
387

15
OpenFlOw/SDn anD

Optical netwOrkS

Contents

Service Provider Optical Networks 388
Optical Transport Network 389
Optical Network Management and Intelligent Control Plane 391
How Can SDN/OpenFlow Improve Optical Network Control? 393

Goals of Applying SDN/OpenFlow to Optical Networks 393
Potential Applications for SDN/OpenFlow in Optical Networks 394

Packet-Optical Interconnection (POI) 394
Data Center Interconnection and Network Virtualization 395
Private Optical Networks 396

Extending OpenFlow/SDN to Optical Networks 397
What Are the Challenges to OpenFlow/SDN for Optical
Networks? 397

OpenFlow Extensions for Circuits 397
Optical Impairments 398
Lack of Visibility into the Data Stream 398
Technology Specific Discovery 398
Service Provider Policy and Interoperability 399
Reliability and Scalability 399

Research on OpenFlow/SDN for Optical Networks 400
Ciena/Stanford Prototyping 400
OpenFlow in Europe—Linking Infrastructure and
Applications (OFELIA) Project 402

How Will OpenFlow/SDN Be Deployed in Carrier Optical
Networks? 404

OpenFlow/SDN Overlay with Transport Tunnels for POI 404
OpenFlow Overlay Over the Control Plane
(with Abstraction) 405
Direct OpenFlow Control of Packet/Optical 406

388

Service Provider Optical Networks

International Telecommunications Union – Telecommunication Stan-
dardization Sector (ITU-T) Recommendation G.805 [1], a core
standard for service provider network architecture, defines transport
network as “the functional resources of the network, which conveys user
information between locations.” Optical transport networks (OTNs)
provide the underlying connectivity in service provider networks,
allowing information to be conveyed between central office locations
across metro areas, long distances, and undersea networks.

Optical fiber links typically support the wavelength of multiple
optical channels (OCh) multiplexed on a dense wavelength division
multiplexing (DWDM) transmission system. DWDM systems carry
80 to 100 wavelengths on a fiber pair, where each wavelength carries
a single high-rate signal, such as 100-Gb/s Ethernet, or may carry a
multiplex of lower rate signals. For example, a 100-Gb/s channel may
be composed of 10 component signals, each of which is a 10-Gb/s
Ethernet signal. Services provided by optical networks include the
transport of packetized IP and Ethernet traffic and private line ser-
vices such as an Ethernet private line or private wavelength services.

Optical transport can be used as point-to-point links connecting
large packet switches, mesh or ring topology networks incorporating
photonic switches or add/drop multiplexers (optical-optical-optical
or O-O-O), or mesh networks incorporating electronic time division
multiplexing (TDM) switching systems (optical-electronic-optical or
O-E-O), depending on the services being offered.

Optical wavelength services offered by service providers can vary
in bandwidth from the capacity of a wavelength to a small fraction
of that amount. Currently, several carriers offer 40-G services as the
high end of the spectrum. The low end is typically 50 to 155 Mbps

Standards and Interoperability 407
Open Networking Foundation 407
IETF Standards 408
PCE and Stateful PCE 409
Optical Internetworking Forum (OIF) 410

Conclusions for the Future 410
References 411

389openFLow/Sdn and opticaL networkS

using synchronous optical network (SONET) or synchronous digital
hierarchy (SDH) standards. Some of the fastest growing optical ser-
vices today are 1 G and 10 G because of the growth of the Ethernet
[2]. Optical network services are typically not highly dynamic; only
in a few cases have carriers deployed optical network services that
are under some dynamic customer control [3]. The promise of new
services and applications that could make use of dynamic optical net-
working is a chief driver for carrier interest in OpenFlow/software-
defined network (SDN).

Optical Transport Network

The current ITU-T standards define an optical transport hierarchy
(OTH) [4] for optical network multiplexing and switching. Networks
built according to these standards are called OTNs. OTN includes
two fundamentally different types of optical switching technologies:
photonic switching of wavelengths, which are called OCh, without
termination of the wavelength; and electrical switching of the digi-
tal components of the terminated wavelength, which are called OCh
data units (ODUs). OTN is also used as a framing format to pro-
vide interoperability, performance monitoring, and management of
a signal even without switching. OTN replaces SONET or SDH
standards that are still the majority of optical switches and services
deployed today, allowing channel rates of 40 Gb/s and higher.

OTN is organized into a series of layers incorporating both pho-
tonic and electronic signals.

In Figure 15.1, the layers from OCh downward are photonic,
whereas the layers from OTU upward are electronic/digital.
Each layer incorporates its own overhead (OH) for performance
monitoring, bit-oriented signaling, etc. Forward error correc-
tion (FEC) is added before the signal enters the optical domain
to improve performance. The architecture for OTN is defined in
ITU-T Recommendation G.872 [5], and the format for OTN, in
Recommendation G.709-v1 [6]. Several digital container rates are
defined in OTN: in its initial version, ODU1 (2.5 Gbps), ODU2
(10 Gbps), and ODU3 (40 Gbps), subsequently extended by ITU-T
Recommendation G.709-v3 to introduce new containers for GbE
(ODU0) and 100 GbE (ODU4).

390

OTN electrical switches support up to 4 Tb/s of nonblocking switch-
ing capacity in a full-height equipment chassis. Multichassis configu-
rations allow switches to scale to 100 Tb/s and beyond if necessary.
Digital monitoring points support rapid fault identification and local-
ization. Electrical switching allows for the easy addition and extrac-
tion of signals from the transmission system, with a variety of service
protection/restoration capabilities using fast electrical reconfiguration.

OTN photonic switches, usually referred to as reconfigurable opti-
cal add/drop multiplexers (ROADMs), support the express routing
of an OCh through a network node to avoid the additional cost and
energy consumption of electrical switching, but with more constraints.

The combination of electrical and photonic switching components
is used in today’s optical network to support global scalability bal-
anced against cost; electrical switching allows signal regeneration
to increase distance while removing optical impairments, but with
additional circuitry and energy usage. Embedded management OH
information in the digital signal supports performance monitoring
and forms the basis for end-to-end service assurance.

