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a b s t r a c t

This paper presents a new decision-making problem of a fair optimization with respect to the two
equally important conflicting objective functions: cost and customer service level, in the presence of
supply chain disruption risks. Given a set of customer orders for products, the decision maker needs to
select suppliers of parts required to complete the orders, allocate the demand for parts among the
selected suppliers, and schedule the orders over the planning horizon, to equitably optimize expected
cost and expected customer service level. The supplies of parts are subject to independent random local
and regional disruptions. The fair decision-making aims at achieving the normalized expected cost and
customer service level values as much close to each other as possible. The obtained combinatorial
stochastic optimization problem is formulated as a stochastic mixed integer program with the ordered
weighted averaging aggregation of the two conflicting objective functions. Numerical examples and
computational results, in particular comparison with the weighted-sum aggregation of the two objective
functions are presented and some managerial insights are reported. The findings indicate that for the
minimum cost objective the cheapest supplier is usually selected, and for the maximum service level
objective a subset of most reliable and most expensive suppliers is usually chosen, whereas the equitably
efficient supply portfolio usually combines the most reliable and the cheapest suppliers. While the
minimum cost objective function leads to the largest expected unfulfilled demand and the expected
production schedule for the maximum service level follows the customer demand with the smallest
expected unfulfilled demand, the equitably efficient solution ensures a reasonable value of expected
unfulfilled demand.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In global supply chain networks the optimization of material flows
subject to unexpected disruption events, focuses on a variety of
different optimality criteria. The most commonly used criteria for a
global supply chain performance are minimization of cost and
maximization of customer service level that measures the percentage
of customer demand satisfied on time. The above two performance
metrics are in conflict and, in addition, the decision makers often do
not have preference to any objective, i.e., the two objectives are
equally important. Then, an equitably efficient solution should be
generated, in which the two normalized objective function values are
as much close to each other as possible. Such kind of solutions can be
generated by applying the lexicographic minimax method, as a special
case of the ordered weighted averaging aggregation, e.g., Kostreva
et al. [1], Ogryczak et al. [2]. The lexicographic minimax problem can
be transferred to a lexicographic minimization problem and recently

Liu and Papageorgiou [3] developed an approach to transfer the
lexicographic minimax problem to a minimization optimization
problem, instead of a lexicographic minimization problem, which
needs to solve a sequence of optimization problems iteratively. The
recent approach, however, is restricted to some special cases of a
multiple objective problem (Liu et al. [4]).

The selection of part suppliers and allocation of order quantities
under disruption risks may particularly help to optimize performance
of a global supply chain network in the presence of unexpected
disaster events (e.g., Park et al. [5], Fujimoto and Park [6], Schmitt and
Singh [7]). Nevertheless, the research on supplier selection under
disruption risks is limited, (e.g., Simangunsong et al. [8]). For example,
Berger et al. [9], Berger and Zeng [10], Ruiz-Torres and Mahmoodi [11],
Yu et al. [12] and Zeng and Xia [13] considered the impacts of supply
disruption risks on the choice between single, dual and multiple
sourcing strategies.

The literature on supply chain risk management indicates that the
stochastic programming methodology has been successfully applied
in a risk management related decision-making (e.g., [14,15]). In
particular, stochastic mixed integer programming (stochastic MIP) is
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an appropriate tool for supply chain optimization under disruption
risks due to its ability to handle uncertainty by probabilistic scenarios
of disaster events as well as their outcomes. Stochastic programming
allows for exact mathematical modeling approaches and optimization
algorithms to be applied and the optimal solutions with respect to
multiple relevant objective functions to be achieved. While the
primary purpose of supply chain risk management is to avoid lower
tail performances, stochastic MIP allows both the risk-neutral, average
performance as well as the risk-averse, worst-case performance of a
supply chain network to be optimized. For example, Li and Zabinsky
[16] developed a two-stage stochastic programming model and a
chance-constrained programming model to determine a minimal set
of suppliers and optimal order quantities. Both models include several
objectives and strive to balance a small number of suppliers with the
risk of not being able to meet demand. The stochastic programming
model is scenario-based and uses penalty coefficients whereas the
chance-constrained programming model assumes a probability dis-
tribution and constrains the probability of not meeting demand.
Hammami et al. [17] proposed a scenario-based stochastic model for
supplier selection in the presence of uncertain fluctuations of currency
exchange rates and price discounts. Using a portfolio approach and
the percentile measures of risk, Value-at-Risk (VaR) and Conditional
Value-at-Risk (CVaR), Sawik [18–20] considered supplier selection and
order quantity allocation in the presence of supply chain disruption
risks. In particular in [19,20] a resilient supply portfolio was consid-
ered with fortified suppliers that are capable of supplying parts in the
face of disruption events and with emergency [19] or regular [20]
inventory pre-positioned at the fortified suppliers. The emergency
inventory is used to compensate for the loss of capacity of the other
suppliers, unprotected and hit by disruptions, while the regular
inventory can be fully used under each disruption scenario to fulfill
regular orders placed on the protected suppliers.

