9.5781 × 10−1 2.7004 × 103 2.7072 × 103 9.5781 × 10−1 2.7004 × 103

CESCA 2.7206 × 103 8.6833 × 100 2.7123 × 103 2.7206 × 103 8.6833 × 100 2.7123 × 103

IGWO 2.7107 × 103 2.5492 × 100 2.7007 × 103 2.7107 × 103 2.5492 × 100 2.7007 × 103

BMWOA 2.7000 × 103 1.1250 × 10−2 2.7006 × 103 2.7000 × 103 1.1250 × 10−2 2.7006 × 103

OBLGWO 2.7000 × 103 0.0000 × 100 2.7005 × 103 2.7000 × 103 0.0000 × 100 2.7005 × 103

F31 F32 F33

mean std mean mean std mean

ISMA 3.0000 × 103 0.0000 × 100 3.1000 × 103 3.0000 × 103 0.0000 × 100 3.1000 × 103

MPEDE 3.9778 × 103 3.4239 × 102 1.6519 × 106 3.9778 × 103 3.4239 × 102 1.6519 × 106

LSHADE 3.7470 × 103 8.7552 × 101 2.9248 × 105 3.7470 × 103 8.7552 × 101 2.9248 × 105
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Table A8. Cont.

ALCPSO 4.4793 × 103 5.0276 × 102 2.8922 × 106 4.4793 × 103 5.0276 × 102 2.8922 × 106

CLPSO 3.7271 × 103 8.5165 × 101 3.8465 × 103 3.7271 × 103 8.5165 × 101 3.8465 × 103

CESCA 5.4621 × 103 2.9312 × 102 1.6432 × 107 5.4621 × 103 2.9312 × 102 1.6432 × 107

IGWO 3.7942 × 103 1.0332 × 102 8.4824 × 105 3.7942 × 103 1.0332 × 102 8.4824 × 105

BMWOA 3.0001 × 103 1.8250 × 10−1 3.8977 × 105 3.0001 × 103 1.8250 × 10−1 3.8977 × 105

OBLGWO 3.5344 × 103 4.8730 × 102 3.4895 × 106 3.5344 × 103 4.8730 × 102 3.4895 × 106

Table A9. Wilcoxon signed-rank test results between the ISMA and other advanced algorithms.

Function MPEDE LSHADE ALCPSO CLPSO CESCA IGWO BMWOA OBLGWO

F1 1.7344 × 10−6 1.7333 × 10−6 1.7333 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.7344 × 10−6 1.0000 × 100

F2 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F3 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 2.5000 × 10−1

F4 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 3.7896 × 10−6

F5 8.1806 × 10−5 5.9829 × 10−2 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F6 3.5657 × 10−4 2.4414 × 10−4 1.7333 × 10−6 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F7 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 5.7924 × 10−5 1.7344 × 10−6 3.1123 × 10−5

F8 1.4831 × 10−3 1.4591 × 10−3 1.4835 × 10−3 1.3642 × 10−3 1.4557 × 10−3 1.4839 × 10−3 1.4839 × 10−3 1.4839 × 10−3

F9 1.7300 × 10−6 5.0136 × 10−6 1.7344 × 10−6 1.0000 × 100 1.7344 × 10−6 1.0000 × 100 1.7344 × 10−6 1.0000 × 100

F10 1.7203 × 10−6 8.7824 × 10−7 1.7041 × 10−6 1.0651 × 10−6 1.7344 × 10−6 1.0135 × 10−7 1.7344 × 10−6 1.0000 × 100

F11 1.9472 × 10−4 3.9586 × 10−5 1.3163 × 10−4 1.0000 × 100 1.7333 × 10−6 1.0000 × 100 1.7333 × 10−6 1.0000 × 100

F12 2.6499 × 10−5 1.7948 × 10−5 1.7311 × 10−6 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F13 5.2772 × 10−5 4.0204 × 10−4 1.7062 × 10−6 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F14 1.0000 × 100 1.0000 × 100 1.0000 × 100 1.0000 × 100 1.7344 × 10−6 4.1722 × 10−7 3.9063 × 10−3 1.7344 × 10−6

F15 1.4795 × 10−2 1.9209 × 10−6 2.7653 × 10−3 1.7344 × 10−6 1.7344 × 10−6 5.9836 × 10−2 2.7653 × 10−3 1.8519 × 10−2

F16 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.1748 × 10−2

F17 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 2.1827 × 10−2

F18 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.3059 × 10−1 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F19 1.7344 × 10−6 3.1123 × 10−5 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 2.3534 × 10−6

F20 3.8822 × 10−6 1.9152 × 10−1 3.8822 × 10−6 1.7344 × 10−6 1.9209 × 10−6 8.4661 × 10−6 6.3391 × 10−6 2.2248 × 10−4

F21 6.4352 × 10−1 1.6503 × 10−1 1.4795 × 10−2 7.7309 × 10−3 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F22 1.4795 × 10−2 3.1123 × 10−5 2.7653 × 10−3 1.7344 × 10−6 1.7344 × 10−6 4.9498 × 10−2 1.7344 × 10−6 1.7344 × 10−6

F23 2.7653 × 10−3 1.7344 × 10−6 2.7653 × 10−3 1.7344 × 10−6 1.7344 × 10−6 6.8836 × 10−1 1.7344 × 10−6 2.6033 × 10−6

F24 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 2.6033 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F25 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.9209 × 10−6 1.7344 × 10−6

F26 4.3205 × 10−8 6.7988 × 10−8 1.7344 × 10−6 1.7333 × 10−6 1.7333 × 10−6 1.7333 × 10−6 1.7333 × 10−6 1.7344 × 10−6

F27 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100

F28 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100

F29 7.8647 × 10−2 1.4839 × 10−3 1.4139 × 10−1 1.7344 × 10−6 2.5637 × 10−2 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F30 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 2.5000 × 10−1

F31 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 2.9305 × 10−4

F32 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F33 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

+/=/− 22/3/8 20/4/9 23/2/8 16/6/11 30/1/2 19/5/9 21/0/12 16/8/9

Table A10. Average ranking values using the Friedman test.