Recent trends in optical network technology include the following:

• The use of tunable transmitters and receivers as components
that allow more dynamic control over the wavelength to be
used to carry the signal over a particular port

• The development of coherent receivers and variable FEC algo-
rithms to increase signal data rates over the basic 12.5-GHz
ITU grid to up to 100 Gbps, with improved signal detection
ability over fibers of different characteristics

Client

OPUkOH

ODUk

OTUk

OH

OH

OCh

FE

OCh payload unit

OCh data unit

OCh transport unit

Optical channel

W
ra

pp
er

DWDM

Figure 15.1 Layering of electronic and photonic signals (FE, forward error correction).

391openFLow/Sdn and opticaL networkS

• The introduction of colorless, directionless, and contention-
less ROADM designs that (for a price) reduce port-to-port
connectivity and wavelength constraints previously encoun-
tered with ROADMs [7]

• The introduction of a flexible grid structure for an optical
bandwidth that potentially allows variable spectrum alloca-
tion for a higher signal bandwidth or longer distances traveled

Optical Network Management and Intelligent Control Plane

For many years, optical networks were managed using central man-
agement systems, which required manual intervention through
graphic user interfaces (GUIs) to carry out changes in configuration.
The management system provided the database of equipment and
components, and each network element (NE) provided a manage-
ment interface that was used by the management system to control
cross-connection.

Beginning approximately 10 years ago, distributed control plane
protocols were introduced in the control architecture of optical net-
works as a way to improve the accuracy of network databases, the speed
of provisioning, and the efficiency of recovery. Distributed automatic
control of optical networks has resulted in significant reductions in
network operations cost; an increase in network availability to 1 defect
per million resulting from multiple stages of recovery; and enabled
new service offerings, notable of which are customer-controlled opti-
cal network services [9].

The distributed control plane is now incorporated into many car-
rier optical networks because of its ability to automate management
functions and support self-healing in response to failures. The control
plane has been particularly successful in core networks, where there
is a higher degree of connectivity, and in undersea networks, where
repairs to failed links is difficult and expensive and the ability to auto-
matically recover from multiple failures is highly valuable. The con-
trol plane has mainly been used for the electrical layers of transport
networks; the use for most photonic networks is impractical because
of the added complexity of path computation for all-optical or pho-
tonic links and the greater latency involved in reconfiguring photonic
 components [10].

392

In distributed control, control plane messages are exchanged over
the signaling control network (SCN), which may consist of in-band
signaling links such as the data communication channel (DCC) and
general communication channel (GCC) in SONET/SDH and OTN,
respectively, and the optical supervisory channel at the OTN optical
layer, or use a dedicated out-of-band packet network connecting NEs.

Neighbor discovery is the communication of identity between
neighboring NEs. It is enabled by exchanging addresses over the con-
trol channel, allowing each device to build up an accurate inventory of
link identities and remote link endpoints, and detecting misconnec-
tions. Discovery requires the use of an in-band control link or, if an
out-of-band control link is used, an additional identifier carried in the
OH or the wavelength itself.

The control plane routing protocol is then used to disseminate local
link topology and link use to all network elements within the control
domain so that each NE builds a complete topology map. This makes
it possible for the management system to retrieve the full network
topology and status by contacting a single NE. Optical network rout-
ing differs from IP routing in that routing is needed only when a con-
nection is initially provisioned, not for every packet. This reduces the
criticality of the routing protocol because data will flow correctly on
existing connections even if the routing protocol is disrupted.

The topology database is used by the source node of a new connec-
tion to compute the optimized path for the connection. Distributed
path computation reduces the load on the management system and
allows the network to recover rapidly from failures by having recovery
paths computed by the affected source nodes.

Finally, new services can be provisioned using a signaling protocol
between each of the NEs in the connection path, reducing the require-
ments on the management system and drastically reducing the latency of
connection setup and connection restoration after failure. Control plane
signaling protocols set up the connection along a precomputed path end
to end, using an explicit route object inserted into the setup message
at the source node. As shown in Figure 15.2, the management system
plays a reduced role for offline device management, whereas the NEs
communicate in real time using signaling to set up the end-to-end path.

Sophisticated planning tools can retrieve the instantaneous topol-
ogy, status, and occupancy of network links and nodes from an active

393openFLow/Sdn and opticaL networkS

network element and perform an analysis of network use. If a more
efficient or better performing configuration of the network is com-
puted, the control plane will automatically adjust its routing of new
connections once the new configuration has been installed.

How Can SDN/OpenFlow Improve Optical Network Control?

Goals of Applying SDN/OpenFlow to Optical Networks

Although the optical control plane has been successfully deployed
in many carrier networks and has reduced the capex and opex of
these networks, there are major potential benefits to adopting SDN/
OpenFlow for optical network control, as follows:

• A programmatic, abstracted interface for application aware-
ness and greater influence over the network. In the current
optical network, the applications and the network are inde-
pendent, missing potential efficiencies from the coordina-
tion of demand and resources. In control plane models such
as generalized multiprotocol label switching (GMPLS), the
network is expected to react independently to requests from
client systems distributed at the network edge, making global
coordination of actions more difficult.

• An improved service development and deployment. Because ser-
vice processing is distributed across network nodes, deployment

Network
operator XEMS

Signaling/data communication network
(G.7712)

Path
computation

Physical elements in
transport networkSignaling Signaling

MP CP MP CP MP CP

MP CP MP CP
Cust A Cust A

Cust B Cust C Cust C Cust C

Cust B

UNI

UNI

NEa

NEc

NEd NNI NEf

NEb NEeFiber

Routing

Discovery

UNI

UNI

CP, control plane; Cust, customer; DP, data plane; EMS, element management system; MP, management plane;
NE, network element; NN, node interface; UNI, user-to-network interface.

Figure 15.2 Control plane.

394

of a new service in a distributed control environment may involve
upgrading the software at each node in the network. Not only
does this introduce deployment timing problems, but it also
requires software development coordination across platforms
and extensive testing to avoid potential interactions with embed-
ded software and services. The use of OpenFlow/SDN to sepa-
rate software and hardware would allow service software to be
developed on server platforms rather than embedded systems.

• Multiple levels of abstraction. Introduction of the OpenFlow/
SDN technology support allow optical network virtualiza-
tion, presenting a different view of the network depending
on application requirements. Different applications may need
different levels of information and control over connectivity
to specified destinations. The Quantum application program-
ming interface (API), for example, in the OpenStack soft-
ware suite allows an application to simply request a new layer
2 network connecting peer machine [11]; a similar abstraction
would allow the introduction of very high bandwidth point-
to-point services with greater customer controllability.