Most works on supply chains optimization focus on coordinat-
ing the flows of supply and demand over a supply chain network
to minimize the inventory, transportation and shortage costs.
However, the equitable optimization with respect to equally
important conflicting objective functions (e.g., [3]) and under
disruption risks is rarely considered as well as the associated
coordinated scheduling of the disrupted material flows. Lei et al.
[21] considered an integrated production, inventory and distribu-
tion routing problem involving heterogeneous transporters with
non-instantaneous traveling times and many capacitated customer
demand centers. A mixed integer programming (MIP) approach
combined with a heuristic routing algorithm was proposed to
coordinate the production, inventory and transportation opera-
tions. Bard and Nananukul [22] developed a MIP model and a
reactive tabu search-based algorithm for a transportation schedul-
ing problem that included a single production facility, a set of
customers with time-varying demand and a fleet of vehicles.
Wang and Lei [23] considered the problem of operations schedul-
ing for a capacitated multi-echelon shipping network with deliv-
ery deadlines, where semi-finished goods are shipped from
suppliers to customers through processing centers, with the
objective of minimizing the shipping and penalty cost. The three
polynomial-time solvable cases of this problem were reported:
with identical order quantities; with designated suppliers; and
with divisible customer order sizes. Sajadieh et al. [24] considered
an integrated production-inventory model for a three-stage supply
chain involving multiple suppliers, multiple manufacturers and
multiple retailers, with stochastic lead times to retailers.

The major contribution of this paper is that it proposes a
stochastic MIP model for the integrated selection of supply
portfolio and scheduling of customer orders in a global supply
chain under disruption risks to equitably optimize expected cost
and expected customer service level. The supplies of parts are
subject to independent random local and regional disruptions. The

cost includes the cost of ordering, purchasing and shortage of
parts, while the customer service level is a performance measure
independent on any cost parameters, defined as the fraction of
customer orders or customer demand, filled on or before their due
dates. The equitable decision-making aims at achieving the nor-
malized expected cost and customer service level values as much
close to each other as possible. In order to obtain an equitably
efficient solution to the combinatorial stochastic optimization
problem, the ordered weighted averaging aggregation of the two
conflicting objective functions is applied, e.g., Yager [25]. The
stochastic MIP model proposed is based on the stochastic optimi-
zation approach presented in Sawik [26–28] for the integrated
supplier selection, order quantity allocation and customer orders
scheduling under disruption risks, where the problem objective
was either to minimize expected cost or expected worst-case cost
or to maximize expected service level or expected worst-case
service level. In [26], the risk-neutral and the risk-averse solutions
that minimize, respectively expected cost and expected worst-case
cost were found for a single or multiple sourcing of different part
types. The supplies were subject to independent random local
disruptions of each supplier individually and to global disruptions
of all suppliers simultaneously. The idea presented in [26] was
further enhanced in [27] for the customer service level objective
function and a single or dual sourcing strategy for a single critical
part type. The suppliers were assumed to be located in two
different geographic regions: in the producer's region (domestic
suppliers) and outside the producer's region (foreign suppliers)
and the supplies were subject to independent random local
disruptions of each supplier individually and to regional disrup-
tions of all suppliers in the same region simultaneously. Finally,
the results achieved in [27] were enhanced in [28] for the risk-
averse, single and multiple sourcing strategies under multi-
regional disruption scenarios. Given a set of customer orders for
products, the decision maker needs to decide which single
supplier or which subset of suppliers to select for purchasing
parts required to complete the customer orders and how to
schedule the orders over the planning horizon, to mitigate the
impact of disruption risks. The suppliers are located in different
geographic regions and the supplies are subject to different types
of disruptions: to random local disruptions of each supplier
individually, to random regional disruptions of all suppliers in
the same region simultaneously and to random global disruptions
of all suppliers simultaneously. The problem objective was either
to minimize the expected worst-case cost of ordering and pur-
chasing of parts plus penalty cost of delayed and unfulfilled
customer orders due to the parts shortages or to maximize the
expected worst-case customer service level, i.e., the expected
worst-case fraction of customer orders satisfied on time. In this
paper, the two risk-neutral conflicting criteria: expected cost and
expected customer service level are fairly optimized to achieve an
equitably efficient supply portfolio and production schedule in the
presence of supply chain disruption risks. The two alternative
customer service level measures are compared: the expected
fraction of satisfied on time customer orders or customer demand.
The equitably efficient solutions obtained for the ordered
weighted averaging aggregation of the two conflicting objective
functions are compared with non-dominated solutions obtained
using the weighted-sum aggregation approach.

The paper is organized as follows. The description of the
integrated selection of supply portfolio and scheduling of custo-
mer orders with multiple suppliers subject to independent local
and regional disruptions is presented in Section 2. The stochastic
mixed integer programs for equitably efficient optimization of
expected cost and expected customer service level are develo-
ped in Section 3. Numerical examples and some computatio-
nal results, in particular comparison with the weighted-sum
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approach, are provided in Section 4, and final conclusions are
made in the last section.

2. Problem description

In a supply chain under consideration various types of products are
assembled over a planning horizon by a single producer to meet
customer demand, using the same critical part type that can be
manufactured and provided by different suppliers. Let I ¼ f1;…;Mg be
the set of M certified suppliers, J ¼ f1;…;Ng the set of N customer
orders for products, and T ¼ f1;…;Hg the set of H planning periods.

Denote by aj the unit requirement for the critical part of each
product in customer order jA J and let bj and dj be, respectively the
size and the due date of customer order jA J. The total demand for
all parts is A¼∑jA Jajbj and the total demand for all products is
B¼∑jA Jbj.

The orders for parts are assumed to be placed at the start of the
planning horizon, when all customer orders for products are known.
Let oi be the unit purchasing price of parts from supplier iA I and
denote by ei the fixed cost of ordering parts from supplier iA I. Each
supplier have sufficient capacity to meet total demand for parts and to
complete and prepare orders for shipping in a single planning period.
Then, all parts ordered from a supplier are shipped together in a single
delivery. The order preparation and transportation time of a shipment
from supplier iA I to the producer is constant and equals to τi periods
so that the parts ordered from supplier iA I are delivered in period τi
and then can be used for the assembly of products in period τiþ1, at
the earliest.