Algorithm ISMA MPEDE LSHADE ALCPSO CLPSO CESCA IGWO BMWOA OBLGWO

AVR 3.7075758 4.0257576 4.1979798 5.1949495 3.8792929 8.8474747 5.0984848 5.080303 4.9681818
rank 1 3 4 8 2 9 7 6 5

Table A11. The descriptions of two types of TFs.

S-Shaped Family

Name TFs Graphs
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Table A11. Cont.

V-Shaped Family

Name TFs Graphs
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)
=
∣∣∣er f

(√
π
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)∣∣∣= |√π

2
∫ (
√
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2)xj
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0 (t)e−t2
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)
= |tanh tanh xj

i(t) |
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∣∣∣∣∣ xj
i (t)√

1+xj
i (t)2

∣∣∣∣∣
TFV4 T

(
xj
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=
∣∣∣ 2

π arctan
(√

π
2 xj

i(t)
)∣∣∣

Note: xj
i (t) denotes the i-th element on j-th dimension in the position vector.

Table A12. Characteristics of gene expression datasets.

Datasets Samples Genes Categories

Colon 62 2000 2
SRBCT 83 2309 4

Leukemia 72 7131 2
Brain_Tumor1 90 5920 5
Brain_Tumor2 50 10,367 4

CNS 60 7130 2
DLBCL 77 5470 4

Leukemia1 72 5328 5
Leukemia2 72 11,225 3

Lung_Cancer 203 12,601 3
Prostate_Tumor 102 10,509 2

Tumors_9 60 5726 9
Tumors_11 174 12,533 11
Tumors_14 308 15,009 26

Table A13. Overall results of eight versions of BISMA according to S-shaped and V-shaped TFs in
terms of average number of the selected genes.

Datasets Metrics BISMA_S1 BISMA_S2 BISMA_S3 BISMA_S4 BISMA_V1 BISMA_V2 BISMA_V3 BISMA_V4

Colon
std 143.6448 157.4435 173.4187 162.0243 0.4216 0.9718 0.6992 0.6992
avg 307.5000 464.5000 476.5000 498.0000 1.0000 1.0000 1.0000 1.0000

SRBCT
std 138.2114 95.9528 156.2727 154.4375 2.9515 2.9364 1.9322 1.4337
avg 376.5000 465.5000 566.0000 565.0000 4.0000 5.0000 4.5000 4.5000

Leukemia
std 589.3556 296.6164 135.8554 64.6241 0.9487 1.2517 0.3162 0.3162
avg 1595.5000 1359.0000 1738.5000 1755.0000 1.0000 1.0000 1.0000 1.0000

Brain_Tumor1 std 926.7275 778.2962 44.3653 560.9920 147.6392 8.0939 11.1679 19.3724
avg 1050.0000 1319.5000 1451.5000 1461.5000 2.0000 3.0000 2.5000 2.5000

Brain_Tumor2 std 755.7944 978.0951 955.6762 430.0868 1.7512 0.9944 1.2293 0.4831
avg 1938.0000 2509.5000 2510.0000 2529.5000 1.0000 2.0000 1.5000 1.0000

CNS
std 504.4472 867.2775 732.4766 489.2598 2.2136 0.5164 0.0000 0.4216
avg 1685.0000 1720.5000 1805.0000 1935.0000 1.0000 1.0000 1.0000 1.0000

DLBCL
std 292.2214 169.4024 129.8839 79.6573 0.0000 0.6750 0.3162 0.6325
avg 490.5000 1295.0000 1334.5000 1371.5000 1.0000 1.0000 1.0000 1.0000

Leukemia1
std 348.2874 536.8715 66.7750 77.7810 1.3499 1.8135 1.1005 1.2472
avg 1163.0000 1271.5000 1283.0000 1328.5000 2.0000 2.0000 2.0000 2.0000

Leukemia2
std 731.5217 497.7822 232.6141 929.4172 3.7357 1.6633 1.4142 1.4181
avg 1255.5000 2532.5000 2673.5000 2737.5000 3.0000 2.5000 1.5000 3.0000

Lung_Cancer std 1191.4138 1241.8645 1162.5447 623.9975 19.8161 16.1593 29.0746 93.8666
avg 3066.0000 3122.0000 3111.0000 3162.0000 23.5000 19.0000 16.5000 15.5000

Prostate_Tumor std 1573.8463 1270.5976 1119.6290 1279.6201 6.2405 37.9867 1.0750 1.8529
avg 2540.0000 2709.0000 2631.5000 2760.5000 3.5000 2.0000 2.5000 2.5000