• Cost reduction. Potentially, greater separation of software
and hardware using SDN/OpenFlow may reduce the cost
of optical network equipment by reducing the processing
requirements and software development costs for the network
element and centralizing software on common platforms.
How great the cost reduction would be is unclear, however,
because the cost of optical equipment is primarily in the
hardware, the photonics, and the associated electronic com-
ponents, rather than in the software.

Potential Applications for SDN/OpenFlow in Optical Networks

Packet-Optical Interconnection (POI)

An initial application for SDN/OpenFlow is for the control of mul-
tilayer packet/optical networks. Packet-optical transport systems
(POTS) incorporate both packet switching and optical switching/
transmission in one device, simplifying the aggregation of packet
transport into optical pipes and allowing for the efficient grooming

395openFLow/Sdn and opticaL networkS

of traffic into the carrier’s optical network [12]. The use of SDN/
OpenFlow for control is relatively easy here because OpenFlow
already contains the control semantics for directing the mapping of
packet traffic into virtual ports (defined in the OpenFlow 1.2 specifi-
cation [13]), and these virtual ports can be mapped by a management
system or an optical control plane into point-to-point optical paths
connecting the POTS systems across the wide area network (WAN).
The use of OpenFlow allows the service provider to specify more flex-
ible mapping based on the different components of the packet header
and flexible encapsulation and decapsulation actions depending on
the desired service, whereas the optical paths provide high bandwidth
connectivity with guaranteed bandwidth and performance between
sites. This could allow the carrier to introduce new services based on
access control or selective class of service.

Data Center Interconnection and Network Virtualization

The OpenFlow/SDN technology is already seeing its widest deploy-
ment within the data center, where topology and traffic patterns can
be controlled and equipment tends to be homogeneous [14]. A logical
extension is to apply OpenFlow/SDN to the data center interconnec-
tion across the WAN. Inter-DC traffic comprises database distribu-
tion and synchronization between geographic sites, virtual machine
(VM) migration, and transfer. Much of this traffic will be generated
by the need for geographic distribution to meet backup requirements
and movement of workload from one cloud to another. Flexibility
in workload placement and movement among the pool of provider
DCs contributes to a reduction in the total DC resources through
the expansion of virtualized asset pools. This will create an important
potential source of economies for SPs (Figure 15.3).

The cloud backbone network interconnecting provider DCs poses
challenges that the OpenFlow-based SDN is ideally suited to address.

User self-service paradigms, application operational time varia-
tions, and a significantly transactional component to many of the
traffic types all create an intrinsically and significantly time-variable
character to the traffic among DC connection points on the backbone
network. Survivability and recovery from disasters or major outages

396

may add large volumes of unpredictable, transactional traffic on the
inter-DC backbone.

Under existing paradigms, both shared packet networks and dedi-
cated connection require adequate bandwidth capacities to support
peak traffic loads on all paths and through all aggregation and switch-
ing points. This implies a design-for-worst-case planning paradigm,
effectively requiring an overdesign to add slack capacity (i.e., peak vs.
average or lowest required capacity) to the network.

Under a centralized network control layer that maintains a global
view of network resources and controls their allocation in response
to evolving traffic demands—the SDN paradigm—the various trends
and challenges previously described may be addressed. The cloud
orchestrator and network control layer are global; both the demands
and the use of network resources may be globally optimized. For
example, the network control layer may see that concurrent major data
transfers can be accommodated by sending each over a different net-
work path, despite node or link saturation along default routes.

Private Optical Networks

A special case application of SDN/OpenFlow for data center inter-
connection is for smaller private optical networks that a data cen-
ter operator may deploy to connect their locations. If these networks
cover a relatively small geographic area, the simplicity of a centrally

Cloud orchestration

OpenFlow controller

OpenFlow-enabled
packet/optical core

Figure 15.3 Data center interconnection application.

397openFLow/Sdn and opticaL networkS

run SDN/OpenFlow control plane designed for a small private net-
work may be very attractive to the data center operator, where their
requirements for scalability, reliability, etc., are not as extensive as
would be for a service provider. This application could be the driver of
early, limited deployments of OpenFlow/SDN for optical networks.

Extending OpenFlow/SDN to Optical Networks

What Are the Challenges to OpenFlow/SDN for Optical Networks?

Although significant research has been done on the extension of
OpenFlow/SDN to optical networks, there are still some challenges
that will need to be overcome before there is real implementation and
deployment in service provider networks.

OpenFlow Extensions for Circuits OpenFlow (e.g., OpenFlow v.1.0 and
v.1.3) supports the configuration of matching of incoming packets based
on port, Ethernet header, IP header, and transmission control protocol
(TCP) port values and forwarding rules to modify headers and selec-
tively forward packets to outgoing ports. Basic extensions for circuit
control have not yet been integrated into the OpenFlow specification,
although research and prototyping has been done at both layers 1 and 0,
as will be described below. The complexity of these extensions depends
on the level of control, especially on the level of functionality, as follows:

 1. The mapping of input to output timeslot and/or wavelength
 2. The control of optical transceiver characteristics such as mod-

ulation type, power levels, dispersion compensation, etc.
 3. The control of the internal functions of the switch, such as

adaptation between different TDM layers at layer 1 or wave-
length conversion at layer 0

OpenFlow uses a simple Match/Action Table model of the switch
that does not easily model internal characteristics, such as port-to-
port wavelength connectivity limitations in ROADMs, and assumes
that much information about switch constraints is preconfigured in
the controller. Similarly, the model focuses on the actions within the
switch and not the links between switches, whereas much of the com-
plexity of transport deals with link characteristics.

398

Optical Impairments At the photonic layer, the handling of optical
impairments and characteristics will be critical. This can be divided
into two main aspects:

 1. Path computation and set up of cross-connection at interme-
diate nodes. Path computation would be done in the controller
and would need to consider the impact of optical impairments
on end-to-end signal-to-noise ratio; cross-connection control
would need to specify the matching of incoming and outgo-
ing ports, assuming that wavelength continuity is preserved
across the switch. If wavelength conversion is possible, then
incoming and outgoing wavelength or waveband must also be
controlled.

 2. Setting of transmitter and receiver for compatibility with each
other and matching with the optical end-to-end path. Within
a frequency range that has been cleared end to end, there may
be a variability of the characteristics of the signal sent by the
transmitter and detected at the receiver, such as modulation
type, power level, FEC coding, etc., which must be set by
the controller; this setting may be done using individual
parameters or by groupings of parameter settings that have
been standardized for interoperability, such as the application
codes standardized in the ITU-T Recommendations for this
purpose [15].