Assume that the suppliers are located in a number of disjoint
geographical regions and denote by IrD I the subset of suppliers in
region rAR, where ⋃rARI

r ¼ I.
The supplies are subject to independent random local disruptions

of each supplier individually and to random regional disruptions of all
suppliers in the same geographical region simultaneously. Denote by
pi the local disruption probability for supplier iA I and by pr the
probability of regional disruption of all suppliers iA Ir in region rAR.
The regional disasters in each region and the local disasters at each
supplier are assumed to be independent events. Let πi be the
disruption probability of every supplier iA Ir ; rAR

πi ¼ prþð1�prÞpi; iA Ir ; rAR: ð1Þ
Denote by S¼ f1;…; qg be the index set of all disruption scenarios,

where each scenario sAS is composed of a unique subset Is � I of
suppliers who deliver parts without disruptions. All potential disrup-
tion scenarios will be considered, that is q¼ 2M . For each scenario
sAS, the supplies from every supplier, iA I\Is, can be disrupted either
by a local or a regional disaster event. The probability Ps for disruption
scenario sAS with the subset Is of non-disrupted suppliers, and with
all possible combinations of different disaster events considered, is
[28]

Ps ¼ ∏
rAR

Pr
s ; ð2Þ

where Ps
r is the probability of realizing of disruption scenario s for

suppliers in Ir

Pr
s ¼

ð1�prÞ ∏
iA Ir⋂Is

ð1�piÞ ∏
iA Ir \Is

pi if Ir⋂Isa∅

prþð1�prÞ∏
iA Ir

pi if Ir⋂Is ¼∅:

8>><
>>: ð3Þ

The customer orders are single-period orders such that each
order can be completed in one planning period. Assume that the
producer has limited time-varying capacity, and denote by Ct the
producer capacity available in planning period tAT , and by cj the
unit capacity consumption for each product in customer order jA J.
The producer can be charged with a contractual, order specific

penalty cost for delayed or unfulfilled customer orders, caused by
the shortage of parts, that are delivered late or not at all due to
supply disruptions. Let gj and hj be, respectively, the per unit and
per period penalty cost of delayed customer order jA J and the per
unit total penalty cost of unfulfilled customer order jA J.

The objective of the equitable optimization of a supply chain under
disruption risks is to allocate the total demand for parts among a
subset of selected suppliers and to schedule the customer orders for
products over the planning horizon to equitably minimize expected
cost of ordering, purchasing and shortage of parts and maximize
expected customer service level, i.e., the fraction of customer orders
(or of customer demand) filled on or before their due dates. The
resulting equitably efficient supply portfolio (the allocation of total
demand for parts among the selected suppliers) is determined ahead
of time as well as the equitably efficient schedule of customer orders
for every potential disruption scenario.

3. Problem formulation

In this section the time-indexed stochastic MIP model ECS is
proposed for the equitably efficient optimization of supplier selection
and customer order scheduling to fairly minimize expected cost per
product and maximize expected customer service level, i.e., the
fraction of customer orders filled on or before their due dates. The
following three basic decision variables are introduced in the proposed
MIP model:

� Supplier selection variable: ui ¼ 1, if supplier i is selected;
otherwise ui ¼ 0.

� Order-to-period assignment variable: vsjt ¼ 1, if under disrup-
tion scenario s customer order j is assigned to planning period
t; otherwise vsjt ¼ 0.

� Demand allocation variable: wiA ½0;1� is the fraction of total
demand for parts ordered from supplier i.

The demand allocation vector ðw1;…;wMÞ, where ∑iA Iwi ¼ 1
and 0rwir1; iA I, defines the selected supply portfolio, e.g., [18].

Let E1 be the minimized expected cost per product and E2, the
maximized expected customer service level

E1 ¼ ∑
iA I

eiuiþ ∑
sAS

Ps ∑
iA Is

Aoiwi

  

þ∑
jA J

∑
tAT :t4dj

gjbjðt�djÞvsjtþ∑
jA J

hjbj 1� ∑
tAT

vsjt

� �!!
=B ð4Þ

E2 ¼ ∑
jA J

∑
tAT:trdj

∑
sA S

Psvsjt=n: ð5Þ

In order to avoid dimensional inconsistency among various
objectives, the values of the optimized objective functions are
scaled into the interval [0,1]. Denote by f 1 ¼ ðE1�E1Þ=ðE1�E1Þ, the
normalized expected cost per product (E1; E1 are the mini-
mum and the maximum values of E1, respectively), and by
f 2 ¼ ðE2�E2Þ=ðE2�E2Þ, the normalized expected customer service
level (E2; E2 are the minimum and the maximum values of E2,
respectively).

The normalized objective functions f1 and f2 are defined below:

f 1 ¼ ∑
iA I

eiuiþ ∑
sA S

Ps ∑
iA Is

Aoiwiþ∑
jA J

∑
tAT :t4dj

gjbjðt�djÞvsjt
  

þ∑
jA J

hjbj 1� ∑
tAT

vsjt

� �!!
=B�E1Þ=ðE1�E1Þ ð6Þ

T. Sawik / Omega 53 (2015) 58–6660

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

sina
Highlight

sina
Highlight

sina
Highlight

sina
Highlight



f 2 ¼
E2�∑jA J∑tAT :trdj∑sASPsvsjt=n

ðE2�E2Þ
: ð7Þ

The mixed integer program ECS for the equitably efficient optimi-
zation of supplier selection and customer order scheduling to fairly
minimize expected cost per products and maximize expected fraction
of customer orders completed by their due dates is formulated below.
The model is based on the stochastic MIP formulation proposed in
[27]. The objective function (8) subject to constraints (9) represent the
so-called ordered weighted averaging aggregation of the two conflict-
ing criteria with equal weights assigned to each criterion (see, OWA
aggregation, [25]). Applying OWA aggregation to the bi-criteria
problem yields an equitably efficient solution to the problem, e.g.,
[3]. In the model presented below λl are unrestricted variables, while
nonnegative variables δkl represent, for outcome values fk, their upside
deviations from the value of λl, e.g., Ogryczak and Tamir [29].