Tumors_9 std 785.7851 856.2383 533.6090 595.3492 243.1681 42.0502 595.2484 139.8144
avg 1376.5000 1409.5000 1698.0000 1421.0000 1.0000 2.0000 2.5000 4.0000

Tumors_11 std 1040.6752 1660.6726 1391.3213 1285.5454 108.9483 288.1741 948.9861 248.4647
avg 3118.5000 4607.0000 4642.0000 3287.0000 210.0000 304.5000 374.5000 233.0000

Tumors_14 std 2353.3411 1657.2601 974.4708 1551.2076 1520.8509 930.6287 618.4779 966.3795
avg 4920.0000 7469.0000 7450.0000 6775.0000 1143.5000 760.5000 540.5000 569.5000

ARV 5.7143 6.3893 6.8143 7.0393 2.5286 2.6536 2.4464 2.4143
Rank 5 6 7 8 3 4 2 1
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Table A14. Overall results of eight versions of BISMA according to S-shaped and V-shaped TFs in
terms of average number of average error rate.

Datasets Metrics BISMA_S1 BISMA_S2 BISMA_S3 BISMA_S4 BISMA_V1 BISMA_V2 BISMA_V3 BISMA_V4

Colon
std 1.305 × 10−1 1.399 × 10−1 1.620 × 10−1 1.042 × 10−1 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100

avg 0.1429 0.1667 0.1667 0.1548 0.0000 0.0000 0.0000 0.0000

SRBCT
std 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100

avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Leukemia
std 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100

avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Brain_Tumor1 std 5.463 × 10−2 5.604 × 10−2 7.147 × 10−2 5.520 × 10−2 3.162 × 10−2 3.162 × 10−2 3.162 × 10−2 0.000 × 100

avg 0.0000 0.0000 0.0500 0.0500 0.0000 0.0000 0.0000 0.0000

Brain_Tumor2 std 9.088 × 10−2 8.051 × 10−2 1.370 × 10−1 8.051 × 10−2 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100

avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CNS
std 8.794 × 10−2 1.466 × 10−1 8.607 × 10−2 1.528 × 10−1 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100

avg 0.1548 0.0000 0.0000 0.1548 0.0000 0.0000 0.0000 0.0000

DLBCL
std 3.953 × 10−2 4.518 × 10−2 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100

avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Leukemia1
std 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100

avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Leukemia2
std 0.000 × 100 4.518 × 10−2 4.518 × 10−2 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100

avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lung_Cancer std 2.528 × 10−2 2.561 × 10−2 2.491 × 10−2 3.310 × 10−2 0.000 × 100 1.506 × 10−2 0.000 × 100 0.000 × 100

avg 0.0000 0.0238 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Prostate_Tumor std 6.449 × 10−2 5.020 × 10−2 7.071 × 10−2 5.182 × 10−2 3.162 × 10−2 0.000 × 100 0.000 × 100 0.000 × 100

avg 0.0000 0.0909 0.0000 0.0455 0.0000 0.0000 0.0000 0.0000

Tumors_9 std 7.313 × 10−2 1.315 × 10−1 6.325 × 10−2 1.406 × 10−1 5.271 × 10−2 0.000 × 100 0.000 × 100 0.000 × 100

avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Tumors_11 std 4.353 × 10−2 4.395 × 10−2 5.206 × 10−2 4.678 × 10−2 2.886 × 10−2 2.413 × 10−2 2.975 × 10−2 1.757 × 10−2

avg 0.0556 0.0590 0.0572 0.0572 0.0000 0.0000 0.0000 0.0000

Tumors_14 std 4.856 × 10−2 1.028 × 10−1 5.861 × 10−2 4.875 × 10−2 4.411 × 10−2 7.900 × 10−2 3.750 × 10−2 6.582 × 10−2

avg 0.2952 0.2540 0.2971 0.2833 0.2500 0.2374 0.2457 0.2379

ARV 5.1107 5.1107 5.0429 5.0571 4.9857 4.0429 3.9571 3.9429
Rank 8 8 6 7 5 4 3 2

Table A15. Overall results of eight versions of BISMA according to S-shaped and V-shaped TFs in
terms of average number of average fitness.

Datasets Metrics BISMA_S1 BISMA_S2 BISMA_S3 BISMA_S4 BISMA_V1 BISMA_V2 BISMA_V3 BISMA_V4

Colon
std 1.2251 × 10−1 1.3115 × 10−1 1.5248 × 10−1 9.9228 × 10−2 1.0500 × 10−5 2.4300 × 10−5 1.7500 × 10−5 1.7500 × 10−5

avg 0.14415 0.16695 0.16966 0.16554 2.50 × 10−5 2.50 × 10−5 2.50 × 10−5 2.50 × 10−5

SRBCT
std 2.9942 × 10−3 2.0787 × 10−3 3.3855 × 10−3 3.3457 × 10−3 6.3900 × 10−5 6.3600 × 10−5 4.1900 × 10−5 3.1100 × 10−5

avg 0.0081564 0.010084 0.012262 0.01224 8.67 × 10−5 0.00010832 9.75 × 10−5 9.75 × 10−5

Leukemia
std 4.1329 × 10−3 2.0801 × 10−3 9.5270 × 10−4 4.5318 × 10−4 6.6500 × 10−6 8.7800 × 10−6 2.2200 × 10−6 2.2200 × 10−6

avg 0.011189 0.0095302 0.012191 0.012307 7.01 × 10−6 7.01 × 10−6 7.01 × 10−6 7.01 × 10−6