Lack of Visibility into the Data Stream In transport networks, the
objective is to convey information transparently between endpoints.
The information is defined by characteristics such as port, timeslot,
and wavelength defining the data stream rather than information car-
ried within the data stream such as packet header fields. As a result,
the controller cannot request actions based on an analysis of the data
stream, but only actions based on the port, timeslot, and wavelength
defining the data stream. This limits the functionality of the control-
ler interface compared with packet networks.

Technology Specific Discovery Discovery in OTNs cannot be done
using the Packet_In/Packet_Out method used for packet network
discovery because there is no visibility into the data stream. Instead,

399openFLow/Sdn and opticaL networkS

the controller must be able to take advantage of technology-specific
discovery mechanisms such as setting of the trail trace or other
header information or, alternatively, exchange of discovery infor-
mation via the DCC/GCC/OSC control channels of the optical
path.

Service Provider Policy and Interoperability Service provider networks
are typically made up of diverse equipment from multiple vendors and
are used to provide service to many different customers. Deployment
of SDN/OpenFlow in the service provider network will need to be
able to support such an environment by:

• Supporting multiple domains of differing equipment types
and vendors, where a single controller instance may not be
sufficient for control purposes. Multiple controllers will need
to be coordinated in a multidomain network, but there is no
standard controller-to-controller interface. Another approach
to coordination may be the use of hierarchy where a parent
controller coordinates the actions of multiple child control-
lers; however, this will introduce further requirements for
controller-to-controller interoperability and testing.

• Supporting service provider needs for injecting policy
and authorization over the control of network resources.
OpenFlow/SDN already has the concept of a FlowVisor [16].
A FlowVisor is a mechanism for partitioning control so that
a particular client controller only sees and controls a subset
of a controlled network; however, the policy aspects of con-
figuring what resources are controlled by which client will
need further specification. In general, security is an area of
OpenFlow/SDN that is still a work in progress.

Reliability and Scalability Service provider networks cover large geo-
graphic areas where both the number of network elements and the
geographic distance can be a challenge for SDN/OpenFlow control
structures. At the speed of light in fiber (~300,000 km/s), control mes-
sages require an approximately 30-ms round trip to cross 5000 km,
a significant amount of time relative to 50-ms standards for trans-
port network actions such as protection switching in case of failure.

400

Some functions will clearly need to be controlled locally to meet
standard time frames for recovery actions. The number of network
elements and the requirements for very high availability of service
provider networks (aiming at 0.99999 availability) will require that
controllers have active backups with state synchronization and fast
failover time, features that are still under development for controller
implementations.

Research on OpenFlow/SDN for Optical Networks

Ciena/Stanford Prototyping As a proof of concept, Ciena and Stanford
University cooperated in 2009 on a prototype OpenFlow-enabled
packet and circuit network, using the Ciena CoreDirector (CD) CI
SONET/SDH switch and a Stanford-developed OpenFlow controller/
application that set up, modified, and tore down L1/L2 flows on
demand and dynamically responded to network congestion. The net-
work and application was demonstrated at the SuperComputing 2009
Conference as the first implementation of integrated packet and cir-
cuit control based on OpenFlow [17] (Figure 15.4).

At the start of the demonstration, connectivity between the CD
switches and the OpenFlow controller is established over an out-of-
band Ethernet control network. The controller was initially configured

Controller

Xnet
booth

Ciena booth

Video client 1

Video
client 2

I2 Booth
Video

client 3 Server 1
Server 2
Server 3

CD
PS
#1

CD
PS
#2

CD
PS
#3

Figure 15.4 Ciena/Stanford prototype demonstration.

401openFLow/Sdn and opticaL networkS

with the identities of the switches and used communication over the
OpenFlow interface to build a switch/topology database. The con-
troller then preprovisioned a SONET/SDH Virtual Concatenation
Group (VCG) between the CDs, capable of carrying Ethernet private
line connections. After this initial startup phase, a video client would
make a request for a video from a remote streaming video server. The
request is redirected to the OpenFlow controller using the Packet_In
command, and the controller responds by directing CDs 1 and 2 to
create an internal VLAN corresponding to the client port (in CD
1) and the video server port (in CD 2), and map the VLAN into
the VCG virtual ports, thereby enabling the packet flow to be trans-
ported over the VCG. All subsequent packets (in both directions) for
this client-server pair are matched at the CD Ethernet port using the
existing flow definitions and are directly forwarded in hardware. At
the client side, the packets received from the VCG are switched to
the client port based on the VLAN tag, which is then stripped off
before the packets are forwarded to the client PCs, where the video is
displayed on the screen. Using OpenFlow, it was possible to display
both circuit and packet states in real time.

The extensions required for OpenFlow included the following:

• OpenFlow specifications (especially OpenFlow 1.0 [18], which
was the basis for the prototype) already support control over
matching and actions for the input and output ports and
packet header information fields below:

Physical –Input port
Ethernet –VLAN ID

–Source address
–Destination address
–EtherType

IP –Source address
–Destination address
–Protocol number

TCP –Source port
–Destination port

• In addition to the support of the input port and the L2 to L4
packet header information for matching of incoming packets
and configuration of these on egress, extensions were made

402

to allow L1 circuit parameters to be matched and configured
and the creation of VCG that, in SONET/SDH, can be hit-
lessly enlarged or reduced in bandwidth depending on the
following traffic requirements:

Physical –Input port/fiber
Wavelength –Input wavelength
Electronic group –VCG ID
Electronic TDM –Starting timeslot

–Signal type

• Lastly, extensions were made to pass L1 topology informa-
tion from the switch to the controller (especially discovered
peer’s switch and port IDs), allowing the use of technology-
specific discovery mechanisms in the switch because the
Packet_Out function of OpenFlow could not be used over
an L1 interface.

The extensions made to the OpenFlow protocol were documented
in a publically available software package called pac.c [19] and have
been used in subsequent research projects on OpenFlow-based circuit
control.

OpenFlow in Europe—Linking Infrastructure and Applications (OFELIA)
Project Another major research project on the application of
OpenFlow/SDN to optical networks is the OFELIA project. The
goal of the OFELIA project is to create an experimental facility that
allows researchers to control the network that they are using for car-
rying experimental data precisely and dynamically using OpenFlow-
based control. The OFELIA work focuses on the virtualization of the
optical network using standard interfaces, including both OpenFlow
and GMPLS.