Model ECS: Equitably efficient supplier selection and customer
order scheduling to minimize expected Cost and maximize
expected Service level

Minimize

∑
2

l ¼ 1
lλlþ ∑

2

k ¼ 1
δkl

 !
ð8Þ

subject to (6), (7) and

λlþδklZ f k; k; l¼ 1;2 ð9Þ
Demand allocation constraints:

� the total demand for parts must be fully allocated among the
selected suppliers,

� demand for parts cannot be assigned to non-selected suppliers,

∑
iA I

wi ¼ 1 ð10Þ

wirui; iA I ð11Þ
Order-to-period assignment constraints:

� for each disruption scenario s, each customer order j is either
scheduled during the planning horizon ð∑tATvsjt ¼ 1Þ, or
unscheduled and rejected ð∑tATvsjt ¼ 0Þ,

� for each disruption scenario s and each planning period t, the
cumulative demand for parts of all customer orders scheduled
in periods 1 through t cannot exceed the cumulative deliveries
of parts in periods 1 through t�1, from the non-disrupted
suppliers iA Is,� for each disruption scenario s, the total requirement for parts of
scheduled customer orders is not greater than the total
supplies from the non-disrupted suppliers iA Is,

∑
tAT

vsjtr1; jA J; sAS ð12Þ

∑
jA J

∑
t0 AT:t0 r t

ajbjvsjt0 rA ∑
iA Is :τi r t�1

wi; tAT ; sAS ð13Þ

∑
jA J

∑
tAT

ajbjvsjtrA ∑
iA Is

wi; sAS ð14Þ

Producer capacity constraints:
� for any period t and each disruption scenario s, the total

demand on capacity of all customer orders scheduled in period
tmust not exceed the producer capacity available in this period,

∑
jA J

bjcjvsjtrCt ; tAT ; sAS ð15Þ

Non-negativity and integrality conditions:

δklZ0; k; l¼ 1;2 ð16Þ

uiAf0;1g; iA I ð17Þ

vsjtAf0;1g; jA J; tAT ; sAS ð18Þ

wiA ½0;1�; iA I: ð19Þ

In the above model, each supplier is assumed to have sufficient
capacity to meet total demand for parts. Such an assumption allows
the decision maker to select a single sourcing solution, if such a supply
portfolio is an equitably efficient portfolio. However, the assumption
can be easily relaxed to account for multiple capacitated suppliers,
cf. Section 3.2.

3.1. Minimum and maximum values of the objective functions

In this subsection the minimum and maximum values for all
objective functions are calculated to determine the normalized
values of the objective functions, f1, (6), f2, (7), that is, the values of
the optimized objective functions scaled into the interval [0,1].
Note that the cost and the service level objectives are in conflict.
Therefore, the minimum and maximum values of expected cost
E1; E1, and expected customer service level, E2; E2, are obtained
by solving the following mixed integer programs:

Model EC: Supplier selection and customer order scheduling to
minimize Expected Cost per product

Minimize E1, (4), subject to (10)–(15), (17)–(19).
Model ES: Supplier selection and customer order scheduling to

maximize Expected Service level
Maximize E2, (5) subject to (10)–(15), (17)–(19).
In problem EC, E1 is the minimized objective function, while E2

is not considered. In problem ES, E2 is the maximized objective
function, while E1 is not considered. Thus, by solving problem EC,
the minimum value E1 of E1 and the minimum value E2 of E2 are
determined. Similarly, by solving problem ES, the maximum value
E2 of E2 and the maximum value E1 of E1 are determined.

So far, in the proposed models the customer service level is
measured by the number of customer orders fulfilled by their due
dates, with no account for the size of each customer order. For
example, a high customer service level can be achieved by ful-
filling a large number of small-size orders, while leaving the
unfulfilled demand relatively high. To avoid such a solution, in
particular when the customer orders of different size are simulta-
neously considered, the service level can be measured by the
fraction of total customer demand fulfilled by the requested
due dates.

If the customer service level is defined as the fraction of
customer demand fulfilled by customer requested due dates, then
E2, (5) and f2, (7) should be replaced with the following formulae,
(20) and (21), respectively.

E2 ¼ ∑
jA J

∑
tAT:trdj

∑
sA S

Psbjvsjt=B ð20Þ

f 2 ¼
E2�∑jA J∑tAT:trdj∑sA SPsbjvsjt=B

ðE2�E2Þ
; ð21Þ

where E2; E2 are the minimum and the maximum values of
E2, (20), respectively. The values of E2; E2 can be determined using
the models EC and ES.

In the computational examples presented in the next section,
the two metrics of the customer service level will be considered
and compared against each other.

3.2. Model limitations and possible enhancements

The proposed model has been developed to support decision-
making in a make-to-order environment under disruption risks.
The model, however, has been formulated under various simplified
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assumptions that may limit its practical usefulness. The basic assump-
tions are listed below.

1. A single critical part type is required to fulfill all customer
orders for products.

2. The orders for parts are placed at the start of the planning
horizon, when all customer orders for products are known.

3. Each supplier have sufficient capacity to meet the total
demand for parts.

4. The order preparation time at each supplier is constant,
independent of order size, and all parts ordered from a
supplier are delivered during a fixed transportation time.