Brain_Tumor1
std 5.1602 × 10−2 5.4124 × 10−2 6.7843 × 10−2 5.1574 × 10−2 2.9920 × 10−2 3.0033 × 10−2 3.0031 × 10−2 1.6362 × 10−4

avg 0.018758 0.018163 0.059215 0.06541 1.69 × 10−5 2.53 × 10−5 2.11 × 10−5 2.11 × 10−5

Brain_Tumor2
std 8.4413 × 10−2 7.4520 × 10−2 1.3015 × 10−1 7.6131 × 10−2 8.4500 × 10−6 4.8000 × 10−6 5.9300 × 10−6 2.3300 × 10−6

avg 0.012262 0.015231 0.012441 0.013635 4.82 × 10−6 9.65 × 10−6 7.23 × 10−6 4.82 × 10−6

CNS
std 8.4987 × 10−2 1.3856 × 10−1 8.0292 × 10−2 1.4740 × 10−1 1.5500 × 10−5 3.6200 × 10−6 0.0000 × 100 2.9600 × 10−6

avg 0.1548 0.018712 0.023061 0.1594 7.01 × 10−6 7.01 × 10−6 7.01 × 10−6 7.01 × 10−6

DLBCL
std 3.7662 × 10−2 4.3039 × 10−2 1.1875 × 10−3 7.2826 × 10−4 0.0000 × 100 6.1700 × 10−6 2.8900 × 10−6 5.7800 × 10−6

avg 0.0044844 0.012009 0.012201 0.012539 9.14 × 10−6 9.14 × 10−6 9.14 × 10−6 9.14 × 10−6

Leukemia1
std 3.2691 × 10−3 5.0392 × 10−3 6.2676 × 10−4 7.3006 × 10−4 1.2700 × 10−5 1.7000 × 10−5 1.0300 × 10−5 1.1700 × 10−5

avg 0.010916 0.011934 0.012042 0.012469 1.88 × 10−5 1.88 × 10−5 1.88 × 10−5 1.88 × 10−5

Leukemia2
std 3.2584 × 10−3 4.3716 × 10−2 4.3135 × 10−2 4.1399 × 10−3 1.6600 × 10−5 7.4100 × 10−6 6.3000 × 10−6 6.3200 × 10−6

avg 0.0055924 0.011281 0.011909 0.012194 1.34 × 10−5 1.11 × 10−5 6.68 × 10−6 1.34 × 10−5

Lung_Cancer std 2.3808 × 10−2 2.2944 × 10−2 2.2084 × 10−2 3.1035 × 10−2 7.8600 × 10−5 1.4293 × 10−2 1.1538 × 10−4 3.7249 × 10−4

avg 0.018605 0.04004 0.022837 0.013115 9.33 × 10−5 8.73 × 10−5 6.55 × 10−5 6.15 × 10−5

Prostate_Tumor
std 6.2632 × 10−2 4.4868 × 10−2 6.4827 × 10−2 4.9589 × 10−2 3.0037 × 10−2 1.8073 × 10−4 5.1100 × 10−6 8.8200 × 10−6

avg 0.018427 0.098843 0.024919 0.06217 2.85 × 10−5 9.52 × 10−6 1.19 × 10−5 1.19 × 10−5

Tumors_9
std 7.3201 × 10−2 1.2925 × 10−1 6.0930 × 10−2 1.3705 × 10−1 5.1706 × 10−2 3.6719 × 10−4 5.1978 × 10−3 1.2209 × 10−3

avg 0.012256 0.012308 0.014827 0.012408 8.73 × 10−6 1.75 × 10−5 2.18 × 10−5 3.49 × 10−5

Tumors_11
std 4.0291 × 10−2 4.4019 × 10−2 4.8341 × 10−2 4.3815 × 10−2 2.7431 × 10−2 2.2469 × 10−2 2.7845 × 10−2 1.7275 × 10−2

avg 0.0646 0.074911 0.071693 0.06889 0.0013903 0.0019768 0.0046557 0.00092955

Tumors_14
std 4.2144 × 10−2 9.9535 × 10−2 5.5160 × 10−2 4.2749 × 10−2 4.2056 × 10−2 7.3598 × 10−2 3.5842 × 10−2 6.0899 × 10−2

avg 0.30311 0.26614 0.30706 0.28783 0.24017 0.22696 0.23548 0.22735

ARV 5.9786 5.9786 6.2214 6.6214 6.6929 2.7036 2.7536 2.6036
Rank 5 5 6 7 8 3 4 2

Table A16. Overall results of eight versions of BISMA according to S-shaped and V-shaped TFs in
terms of average number of average computational time.

Datasets Metrics BISMA_S1 BISMA_S2 BISMA_S3 BISMA_S4 BISMA_V1 BISMA_V2 BISMA_V3 BISMA_V4

Colon
std 1.2191 1.3052 2.4355 1.4757 1.1938 1.4909 1.2686 1.3287
avg 85.9626 90.0505 121.3363 89.5739 94.0297 84.1583 82.0512 82.549

SRBCT
std 1.5885 1.8773 2.8525 1.084 1.8508 2.45 3.0216 2.414
avg 102.6595 105.9233 153.5824 106.7198 110.4927 101.3722 94.9202 98.0153
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Table A16. Cont.