OFELIA is a large research effort, with an European Commission
(EC) budget of €4,450,000, a 3-year life span (2010–2013), and a
network of five federated island domains, including networks in the
United Kingdom, Switzerland, Italy, and Germany [20].

One of the initial studies by the University of Essex [21] looked at
the pairing of OpenFlow and GMPLS through the OpenFlow con-
trol of the packet mapping at access points and the use of the GMPLS

403openFLow/Sdn and opticaL networkS

user network interface (UNI) user-network interface to request paths
across the optical network, as shown in Figure 15.5.

In this case, the OpenFlow protocol itself is unchanged, and
another interface (GMPLS UNI) is used for the control of the opti-
cal network. In a further experiment, extensions were defined to the
OpenFlow interface that built on the pac.c work, adding flexible labels
rather than strict SONET/SDH timeslots and control of adaptation
as well. In this model, the OpenFlow protocol acts on a virtual header
with circuit characteristics [22].

CCT ID in port out port label in
(e.g. encoding,

ST, G-PID)

label out
(e.g. encoding,

ST, G-PID)

adaptation actions

This format allows great flexibility because the label can corre-
spond to the timeslot in the electronic domain or the wavelength
in the optical domain; furthermore, it is possible to specify the type
of adaptation to be used between layers. Further studies of the full
integration of the OpenFlow control of packet and optical versus
combinations of OpenFlow and distributed optical control sug-
gest that the added flexibility of full integration may come with
some additional cost when it involves the redesigning of the optical

Extended OpenFlow controller

UNI UNI

UHD/HD
video client

OpenFlow enabled
(L2) domain GMPLS controlled

(L1 domain) OpenFlow enabled
(L2) domain

UHD/HD video
server

GMPLS
controller

GMPLS
controller

GMPLS
controller

GMPLS
controller

Figure 15.5 OFELIA study using GMPLS UNI (UHD/HD, ultra high definition/high definition).

404

control plane, and may not be the least costly solution, although
architecturally consistent.

How Will OpenFlow/SDN Be Deployed in Carrier Optical Networks?

OpenFlow/SDN Overlay with Transport Tunnels for POI

As discussed above, the OpenFlow interface already supports the
capacity for the control of packet forwarding at L2 and above and
the concept of virtualized ports for the ingress and egress that can
be the endpoint of a configured packet or circuit tunnel. This can be
applied easily to packet/optical interconnection, where OpenFlow is
used to control packet mapping into optical circuits, and the opti-
cal circuits are controlled separately through a management system, a
distributed control plane, or other methods such as stateful path com-
putation element (PCE) (described in more detail under Standards).
In this deployment, OpenFlow would be used for one (packet) layer
to specify the matching of incoming packets and forwarding them
into a virtual port. OpenFlow is only needed for the subset of network
elements supporting packet interfaces for customer edge services,
whereas the core of the network (optical paths) are set up and con-
trolled by an internal mechanism. Traffic through the tunnels passes
through intermediate switches without visibility to the controller, and
traffic engineering through the core is done independently.

Recent modeling of the POI control through OpenFlow has taken a
different direction than the initial research, which focused on the treat-
ment of wavelength, timeslot, etc., as additional match fields. Instead,
the current modeling uses the concept of logical ports introduced into
more recent versions of OpenFlow. In this model, the physical port on
the switch may have multiple associated logical ports, and each logical
port may have characteristics, such as wavelength or timeslot, which
are modifiable by the controller (alternatively, the model may include a
separate logical port for each wavelength or timeslot and use the match
table to configure the mapping of a packet flow to a particular logical
port). A generalized model for port characteristics in transport net-
works would include bit error rate, alarms, and other information avail-
able from the digital framing and, possibly, associate link characteristics
with either the logical port or the associated physical port (Figure 15.6).

405openFLow/Sdn and opticaL networkS

OpenFlow Overlay Over the Control Plane (with Abstraction)

With extensions for the control of circuit mapping and packet for-
warding, analogous to what was explored in pac.c and OFELIA,
OpenFlow can be used directly for control over optical switching ele-
ments. To speed up the deployment of such capability in a carrier
environment, which typically consists of multiple domains of deployed
equipment, it would be more cost effective to deploy OpenFlow/SDN
as an overlay rather than introduce an OpenFlow/SDN agent on
every network element and add connectivity from each network ele-
ment to a controller. Moreover, scalability and reliability requirements
would be greater. Instead, an overlay deployment of OpenFlow/SDN
would use OpenFlow interfaces only to an element management sys-
tem (EMS) or a subset of network elements, where OpenFlow can
be used by the application as a programmatic interface for the control
of paths across the network, but the actual instantiation and direct
control of resources is managed separately.

The intermediate system would mediate between the requests sent
by the client controller and the actual control of network devices, pro-
viding an abstract model to the client controller that appears as a real
network that is dedicated to that controller, where in fact the real net-
work is being shared by multiple client controllers. This simplifies the
function of the individual controller and provides policy control over the
resources that are allocated to each application. Performance issues may
be a concern here because the mediation function adds latency to con-
trol traffic going both from the client controller to the device and from
the device to the client controller (e.g., event notifications) (Figure 15.7).

OpenFlow OF-Config

Physical ports

Logical ports

Logical ports
Physical ports

Match/
action
table

Figure 15.6 OpenFlow POI model.

406

Direct OpenFlow Control of Packet/Optical

Although the overlay deployment addresses the programmability of
optical networks and the improved separation of service and equip-
ment software for faster service deployment and innovation, it does
not affect the cost of network equipment, as overlay implies that the
OpenFlow/SDN is deployed as an extra interface in addition to what-
ever legacy control structure is in place. If the goal is to achieve sav-
ings by the complete separation of software and hardware, this entails
a fully centralized OpenFlow/SDN structure where the software on
the network equipment is limited to an agent and to whatever is nec-
essary to control local actions (e.g., protection) and element manage-
ment. This is also the greatest change from the existing method of
network operation, making it the most difficult alternative to imple-
ment, test, deploy, and manage for the service provider.

In a fully centralized OpenFlow/SDN control architecture, every
network element has an interface to the controller, and the controller
impacts all switching actions, including multiple layers if the network
element supports multiple layers of switching technology. The con-
troller must then be aware of all supported and unsupported actions,
including any limitations on adaptation from one layer to another
or connectivity between an incoming port and an outgoing port. To
allow data to flow across the network, the controller must talk to each

Mediation

OpenFlow
OpenFlow
controller

OpenFlow

Figure 15.7 OpenFlow overlay with abstraction.