5. Transportation costs are not explicitly considered and the unit
purchasing price from each supplier is constant, independent
of total volume or value of order for parts, i.e., no quantity or
business volume discounts are considered.

6. Transportation times to customers are not considered.
7. The local and regional disruptions are independent random

events governed by Bernoulli distributions.
8. The customer orders are single-period orders such that each

order must be completed in one planning period.
9. The penalty costs for delayed or unfulfilled customer demand

are linear.
10. The inventory of parts and products are not considered.
11. The two conflicting objectives: reduction of expected cost and

increase of expected customer service level are equally impor-
tant for the decision maker.

Some of the above assumptions can be easily relaxed, while the
other needs a more advanced model to be developed. Possible
relaxations of the corresponding assumptions and the model
enhancements are listed below.

1. The model can be easily enhanced for multiple part types
required to fulfill all customer orders with different subsets of
part types needed for different product types and different
subsets of suppliers capable of providing different subsets of
part types, e.g.,[26].

2. A rolling planning horizon approach can be used to account for
a dynamic arrival and scheduling of customer orders as well as
the corresponding supply portfolio. In practice, however, the
supply portfolio needs to be decided at the start of the
planning horizon, based on a forecast of the customer demand.

3. The model can be easily enhanced for multiple capacitated
suppliers by the addition of suppliers capacity constraints.

4. The more advanced model can be developed to consider order-
dependent processing and transportation times to better
coordinate manufacturing and transportation of parts and
production of finished products.

5. The model can be easily enhanced to account for quantity or
business volume discounts (e.g., [30]) and the unit purchasing
price from each supplier can include unit transportation cost.

6. Fixed transportation times to customers can be subtracted
from customer requested delivery dates to determine the due
dates for completing customer orders by the producer.

7. The dependencies among multiple unreliable suppliers and/or
multiple unreliable geographic regions can be modelled by the
correlated binomial distributions. Disruption risks can also be
modelled as a Poisson jump process at a random magnitude,
where the uncertain magnitude may reflect the severity of the
disruption, ranging from total loss of supplier output to an
uncertain portion of the output, e.g., Taylor and Karlin [31].

8. The model can be easily enhanced to account for large, multi-
period customer orders that cannot be completed in one
period and must be split into single-period portions to be
processed in consecutive planning periods, e.g., Sawik [32].

9. The introduction of non-linear penalty costs may lead to a
non-linear MIP model. The model, however, can be linearized
in some cases, e.g., by using a piecewise linear representation
of the non-linear penalty cost.

10. The model can be enhanced to account for the output
inventory of parts at suppliers, the input inventory of parts
at the producer and the output inventory of products waiting
for shipment to customers. The inventory balance constraints
can be added to the model and the producer inventory holding
costs, to the cost-based objective function.

11. The number of conflicting and equally important objectives
can be increased, for example by the addition of responsive-
ness (e.g., [3]) as another objective function.

4. Computational examples

In this section the proposed mixed integer programming approach
for the equitably efficient supplier selection, order quantity allocation
and customer orders scheduling in a supply chain under disruption
risks is compared with the weighted-sum approach and illustrated
with computational examples. The following parameters have been
used for the example problems:

� H¼10, M¼9, N¼25 and q¼ 2M ¼ 512;
� R¼ f1;2;3g, and I1 ¼ f1;2;3g, I2 ¼ f4;5;6g, I3 ¼ f7;8;9g;
� τi, the order preparation and shipping times from suppliers

were 2, 3 and 4 time periods, respectively for suppliers iA I1,
iA I2 and iA I3;

� ajAf1;2;3g, bjAf500;1000;…;5000g, cjAf1;2;3g, djAf1þ
miniA IðτiÞ;…;Hg;

� Ct, the capacity of producer in each period t, was integer drawn
from 1000⌈ð2∑jA Jbjcj=ðH�maxiA IτiÞÞU½0:75;1:25�=1000⌉ dis-
tribution, i.e., in each period the producer capacity was from
75% to 125% of the double capacity required to complete all
customer orders during the planning horizon, after the latest
delivery of parts;

� eiAf5000;6000;…;10;000g; iA I1, eiAf10;000; 11;000;…;

15;000g; iA I2 and eiAf15;000; 11;000;…;30;000g; iA I3;
� oi, the unit price of parts purchased from supplier i, was

uniformly distributed over [11,16], [6,11] and [1,6], respectively
for suppliers iA I1, iA I2 and iA I3;

� gj ¼ ⌈ajmaxiA IðoiÞ=350⌉; jA J, i.e., the unit penalty cost per
period for each delayed customer order j was approximately
0.28% of the maximum unit price of required parts;

� hj ¼ 2⌈ajmaxiA IðoiÞ⌉; jA J, i.e., the unit penalty cost for each
unfulfilled customer order j was approximately twice as large
as the maximum unit price of required parts;

� pi, the local disruption probability was uniformly distributed
over [0.005,0.01], [0.01,0.05] and [0.05;0.10], respectively for
suppliers iA I1, iA I2 and iA I3;

� p1 ¼ 0:001, p2 ¼ 0:005 and p3 ¼ 0:01.