Datasets Metrics BISMA_S1 BISMA_S2 BISMA_S3 BISMA_S4 BISMA_V1 BISMA_V2 BISMA_V3 BISMA_V4

Leukemia
std 4.6463 7.1863 8.4485 4.176 5.6477 8.9345 7.1624 5.6551
avg 288.1026 369.0878 418.859 300.3361 312.7438 281.3737 263.277 262.0363

Brain_Tumor1
std 15.0486 5.518 5.9123 3.6483 6.5985 7.0206 5.2887 9.7095
avg 257.1141 329.2853 355.1649 265.6545 268.0102 235.1687 226.2937 221.4106

Brain_Tumor2
std 26.0923 16.4663 5.829 5.9109 5.7821 6.9892 8.4514 4.4363
avg 394.7483 557.1407 417.7936 408.0532 429.047 378.0446 403.66 366.1612

CNS
std 18.5258 8.2571 4.9416 4.7855 5.2549 5.1788 6.3485 2.5764
avg 282.115 399.2233 297.2468 292.9844 305.7291 270.9286 305.3575 257.4227

DLBCL
std 13.4459 7.3986 3.7698 3.2965 6.6934 6.881 5.9037 6.3564
avg 229.0604 318.173 239.9178 235.4501 243.1863 222.2096 206.4178 207.6545

Leukemia1
std 13.0915 7.1145 4.2194 3.5637 4.3786 5.3226 3.4246 4.1366
avg 221.6625 306.661 230.06 226.9516 236.7801 206.948 201.3261 199.8014

Leukemia2
std 27.9557 27.8952 7.3565 6.2185 9.6514 10.0649 7.2691 9.5984
avg 454.5811 626.5679 467.8857 467.3684 482.2521 424.8834 411.641 408.7297

Lung_Cancer std 40.0181 14.4133 21.3431 26.7837 47.3963 37.8825 48.654 32.9511
avg 835.7816 1064.939 847.6348 828.0133 677.3208 558.4493 534.8904 521.5364

Prostate_Tumor std 25.1417 10.4573 6.7311 10.3808 19.9367 16.2087 12.0796 24.8174
avg 470.1901 659.3352 485.7299 477.1534 464.5947 415.6169 390.0605 389.1298

Tumors_9 std 13.5588 8.8614 3.2316 4.0011 2.6109 4.0259 4.3268 3.487
avg 231.0626 333.3597 240.6433 238.7621 246.7118 220.015 208.5856 206.8161

Tumors_11 std 39.8624 15.6572 18.8506 15.9373 46.4145 36.5902 20.4801 15.6274
avg 744.1785 985.7713 758.463 752.3035 630.7326 555.8758 502.5768 483.1388

Tumors_14 std 73.1984 62.0491 69.1097 103.7124 77.7274 74.0669 49.1133 57.7599
avg 1560.365 1901.44 1556.638 1541.604 1087.476 880.2872 760.1826 723.8812

ARV 4.7 7.5143 6.4071 5.0571 5.8929 2.8643 2.1357 1.4286
Rank 4 8 7 5 6 3 2 1

Table A17. Parameter settings.

Optimizers Parameters Value

bGWO
amax 2
amin 0

BPSO
Min inertia weight 0.4
Min inertia weight 0.9

c1, c2 0.2

bWOA
amax 2
amin 0

Table A18. Comparison of BISMA with other gene selection optimizers in terms of average number
of the selected genes.

Datasets Metrics BISMA BSMA bGWO BGSA BPSO bALO BBA BSSA bWOA

Colon
std 0.5164 29.5727 15.9753 23.2178 18.7901 26.9081 57.2076 413.9399 1.6499
avg 1 46 153.5 769 899 876 818 424.5 2

SRBCT
std 1.2649 20.5721 15.2567 28.0515 17.2321 21.7348 88.7612 234.9426 1.8974
avg 3 33.5 192 898.5 1023 996 936 1073.5 4

Leukemia
std 0.42164 21.9699 41.075 22.2264 31.8531 27.3595 180.2885 1254.8997 0.91894
avg 1 36 791.5 3106 3354 3288 2850 3427 2

Brain_Tumor1
std 3.1429 78.3272 37.8001 45.6636 31.3739 42.0132 104.9288 1333.051 1.2649
avg 3.5 65 631 2559 2766 2737 2449.5 2646.5 3

Brain_Tumor2
std 1.7029 240.6062 75.5373 55.0019 55.9691 46.9871 135.9838 2454.5883 1.1785
avg 2.5 156 1148.5 4672.5 4914.5 4864.5 4209 2946.5 2.5

CNS
std 0.31623 136.7067 42.7265 96.6304 35.9623 50.9117 198.0223 1551.1952 3.2335
avg 1 87.5 852 3171 3386.5 3344.5 2985 3293 2

DLBCL
std 0.42164 33.4865 23.7957 48.9182 24.6162 37.7601 156.4013 833.0272 0.99443
avg 1 40.5 571.5 2329.5 2522.5 2489 2245 2625.5 2

Leukemia1
std 0.8165 25.3588 33.1832 39.1324 20.8017 31.6665 190.6413 1124.43 1.2649
avg 2 40 550.5 2303 2473.5 2419 2132 2538.5 3.5

Leukemia2
std 1.2649 22.3617 46.4113 57.6102 51.1196 42.9973 252.5475 2534.8708 1.1972
avg 2.5 55 1245.5 5021.5 5320.5 5272.5 4592 5412.5 3

Lung_Cancer std 27.247 240.5198 66.0041 77.9308 42.3663 48.9689 688.2611 2587.9333 13.898
avg 10 172 1504 5750.5 6030 5947.5 5097.5 6092 5.5
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Table A18. Cont.