407openFLow/Sdn and opticaL networkS

network element along the datapath and configure the matching and
forwarding actions that allows data to flow from the input port to the
desired output port connecting to the downstream node (Figure 15.8).

The issue with a fully centralized control is as much related to the
implementation and deployment as to the technology: carriers will
need to verify that the solution is scalable and reliable, and even then,
deployment will be gated by having to modify existing operations sys-
tems and procedures.

Standards and Interoperability

Going forward, there are several activities that have been established
in the industry to develop common standards for the OpenFlow/
SDN application to optical networks. The main activities are in the
Open Networking Foundation (ONF) and the Internet Engineering
Task Force (IETF).

Open Networking Foundation ONF is a nonprofit consortium dedi-
cated to the development and standardization of SDN interfaces, par-
ticularly, the OpenFlow protocol and the OpenFlow Configuration
and Management (OF-Config) protocol. The mission of OFN is to
commercialize and promote SDN and the underlying technologies
as a disruptive approach to networking. Its activities are directed
by a board made up of members of the user and service provider

OpenFlow
controller

Figure 15.8 OpenFlow direct/centralized control.

408

community. The ONF, by virtue of its control over OpenFlow, is the
primary body for the development of SDN standards [23].

ONF has two groups, in particular, that are relevant to the creation
of SDN for transport networks: the Extensibility Working Group
(WG) and the New Transport Discussion Group. The Extensibility
WG of ONF develops the detailed extensions to the OpenFlow spec-
ification that are deemed necessary to improve or extend the func-
tionality of OpenFlow. Any technical extensions to the OpenFlow
protocol must be passed by the Extensibility WG.

The New Transport Discussion Group was established in 2012
within ONF as a forum for discussing the application of SDN/
OpenFlow to transport networks, including both optical and wire-
less networks in its original scope. The group is currently focusing
on optical networks, with the objective of defining the use cases for
SDN/OpenFlow over optical networks, the requirements for service
provider and private network applications, and the recommendations
for extensions to the OpenFlow protocols.

IETF Standards Early efforts to incorporate SDN concepts into
Internet standards led to the scheduling of IETF Birds of Feather
(BoF) sessions on software-driven networking [24] and cross-stratum
optimization (CSO) [25]. The former focused on the control plane
architecture that would incorporate a centralized controller that inter-
faced with network elements to control connectivity at an abstract
level. The latter focused on the potential use cases and benefits that
could result from the coordination of applications and the optical net-
work, the strata of its name. Both efforts were eventually judged to
be not sufficiently of interest to IETF and were terminated with no
follow-up standards effort.

Efforts in IETF have now focused on a project called Interface
to Routing System (I2RS) [26] that takes a different direction that
is less disruptive to the current routing environment. This approach
focuses on the creation of a new programmatic interface into the
router, which will support greater visibility into the routing infor-
mation base and greater ability for the application to control for-
warding decisions. Although, in concept, this will address the goal
of programmability, it does not address service deployment or cost-
reduction goals.

409openFLow/Sdn and opticaL networkS

PCE and Stateful PCE Because of the limitations of existing distrib-
uted routing mechanisms, work on the use of PCEs [27] for complex
path computation began in 2006. PCE separates the path computa-
tion function from the other functions in a network element, allowing
path computation to be migrated to a centralized server. PCE is a
broadly applicable technology, which can potentially solve the prob-
lems with multidomain routing in optical networks and help with
problems of complex path computation for all-optical networks.

The basic entities in a PCE system are the path computation cli-
ent (PCC) and the path computation entity (PCE). The PCC uses
the PCE protocol (PCEP) [28] to request a path from a source to a
destination, along with other information, such as transport require-
ments, constraints, and the type of optimization. The PCE can be
implemented on a network element or on a dedicated server and does
path computation with its local database.

What ties PCE with SDN/OpenFlow is the concept of stateful
PCE [29], where the PCE not only computes the path for a connec-
tion, but also controls the state of that connection, including causing
the connection to be modified, rerouted, or terminated. Recently, it
has been proposed that the PCE be able to initiate new connections
as well, in which case, it takes on the functions of a central controller
as in the OpenFlow, with the exceptions that:

• Its control of matching and mapping actions is limited to the
context of a single layer connection (cannot operate over a
flexible set of header values as in OpenFlow); and

• It relies on a distributed signaling protocol to carry out the
actions it specifies, for example, to modify a connection, it
directs the source node to send out the necessary signaling
messages rather than interact with each network element in
the path.

In Figure 15.9, the PCE provides an API for communication with
client applications and has network topology stored internally. When
requested, it both computes the desired network path and initiates the
connect setup process at the source NE.

A variety of potential extensions for PCE-driven network action,
coordinated by applications, has been captured in a recent IETF draft
in this area [30].

410

Optical Internetworking Forum (OIF) One other group that may be
involved is OIF. OIF is a group of carriers, system vendors, and com-
ponent vendors that focuses on interoperability and agreements for
the deployment of optical networks. OIF is led by a strong Carrier
WG that provides carrier requirements for optical technology, both at
the system and component levels, and includes major service providers
such as AT&T, Verizon, Deutsche Telekom, France Telecom, China
Telecom, and NTT. An example of OIF’s work on requirements is the
work that was done on the definition of a framework for service pro-
vider long haul 100-G transmission [31]. For SDN/OpenFlow, OIF
has initiated work to identify use cases and carrier requirements for
transport SDN through its Carrier WG. OIF could play a significant
role in establishing the requirements for carrier-grade OpenFlow/
SDN and driving deployment into service provider networks.

Conclusions for the Future

OpenFlow/SDN will need several modifications to be suitable for
optical network control, both extensions to the protocol itself to con-
trol circuits (with no data stream visibility) rather than packets and
progress in implementations to support service provider scalability,

Service request

Topology
DB

PCEP
MP CP

NEd

PCC

MP CP MP CP MP CP

NEa Signaling NEb Signaling NEc

Stateful PCE

Figure 15.9 PCE with stateful PCE. DB, database; MP, management plane; CP, control plane;
PCC, path computation client.

411openFLow/Sdn and opticaL networkS

security, and reliability requirements. Initially, packet-oriented
OpenFlow/SDN can be used in overlay deployment to control packet
mapping and combined with existing methods of optical path provi-
sioning to offer improved packet/optical interconnection services.