The detailed data set was based on the example presented in
[26], e.g.,: unit requirements for parts, a¼ ð2;1;3;3;1;3;2; 1;2;2;2;
2;3;2;1;3;2;1;3;3;2;1;1;2;1Þ; size of customer orders, b¼ ð1;
2;9;7;8;5;1;7;5;4;7;4;10;6;8;1;4;2;4;8;6;3;8;7;3Þ � 500, (the
resulting total demand for parts and products is A¼ 132;500 and
B¼66,000, respectively); unit capacity consumption, c¼ ð2;1;1;2;
3;3;1;3;2;1;2;1;3;1;1;3;2;3;1;1;3;2;2;1;2Þ; producer available
capacity, Ct ¼ C ¼ 38;000; 8 t ¼ 1;…;10; unit prices, o¼(13, 12, 12, 8,
6, 6, 2, 5, 4); local disruption probabilities, p¼(0.00513571, 0.00666354,
0.00902974, 0.0356206, 0.040175, 0.0294692, 0.0519967, 0.0827215,
0.0739062); and the corresponding disruption probabilities (1), π¼
(0.00613057, 0.00765688, 0.0100207, 0.0404425, 0.0449741, 0.0343219,
0.0614767, 0.0918943, 0.0831672).

T. Sawik / Omega 53 (2015) 58–6662

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order



Note that the constant producer capacity, C¼38,000, allows for
completing all customer orders in at most ⌈∑jA Jbjcj=C⌉¼
⌈3:26⌉¼ 4 planning periods, that is, in less than ðH�maxi
A IτiÞ ¼ 6 periods remaining in the planning horizon after the
latest delivery of parts.

In the computational experiments all potential disruption
scenarios, q¼ 2M ¼ 512, and all possible combinations of local
and regional disaster events were considered. Each scenario sAS
with the subset Is of non-disrupted suppliers is represented by an
M-dimensional 0 -1 vector with 1, if iA Is, i.e., if supplier i is not
disrupted, and 0; otherwise. The corresponding disruption prob-
ability, Ps, for each scenario sAS was calculated using formulae
(2) and (3).

The unit price per part oi and the disruption probability πi, (1),
of each supplier iA I are shown in Fig. 1. The figure indicates
that the most reliable (with the lowest disruption probability,
π1 ¼ 0:00613057) is supplier 1, the least reliable (with the highest
disruption probability, π8 ¼ 0:0918943) is supplier 8, the most
expensive (with the highest price per part, o1 ¼ 13) is supplier 1,
and the cheapest (with the lowest price per part, o7 ¼ 2) is supplier 7.
Note that the geographic regions are numbered in such a way that
the unit prices are nonincreasing with r, while the fixed ordering
costs and the disruption probabilities are nondecreasing with r, i.e.,

oi1 Zoi2 Zoi3 ; ei1 rei2 rei3 and

πi1 rπi2 rπi3 ; 8 i1A I1; i2A I2; i3A I3:

The solution results are presented in Table 1. In addition to the
optimal absolute and normalized solution values for the primary
objective functions and the allocation of demand among the
selected suppliers, Table 1 presents the expected values of the
associated objective function, i.e., the minimum expected custo-
mer service level, E2, for model EC and the maximum expected
cost per product, E1, for model ES. Table 1 indicates that for the
cost-based objective (model EC) the cheapest supplier i¼7 is
selected only, while for the customer service level (model ES),
the total demand for parts is allocated among the three most
reliable and most expensive suppliers i¼ 1;2;3 for objective (5),
and among the two suppliers i¼1,2 for objective (20). For the
equitable solution (model ECS), the supply portfolio contains one
reliable and expensive supplier i¼2 and two low-cost and unreli-
able suppliers i¼6,7 for both (7) and (21), service level objectives.

As an illustrative example, Fig. 2 presents the demand for
products,∑jA J:dj ¼ tbj; tAT , and the expected production schedules,
∑sASPs∑jA Jbjvsjt ; tAT for the optimal cost, optimal customer
service level and for the equitably efficient solution. Fig. 2 com-
pares the expected production schedules for the two different
metrics of customer service level: (a) the percentage of customer

orders fulfilled on time, (5), and (b) the percentage of customer
demand fulfilled on time, (20). While for the two different service
level metrics, the corresponding supply portfolios are very similar
(cf. Table 1), and the expected production schedules with respect
to the two service level objectives are also very similar, the
corresponding schedules for the equitably efficient solutions are
different.

In general, the service level-based solution, when no cost
components are included in the objective function, better meets
the customer demand, with the smallest fraction of unfulfilled
demand. The total customer demand is met with only a small
fraction of the expected unfulfilled demand: 0.0615 for the cost-
based solution, 0.0055 for the service level-based solution (a),
0.0051 for the service level-based solution (b), 0.0468 for the
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Fig. 1. Basic characteristics of suppliers.

Table 1
Solution results.

Model EC: Var.¼100468, Bin.¼100459, Cons.¼21341, Nonz.¼765902a

Expected cost ðE1Þ 7.66
Suppliers selected (% of total demand) 7(100%)
Expected service level ðE2Þ 67.60%b,66.32%c

Model ES: Var.¼100468, Bin.¼100459, Cons.¼21341, Nonz.¼765902a

Expected service level ðE2Þ 99.62%b

Suppliers selected (% of total demand) 1(48%),2(31%),3(21%)
Expected cost ðE1Þ 25.64

Model ECS: Var.¼100476, Bin.¼100459, Cons.¼21347, Nonz.¼921880a

Expected cost 9.31
Expected service level 96.06%b

Normalized expected cost 0.098
Normalized expected service level 0.111
Suppliers selected (% of total demand) 2(6%),6(13%),7(81%)

Model ES with (5) replaced by (20)
Expected service level ðE2Þ 99.49%c

Suppliers selected (% of total demand) 1(55%), 2(45%)
Expected cost ðE1Þ 25.61

Model ECS with (7) replaced by (21)
Expected cost 9.25
Expected service level 95.29%c

Normalized expected cost 0.088
Normalized expected service level 0.127
Suppliers selected (% of total demand) 2(6%), 6(10%), 7(84%)

a Var. ¼ number of variables, Bin. ¼ number of binary variables. Cons. ¼
number of constraints, Nonz. ¼ number of nonzero coefficients.

b ð∑sA SPs∑jA J∑tAT :trdj v
s
jt=nÞ100%.

c ð∑sA SPs∑jA J∑tAT :trdj bjv
s
jt=BÞ100%.
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Fig. 2. Expected production schedules, customer service level in: (a) % of customer
orders fulfilled on time; and (b) % of customer demand fulfilled on time.
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equitably efficient solution (a), and 0.0470 for the equitably
efficient solution (b). In addition, for the service level-based
objective functions, the expected production schedule approxi-
mately follows the customer demand pattern, while for the
minimum cost objective function the most unbalanced production
schedule is achieved. Since all parts are delivered by the cheapest
supplier 7 in period 4, the production begins only in period 5.