Datasets Metrics BISMA BSMA bGWO BGSA BPSO bALO BBA BSSA bWOA

Prostate_Tumor std 1.4181 234.6364 63.2583 109.3395 83.1836 39.8112 191.4855 2202.9629 1.792
avg 2 181.5 1262.5 4772.5 5029 4955.5 4401.5 5041 3

Tumors_9 std 102.7665 812.1526 43.0834 71.0286 45.3878 37.3722 171.1166 1120.278 3.0258
avg 8 174 674 2529 2732.5 2655.5 2376.5 2750 3

Tumors_11 std 231.5253 558.048 45.2396 142.4798 102.5773 88.8522 190.7012 1889.8508 113.9361
avg 235.5 497 1596.5 5776.5 6080.5 5968.5 5281.5 6134.5 110.5

Tumors_14 std 681.716 2562.6438 127.5985 132.4234 80.2649 77.5818 187.6832 61.4366 664.218
avg 682 1469 2382.5 7337.5 7401 7357.5 6349.5 7426.5 565

ARV 1.4643 3.1357 4.1714 6.2643 8.175 7.5107 5.5286 7.1286 1.6214
Rank 1 3 4 6 9 8 5 7 2

Table A19. Comparison of BISMA with other gene selection optimizers in terms of average error rate.

Datasets Metrics BISMA BSMA bGWO BGSA BPSO bALO BBA BSSA bWOA

Colon
std 0.0000 0.0527 0.1162 0.1925 0.1229 0.2222 0.1592 0.1554 0.0000
avg 0.0000 0.0000 0.0000 0.0833 0.1667 0.0833 0.2262 0.0714 0.0000

SRBCT
std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0901 0.0000 0.0000
avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1056 0.0000 0.0000

Leukemia
std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0707 0.0000 0.0000
avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Brain_Tumor1
std 0.0316 0.0502 0.0560 0.0546 0.0564 0.0735 0.0881 0.0574 0.0351
avg 0.0000 0.0000 0.0000 0.0000 0.0500 0.0000 0.1111 0.0000 0.0000

Brain_Tumor2
std 0.0000 0.0000 0.0777 0.0831 0.0866 0.1235 0.1454 0.1235 0.0000
avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2083 0.0000 0.0000

CNS
std 0.0000 0.0883 0.0703 0.1179 0.1194 0.0856 0.1315 0.1365 0.0000
avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 0.3333 0.0714 0.0000

DLBCL
std 0.0000 0.0000 0.0000 0.0395 0.0395 0.0395 0.1111 0.0000 0.0000
avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0625 0.0000 0.0000

Leukemia1
std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0602 0.0000 0.0000
avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Leukemia2
std 0.0000 0.0000 0.0000 0.0395 0.0395 0.0527 0.0979 0.0452 0.0000
avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0625 0.0000 0.0000

Lung_Cancer std 0.0158 0.0206 0.0234 0.0341 0.0363 0.0248 0.0463 0.0359 0.0151
avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0476 0.0732 0.0238 0.0000

Prostate_Tumor std 0.0000 0.0483 0.0422 0.0701 0.0844 0.0699 0.1589 0.0787 0.0000
avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0500 0.3000 0.0955 0.0000

Tumors_9 std 0.0000 0.0703 0.0904 0.0000 0.0703 0.0811 0.2532 0.1309 0.0000
avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3667 0.0000 0.0000

Tumors_11 std 0.0223 0.0614 0.0211 0.0570 0.0488 0.0508 0.0638 0.0586 0.0369
avg 0.0000 0.0000 0.0000 0.0000 0.0263 0.0557 0.1144 0.0588 0.0263

Tumors_14 std 0.0599 0.0516 0.0603 0.0719 0.0368 0.0559 0.0818 0.1008 0.0682
avg 0.2624 0.2808 0.1759 0.2028 0.2713 0.2379 0.3906 0.2583 0.2284

ARV 4.0786 4.625 4.35 4.8393 5.0964 5.1571 7.4357 5.2857 4.1321
Rank 1 4 3 5 6 7 9 8 2

Table A20. Comparison of BISMA with other gene selection optimizers in terms of average fitness.

Datasets Metrics BISMA BSMA bGWO BGSA BPSO bALO BBA BSSA bWOA

Colon
std 1.2910 × 10−5 5.0206 × 10−2 1.1035 × 10−1 1.8282 × 10−1 1.1702 × 10−1 2.1096 × 10−1 1.3282 × 10−1 1.4476 × 10−1 4.1248 × 10−5

avg 2.5000 × 10−5 1.1500 × 10−3 4.3875 × 10−3 9.8642 × 10−2 1.8077 × 10−1 1.0080 × 10−1 1.7705 × 10−1 8.0020 × 10−2 5.0000 × 10−5

SRBCT
std 2.7403 × 10−5 4.4567 × 10−4 3.3052 × 10−4 6.0770 × 10−4 3.7331 × 10−4 4.7086 × 10−4 5.4394 × 10−2 5.0897 × 10−3 4.1104 × 10−5

avg 6.4991 × 10−5 7.2574 × 10−4 4.1594 × 10−3 1.9465 × 10−2 2.2162 × 10−2 2.1577 × 10−2 1.9757 × 10−2 2.3256 × 10−2 8.6655 × 10−5