An extensive body of research and prototyping does exist for the appli-
cation of OpenFlow/SDN to optical networks at layers 1 and 0, estab-
lishing basic functional requirements that would need to be addressed
for circuit control. These may be the basis for limited scale deployment in
private optical networks, where the requirements on implementation are
less stringent. Deployment in the overlay mode where the OpenFlow/
SDN interface serves as a service interface and is mediated by a transport
network FlowVisor can be an early method of deploying capabilities in a
service provider environment to support service innovation.

Eventually, the use of direct OpenFlow/SDN control of opti-
cal networks may emerge as a control architecture within domains
of optical equipment as high availability controller implementations
become available. Further work on the interconnection of controllers
is needed for OpenFlow/SDN to scale to carrier environments that
typically consist of multiple domains. How rapidly such deployment
occurs depends on the ability of implementers to develop hardened,
scalable versions of OpenFlow/SDN controllers and how real the
advantages will be for cost and service development and deployment.

http://www.oiforum.com
http://www.oiforum.com

412

http://www.oiforum.com
http://www.oiforum.com
http://www.docs.openstack.org
http://www.docs.openstack.org
http://www.openflow.org
http://www.openflow.org
http://klamath.stanford.edu
http://klamath.stanford.edu
http://www.openflow.org
http://www.openflow.org
http://www.fp7-ofelia.eu
http://www.fp7-ofelia.eu
http://www.fp7-ofelia.eu
http://www.fp7-ofelia.eu
http://www.fp7-ofelia.eu
http://www.fp7-ofelia.eu
http://www.fp7-ofelia.eu
http://www.opennetworking.org

413

415

16
Security iSSueS in

SDn/OpenFlOw

Introduction

Software-defined networking (SDN) is a new approach to network-
ing. It was invented by Nicira Networks based on their earlier work
at Stanford University, University of California at Berkeley, Princeton
University, and CMU. The goal of SDN is to provide an open, user-
controlled management of the forwarding hardware in a network.
SDN exploits the ability to split the data plane from the control plane
in routers and switches. The control plane is open and controlled cen-
trally with SDN while having the commands and logic sent back down
to the data planes of the hardware (routers or switches). This paradigm
provides a view of the entire network and helps make changes cen-
trally without a device-centric configuration on each hardware. The
OpenFlow (OF) standard and other open protocols help manage the

Contents

Introduction 415
SDN Security Concerns 416
Enabling Fast Failure Recovery in OF Networks 418
Network Intrusion Detection and Countermeasure Selection
(NICE) in Virtual Network Systems 420
FRESCO: Modular Composable Security Services for SDNs 423
Revisiting Traffic Anomaly Detection Using SDN 425
Language-Based Security for SDNs 427
Scalable Fault Management for OF 429
A Dynamic Algorithm for Loop Detection in SDNs 432
Discussion 433
Conclusion 433
References 434

416

control planes and allow for precise changes to networks or devices.
SDN works by creating virtual networks that are independent of
physical networks. To achieve this, it separates the control plane from
the data plane and allows the user to control the flow of traffic in the
network. Figure 16.1 illustrates the difference between the traditional
network and the OF-based SDN.

An OF system typically includes the following three important
components:

 1. The OF switch. OF provides an open protocol to program the
flow table in different switches and routers. An OF switch
consists of at least three parts: (1) a flow table, with an action
associated with each flow entry; (2) a channel, allowing com-
mands and packets to be sent between a controller and the
switch; and (3) the OF protocol, which provides an open and
standard controller to communicate with a switch.

 2. Controllers. A controller adds and removes flow entries from
the flow table on behalf of experiments. A static controller
might be a simple application running on a PC to statically
establish flows to interconnect a set of test computers for the
duration of an experiment.

 3. Flow entries. Each flow entry has a simple action associated
with it; the three basic ones (that all dedicated OF switches
must support) are (1) to forward this flow’s packets to a given
port, (2) to encapsulate and forward this flow’s packets to a
controller, and (3) to drop this flow’s packets.

SDN Security Concerns

Before we discuss the security issues of SDN, let us quickly review
the traditional networks’ vulnerability and protection as summarized
in Table 16.1.

SDN creates some new targets for potential security attacks, such
as the SDN controller and the virtual infrastructure. Besides all the
traditional network attack targets, SDN has new target points, as
follows:

• SDN controller: traditional application, server, and network
attacks

417Security iSSueS iN SdN/OpeNFlOw

Switch

Software

Hardware

Nodes

OpenFlow
protocol

SSL

Forwarding plane

Control plane

Controller

PC

OpenFlow
switch

Secure
channel

Flow table

Figure 16.1 Traditional network architecture (top) and OF architecture (bottom) (SSL, secure
socket layer).

418

• Virtual infrastructure: traditional application and server attacks
on the hypervisor, virtual switch, and virtual machine (VM)

• Network: OF protocol for OF-enabled devices

In the following section, we will describe some important OF/
SDN security schemes.

Enabling Fast Failure Recovery in OF Networks

It is important to have some robust restoration options available in
OF networks. In Ref. [1], the addition of a fast restoration mecha-
nism for OF networks is proposed, and its performance is evaluated
by comparing the switchover times and the packet loss to the existing
restoration options in a current OF implementation. It discusses some
mechanisms implemented at the OF and Nox software to recover
from a link failure. It also discusses the limitations of these mecha-
nisms in enabling fast recovery in OF networks.