In order to compare the solution results for the two different
service level-based objective functions (5) and (20), the computa-
tional experiments were repeated for another example with more
diversified size of customer orders, bjAf500;1000;…;12;000g, i.e.,
from 500 to 12,000 products, for the same total demand for parts
and products, A¼ 132;500 and B¼66,000. The solution results are
presented in Table 2, and Fig. 3 compares the expected production
schedules for the two different metrics of customer service level.
In general, the results presented in Table 2 are similar to those in
Table 1, in particular the supply portfolios are very similar.
However, Fig. 3 shows that for the more diversified customer
orders, the less smoothed expected production schedules are
obtained for the equitably efficient solutions. On the other hand,
Table 2 shows that the equitably efficient solutions with a perfect
equity were found (i.e., with identical values of normalized
expected cost and normalized expected customer service level),
which indicates that the obtained supply portfolios and schedules
of customer orders are also the lexicographic minimax optimal
solutions as well as the Pareto-optimal solutions (see, [3,4]).

The solution results demonstrate that for the minimum cost
objective the cheapest supplier is usually selected, for the max-
imum service level objective a subset of most reliable and most
expensive suppliers is usually chosen, whereas the equitably
efficient supply portfolio usually combines the two types of
suppliers.

4.1. Weighted-sum approach

The equitably efficient solutions obtained using model ECS have
been compared with the non-dominated solutions obtained by

minimizing the weighted-sum aggregation of the two normalized
objective functions, f1, (6) and f2, (21), i.e., the weighted-sum of
expected cost per product and expected fraction of customer
demand fulfilled by requested due dates. The weighted-sum model
WCS is shown below and the solution results for the example
with similar and diversified customer orders are presented in
Tables 3 and 4, respectively.

Model WCS: Supplier selection and customer order scheduling
to minimize Weighted-sum of normalized expected Cost and
normalized expected Service level

Minimize

λf 1þð1�λÞf 2; ð22Þ
where 0rλr1, subject to (6), (10)–(15), (17)–(19), (21).

Tables 3 and 4 indicate that for λ¼1 (minimization of cost) the
cheapest supplier i¼7 is selected only, while for λ¼0 (maximiza-
tion of customer service level) the total demand for parts is
allocated among the two most reliable and most expensive
suppliers i¼1,2. As λ increases from 0 to 1, i.e., the decision maker
preference shifts from customer service level to cost, more
demand is moved from expensive and reliable suppliers to low-
cost, unreliable suppliers. For the example with similar customer
orders, the subset of non-dominated solutions contains (for λ¼0.3,
0.4) the optimal solution obtained for model ECS with constraint
(21) (cf., Tables 1 and 3). In contrast to the example with
diversified customer orders (cf., Tables 2 and 4). For diversified
orders, Fig. 4 shows the non-dominated supply portfolios (the
allocation of total demand for parts among selected suppliers) for
11 levels of trade-off parameter λ. The subset of selected suppliers
consists of four suppliers i¼ 1;2;6;7 of which suppliers i¼1,2 are
most reliable and suppliers i¼6,7 are the cheapest suppliers in
region r¼2,3, respectively.

For the example with diversified customer orders, the trade-off
between the expected cost and the expected customer service
level is clearly shown in Fig. 5, where the efficient frontier is
presented. The results emphasize the effect of varying service
level/cost preference of the decision maker; the higher the trade-
off parameter λ, the more cost-oriented the decision making.

The computational experiments were performed using the
AMPL programming language and the CPLEX 12.5 solver on a
MacBookPro laptop with Intel Core i7 processor running at
2.8 GHz and with 16 GB RAM. The solver was capable of finding
proven optimal solution for all examples with CPU time ranging
from several seconds to several hours.

Table 2
Solution results: diversified customer orders.

Model EC
Expected cost ðE1Þ 7.44
Suppliers selected (% of total demand) 7(100%)
Expected service level ðE2Þ 71.32%a, 78.83%b

Model ES
Expected service level ðE2Þ 99.77%a

Suppliers selected (% of total demand) 1(42%), 2(41%), 3(17%)
Expected cost ðE1Þ 25.15

Model ECS
Expected cost 9.38
Expected service level 97.48%a

Normalized expected cost 0.110
Normalized expected service level 0.110
Suppliers selected (% of total demand) 2(3%), 6(22%), 7(75%)

Model ES with (5) replaced by (20)
Expected service level ðE2Þ 99.47%b

Suppliers selected (% of total demand) 1(65%), 2(35%)
Expected cost ðE1Þ 25.43

Model ECS with (7) replaced by (21)
Expected cost 10.44
Expected service level 95.99%b

Normalized expected cost 0.168
Normalized expected service level 0.168
Suppliers selected (% of total demand) 2(3%), 5(5%), 6(30%), 7(62%)

a ð∑sA SPs∑jA J∑tAT:trdj v
s
jt=nÞ100%.