Leukemia
std 2.9568 × 10−6 1.5407 × 10−4 2.8804 × 10−4 1.5587 × 10−4 2.2337 × 10−4 1.9186 × 10−4 3.8230 × 10−2 8.8001 × 10−3 6.4442 × 10−6

avg 7.0126 × 10−6 2.5245 × 10−4 5.5505 × 10−3 2.1781 × 10−2 2.3520 × 10−2 2.3058 × 10−2 1.6518 × 10−2 2.4032 × 10−2 1.4025 × 10−5

Brain_Tumor1
std 3.0044 × 10−2 4.7527 × 10−2 5.3069 × 10−2 5.1816 × 10−2 5.3452 × 10−2 6.9773 × 10−2 6.3670 × 10−2 4.9713 × 10−2 3.3378 × 10−2

avg 2.9561 × 10−5 9.4172 × 10−4 5.6841 × 10−3 2.2204 × 10−2 7.1128 × 10−2 2.3408 × 10−2 1.2274 × 10−1 2.4928 × 10−2 2.5338 × 10−5

Brain_Tumor2
std 8.2133 × 10−6 1.1604 × 10−3 7.3988 × 10−2 7.9166 × 10−2 8.2304 × 10−2 1.1744 × 10−1 1.3429 × 10−1 1.2498 × 10−1 5.6840 × 10−6

avg 1.2057 × 10−5 7.5239 × 10−4 5.5899 × 10−3 2.2574 × 10−2 2.3715 × 10−2 2.3488 × 10−2 2.3165 × 10−2 1.4332 × 10−2 1.2057 × 10−5

CNS
std 2.2179 × 10−6 8.3687 × 10−2 6.6773 × 10−2 1.1206 × 10−1 1.1335 × 10−1 8.1427 × 10−2 1.5272 × 10−1 1.3596 × 10−1 2.2679 × 10−5

avg 7.0136 × 10−6 2.2373 × 10−3 6.0843 × 10−3 2.3320 × 10−2 2.4165 × 10−2 9.1574 × 10−2 1.8163 × 10−1 9.2401 × 10−2 1.4027 × 10−5

DLBCL
std 3.8548 × 10−6 3.0615 × 10−4 2.1755 × 10−4 3.7526 × 10−2 3.7505 × 10−2 3.7552 × 10−2 6.1711 × 10−2 7.6159 × 10−3 9.0915 × 10−6

avg 9.1424 × 10−6 3.7027 × 10−4 5.2249 × 10−3 2.1348 × 10−2 2.3149 × 10−2 2.2820 × 10−2 1.9112 × 10−2 2.4003 × 10−2 1.8285 × 10−5

Leukemia1
std 7.6638 × 10−6 2.3802 × 10−4 3.1146 × 10−4 3.6730 × 10−4 1.9525 × 10−4 2.9723 × 10−4 3.6838 × 10−3 1.0554 × 10−2 1.1873 × 10−5

avg 1.8772 × 10−5 3.7545 × 10−4 5.1671 × 10−3 2.1616 × 10−2 2.3217 × 10−2 2.2705 × 10−2 1.9378 × 10−2 2.3827 × 10−2 3.2852 × 10−5

Leukemia2
std 5.6343 × 10−6 9.9607 × 10−5 2.0673 × 10−4 3.7572 × 10−2 3.7745 × 10−2 4.9938 × 10−2 5.3561 × 10−2 4.6911 × 10−2 5.3328 × 10−6

avg 1.1136 × 10−5 2.4499 × 10−4 5.5479 × 10−3 2.2367 × 10−2 2.3699 × 10−2 2.3510 × 10−2 1.9595 × 10−2 2.4109 × 10−2 1.3363 × 10−5

Lung_Cancer std 1.5004 × 10−2 1.9354 × 10−2 2.2153 × 10−2 3.2336 × 10−2 3.4492 × 10−2 2.3622 × 10−2 3.1687 × 10−2 4.1718 × 10−2 1.4294 × 10−2

avg 5.1587 × 10−5 1.1885 × 10−3 6.1905 × 10−3 2.3317 × 10−2 2.4093 × 10−2 6.8815 × 10−2 6.3121 × 10−2 4.6873 × 10−2 2.5794 × 10−5

Prostate_Tumor
std 6.7472 × 10−6 4.6054 × 10−2 4.0020 × 10−2 6.6461 × 10−2 8.0247 × 10−2 6.6461 × 10−2 1.1415 × 10−1 7.7648 × 10−2 8.5258 × 10−6

avg 9.5157 × 10−6 2.0126 × 10−3 6.1828 × 10−3 2.3454 × 10−2 2.4241 × 10−2 7.1027 × 10−2 1.0987 × 10−1 9.3377 × 10−2 1.4273 × 10−5
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Table A20. Cont.