b ð∑sASPs∑jA J∑tAT :trdj bjv
s
jt=BÞ100%.
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Fig. 3. Expected production schedules for diversified customer orders, customer
service level in: (a) % of customer orders fulfilled on time; and (b) % of customer
demand fulfilled on time.
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5. Conclusions

This paper considers the equitably efficient decision-making
problem associated with supplies of parts and deliveries of
finished products in the presence of supply chain disruption risks.
The supplies are subject to independent random local disruptions
associated with a particular supplier and to random regional
disruptions that may result in disruption of all suppliers in the
same geographic region simultaneously. The obtained combina-
torial stochastic optimization problem of equitably efficient mini-
mization of expected cost and maximization of expected customer
service level has been formulated as a stochastic mixed integer
program with the ordered weighted averaging aggregation of
the two objective functions. The decision maker objective is to

fairly optimize an average performance of the supply chain with
respect to the two equally important and conflicting optimality
criteria. The equitably efficient solution (the supply portfolio and
the schedule of customer orders) aims at achieving the normalized
expected cost and customer service level values as much close to
each other as possible. While for the minimum cost objective the
cheapest supplier is usually selected, and for the maximum service
level objective a subset of most reliable and most expensive
suppliers is usually chosen, the equitably efficient supply portfolio
usually combines the two types of suppliers: the cheapest suppli-
ers from among the most reliable and the most reliable from
among the cheapest. Comparison of expected production sche-
dules for the minimum cost and the maximum service level
objective functions indicates that for the latter objective the
expected production follows the customer demand with the
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Table 3
Non-dominated solutions.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Var.¼100470, Bin.¼100459, Cons.¼21343, Nonz.¼921868a

Expected cost 25.61 19.40 11.93 9.25 9.25 8.88 8.88 8.88 8.88 8.01 7.66
Expected service levelb 99.48 98.57 96.86 95.29 95.29 94.73 94.73 94.73 94.73 82.69 66.32
Normalized expected cost 1 0.654 0.238 0.088 0.088 0.068 0.068 0.068 0.068 0.020 0
Normalized expected service level 0 0.028 0.079 0.127 0.127 0.143 0.143 0.143 0.143 0.506 1
Suppliers selected 1(55) 1(6)
(% of total demand) 2(45) 2(44) 2(10) 2(6) 2(6) 2(6) 2(6) 2(6) 2(6)

6(50) 6(40) 6(10) 6(10) 6(5) 6(5) 6(5) 6(5) 6(5)
7(50) 7(84) 7(84) 7(89) 7(89) 7(89) 7(89) 7(95) 7(100)

a Var. ¼ number of variables, Bin. ¼ number of binary variables, Cons. ¼ number of constraints, Nonz. ¼ number of nonzero coefficients.
b ð∑sASPs∑jA J∑tAT :trdj bjv

s
jt=BÞ100%.

Table 4
Non-dominated solutions: diversified customer orders.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Var.¼100470, Bin.¼100459, Cons.¼21343, Nonz.¼921868a

Expected cost 25.43 24.81 12.95 11.00 8.61 8.61 8.31 8.31 8.31 8.31 7.44
Expected service levelb 99.47 99.42 97.07 96.30 94.90 94.90 94.45 94.45 94.45 94.45 78.83
Normalized expected cost 1 0.9655 0.3062 0.1977 0.0650 0.0650 0.0486 0.0486 0.0486 0.0486 0
Normalized expected service level 0 0.0025 0.1169 0.1532 0.2226 0.2224 0.2439 0.2440 0.2442 0.2446 1
Suppliers selected 1(65) 1(33)
(% of total demand) 2(35) 2(67) 2(13) 2(8) 2(4) 2(4) 2(3) 2(3) 2(3) 2(3)

6(53) 6(35) 6(9) 6(9) 6(5) 6(5) 6(5) 6(5)
7(34) 7(57) 7(87) 7(87) 7(92) 7(92) 7(92) 7(92) 7(100)

a Var. ¼ number of variables, Bin. ¼ number of binary variables, Cons. ¼ number of constraints, Nonz. ¼ number of nonzero coefficients.
b ð∑sASPs∑jA J∑tAT :trdj bjv

s
jt=BÞ100%.
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minimum expected fraction of unfulfilled demand. While the
expected fraction of unfulfilled customer demand is largest
for the minimum cost objective function, the equitably efficient
solution leads to medium values of the expected unfulfilled
demand.

The computational experiments have indicated that the equi-
tably efficient solutions with a perfect equity can sometimes be
found, which indicates that the obtained solutions can also be the
lexicographic minimax optimal solutions as well as the Pareto-
optimal solutions (see, [3,4]). Comparison with the weighted-sum
approach which generates a subset of non-dominated solutions
indicates that the lexicographic minimax optimal solution may not
be found using that approach.

In the proposed model, each supplier is assumed to have
sufficient capacity to meet total demand for parts, which allows
the decision maker to select a single sourcing type of a supply
portfolio, if it is an equitably efficient solution. In the future
research, however, that assumption can be easily relaxed to
account for multiple capacitated suppliers. Furthermore, the other
assumptions can also be relaxed to develop a more advanced
model (for possible model relaxations and enhancements, see
Section 3.2). In particular, the future research should focus on a
robust decision-making in a supply chain under disruption risks to
obtain an equitably efficient performance of a supply chain in
average-case as well as in the worst-case, which reflects the
decision makers requirements to maintain an equally good per-
formance of a supply chain under different conditions. The robust
decision making would aim at equitably efficient solution that
fairly optimizes the expected value and the expected worst-case
value, i.e., Conditional Value-at-Risk of the selected objective
function.
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