Datasets Metrics BISMA BSMA bGWO BGSA BPSO bALO BBA BSSA bWOA

Tumors_9
std 8.9737 × 10−4 6.7888 × 10−2 8.5899 × 10−2 6.2023 × 10−4 6.6747 × 10−2 7.7087 × 10−2 1.9970 × 10−1 1.2797 × 10−1 2.6422 × 10−5

avg 6.9857 × 10−5 1.5194 × 10−3 5.8854 × 10−3 2.2083 × 10−2 2.4162 × 10−2 2.3411 × 10−2 2.3214 × 10−2 2.4703 × 10−2 2.6196 × 10−5

Tumors_11
std 2.1319 × 10−2 5.7197 × 10−2 1.9912 × 10−2 5.4119 × 10−2 4.6341 × 10−2 4.8083 × 10−2 5.9891 × 10−2 5.7273 × 10−2 3.4943 × 10−2

avg 1.3923 × 10−3 6.6026 × 10−3 6.4171 × 10−3 2.3604 × 10−2 4.9392 × 10−2 7.6599 × 10−2 1.2055 × 10−1 6.7590 × 10−2 2.6123 × 10−2

Tumors_14
std 5.5130 × 10−2 5.3345 × 10−2 5.7317 × 10−2 6.8032 × 10−2 3.5029 × 10−2 5.2960 × 10−2 7.0141 × 10−2 9.5849 × 10−2 6.4709 × 10−2

avg 2.5180 × 10−1 2.7576 × 10−1 1.7527 × 10−1 2.1745 × 10−1 2.8210 × 10−1 2.5053 × 10−1 3.1859 × 10−1 2.7012 × 10−1 2.2178 × 10−1

ARV 1.6964 1.6964 3.7571 4.2286 5.9 7.1286 6.8143 6.8071 6.6429
Rank 1 1 3 4 5 9 8 7 6

Table A21. Comparison of BISMA with other gene selection optimizers in terms of average computa-
tional time.

Datasets Metrics BISMA BSMA bGWO BGSA BPSO bALO BBA BSSA bWOA

Colon
std 0.93215 0.55407 0.098098 0.11018 0.076472 0.069336 0.19183 0.23189 0.4158
avg 79.1933 35.9194 14.2079 7.2215 4.2471 4.1295 13.9446 23.2622 26.0384

SRBCT
std 2.1619 0.51149 0.15702 0.11402 0.13534 0.16851 0.25667 0.3163 0.37599
avg 93.6061 41.244 16.2856 8.8596 5.4073 5.2877 16.3119 27.1393 29.9446

Leukemia
std 7.2303 1.8022 0.3074 0.42745 0.27052 0.35454 0.51794 0.93854 1.2515
avg 256.4992 122.7257 44.8501 23.5815 12.5313 12.2151 45.0914 79.2949 89.7865

Brain_Tumor1
std 6.9684 1.0527 0.278 0.45035 0.47769 0.32493 0.49618 1.069 1.2276
avg 220.5351 103.2569 38.7039 21.6636 13.2493 12.7106 40.4449 68.416 74.6861

Brain_Tumor2
std 4.4718 2.0085 0.40876 0.4924 0.4705 0.34669 0.57963 1.4683 1.9697
avg 354.245 176.7797 63.4666 29.9924 13.3176 12.3337 60.1049 110.4912 131.5993

CNS
std 4.7455 1.4788 0.51911 0.26787 0.19856 0.2563 0.6056 0.94437 1.1606
avg 248.504 122.8625 44.5969 22.0423 10.8899 10.3101 43.5037 77.9093 89.9202

DLBCL
std 5.3919 0.93684 0.23064 0.16063 0.29357 0.16353 0.47267 0.61759 1.1042
avg 200.6234 94.9785 35.3048 18.7326 10.6001 10.3269 35.7383 61.9793 69.2286

Leukemia1
std 4.3623 1.1156 0.31638 0.35829 0.27141 0.19161 0.52207 0.86822 0.85614
avg 194.386 92.0658 34.0793 17.7135 9.9582 9.5621 34.4391 60.048 66.7794

Leukemia2
std 7.374 3.0726 0.49382 0.61819 0.5241 0.50114 0.61738 1.9491 2.7261
avg 399.2129 192.557 69.7935 36.9327 19.1668 18.0316 69.7835 123.9545 144.0557

Lung_Cancer std 41.6799 4.5389 1.0736 3.7226 4.3019 3.6112 4.3848 2.089 2.7099
avg 515.1456 233.6435 99.2504 93.316 77.8452 75.9999 127.7409 190.8128 167.6969

Prostate_Tumor std 17.4231 2.7956 0.56853 0.55518 0.82953 0.5596 1.1379 1.3348 1.8037
avg 383.2946 183.4421 68.6138 42.0024 25.8001 25.2016 72.0151 122.9783 133.436

Tumors_9 std 2.9367 1.1039 0.25397 0.356 0.42194 0.23273 0.39294 0.77615 1.0106
avg 203.6074 98.814 36.386 18.1879 9.237 8.8404 35.6073 62.8321 71.9579

Tumors_11 std 11.6164 3.5569 1.045 2.7062 2.8401 3.2718 3.7758 1.9198 1.6793
avg 465.5284 226.3375 93.2904 78.8383 61.7486 60.114 113.7264 175.511 163.5641

Tumors_14 std 78.3081 9.9354 2.1979 13.6846 7.0692 10.4616 8.8472 4.4011 5.6434
avg 664.032 309.3361 159.1758 202.5748 176.6571 176.1249 235.2403 308.2242 212.441

ARV 9 7.95 4.1857 3.1 1.8929 1.2571 4.6643 6.2643 6.6857
Rank 9 8 4 3 2 1 5 6 7
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