Table 16.1 Traditional Network Vulnerability and Protection

EXAMPLE ATTACK
TARGET LAYER

EXAMPLE ATTACK
POINTS

VULNERABILITY
EXAMPLES PROTECTION EXAMPLES

Applications Network apps,
general apps
(e.g., database)

– General: cross-site
scripting, buffer
overflow, SQL injection

– Net: DNS cache
poisoning

– General: firewall,
intrusion, detection,
intrusion, prevention

– Net: DNSSec, SSL

Servers Transport, OS,
hypervisor

– TCP: SYN flood, SYN/
ACK scan, spoofed
RST, hijack

– UDP: smurf DoS attack,
spoofed ping-pong

– Encrypt session: SSH,
IPSec, intrusion
detection/prevention

Network Routers, switches,
virtual switches

– IP/routing: MIM routing
attack, FIRP attack, IP
spoofing, ping flood,
ICMP destination
unreachable, smurf
attack, source attack

– FC: target/initiator
spoofing

– MAC (FCF) spoofing
– ARP cache poisoning
– Physical link tap

– IP/routing: IP ACL filters,
firewall, intrusion
detection, OSPF with
IPSec, split horizon,
infinite hop count
detection, override
source routing

– FC: zoning, FC ACL filters
– Ingress/egress MAC ACL

filters, VLANs
– Physical security
– Authentication protocol

419Security iSSueS iN SdN/OpeNFlOw

In the case of OF mechanisms, the failure can be recovered if a new
correct flow entry is added in OF switches after the failure occurs. The
recovery from the failure depends on the time when the OF switch
requests the flow entry from the controller. Hence, the recovery from
failure depends on the life of the flow entries in the flow table. The life
of flow entries is associated with two intervals: idle timeout and hard
timeout. Idle timeout indicates the time when the flow entries should
be removed because of the lack of activity. It is the time interval of a
flow entry with which the OF switch has not received the packet of a
particular flow of that entry. Hard timeout implies the maximum life
of flow entries, regardless of activity. OF switches remove their flow
entries from the flow tables after the expiration of one or both inter-
vals. Recovery from failure is directly proportional to the value of the
aforementioned intervals.

In the case of Nox mechanisms, the recovery from failures is pos-
sible with a new flow entry only if the controller also knows about the
failure. Otherwise, the controller may add an incorrect entry in the OF
switches. Thus, recovery depends not only on hard and idle timeouts
but also on mechanisms running in the network to detect the failure.
Nox implements L2-Learning and routing mechanisms to recover
from a failure. They implemented L2-Learning in C++ and Python.
The former is called the L2-Learning switch, and the latter is called
the L2-Learning pyswitch. They behave differently to recover from a
failure.

Fast recovery is only possible if the incorrect flow entries are flushed
from all the OF switches and new entries are installed immediately
after detecting the link failure in the existing path. This will be pos-
sible with the help of a controller, only if the controller (1) knows
about the failure, (2) remembers the older path that was established by
adding flow entries in OF switches, (3) is able to calculate a new path,
and (4) knows all the current flows in the network.

In fast restoration, the controller performs a set of actions to
restore the path between affected hosts. The initial task is to check
whether its calculated older paths among end hosts are affected or
not. If these are affected, then the controller calculates the new path
for those end hosts. Other than this, the controller also checks if
it has added flow entries in OF switches regarding the older faulty
path. If yes, then it deletes the flow entries from all the OF switches

420

regarding the older path and adds flow entries in all the OF switches
for the new path.

In Ref. [1], they used Ubuntu v.9.04 for the installation of
OpenVSwitch v.1.1.0 and Nox v.0.9.0. More than 11,000 ping pack-
ets were sent from Client 0 to Server 1 with an interval of 10 ms.
Then, the number of ping replies received by Client 0 was calculated.
Hard and idle timeouts for flow entries are set to 20 and 10 s, respec-
tively. The network routing loops can be easily removed by using any
loop-free mechanism, for example, by building a spanning tree in
the topology. The failure recovery time was investigated in the OF
network when the outgoing path is affected by link failure. For fast
restoration, we need an efficient scheme to calculate paths. A predeter-
mined mechanism was used in Ref. [1] to calculate the path. The OF
architecture allows the implementation of restoration options that are
much faster than medium access control (MAC) reconvergence (rout-
ing and L2-Learning pyswitch) or the client-initiated recovery with
an address resolution protocol (ARP) request (L2-Learning switch).
Their fast restoration mechanism can be integrated in any mechanism
where a controller is able to detect the failure by some means. In their
fast restoration mechanism, the flow is able to switch to another path
within 12-ms interval regardless of the time left before the expiration
of the flow entries.

Network Intrusion Detection and Countermeasure
Selection (NICE) in Virtual Network Systems

In Ref. [2], NICE in virtual network systems was investigated. The
Cloud Security Alliance (CSA) survey shows that, among all security
issues, the abusive use of cloud computing is considered as the top secu-
rity threat. Attackers can exploit vulnerabilities in clouds and use cloud
system resources to deploy attacks. The convention schemes that patch
known security holes in cloud data centers, where cloud users usually
have the privilege to control software installed on their managed VMs,
may not work effectively and can violate the service-level agreement
(SLA). In Ref. [2], the authors propose NICE to establish a defense-
in-depth intrusion detection framework. For better attack detection,
NICE incorporates attack graph analytical procedures into the intru-
sion detection processes. In general, NICE includes two main phases:

421Security iSSueS iN SdN/OpeNFlOw

 1. They deploy a lightweight mirroring-based network intrusion
detection agent (NICE-A) on each cloud server to capture
and analyze cloud traffic. NICE-A periodically scans the vir-
tual system vulnerabilities within a cloud server to establish a
scenario attack graph (SAG). NICE’s decision about whether
to put a VM in the network inspection state will be based on
the severity of the identified vulnerability toward the collab-
orative attack goals.

 2. Deep packet inspection (DPI) is applied when a VM enters
the inspection state and/or when virtual network reconfigu-
rations can be deployed to the inspecting VM to make the
potential attack behaviors prominent. In Ref. [2], they talk in
detail about how to use attack graphs to model security threats
and vulnerabilities in a virtual network system and propose a
VM protection model based on virtual network reconfigura-
tion approaches to prevent VMs from being exploited.

Different types of models are explained in Ref. [2]: (1) the threat/
attack model: It is assumed that an attacker can either be outside or
inside of the virtual networking system, and his primary goal is to
exploit vulnerable VMs and compromise them as zombies. To improve
the resiliency to zombie explorations, the protection model focuses on
virtual-network–based attack detection and reconfiguration solutions;
(2) the attack graph model: This is a modeling tool that illustrates all
possible multistage, multihost attack paths that are crucial to under-
stand threats and then to decide appropriate countermeasures. This is
helpful in identifying potential threats, possible attacks, and known
vulnerabilities in a cloud system; and (3) the VM protection model:
This consists of a VM profiler, a security indexer, and a state monitor.
Depending on various factors, such as connectivity, the number of
vulnerabilities present, and their impact scores, a security index will
be specified for all the VMs in the network.

Regarding the NICE framework, its major components are dis-
tributed and lightweight NICE-A software modules in each physi-
cal cloud server, a network controller, a VM profiling server, and an
attack analyzer. The latter three components are located in a central-
ized control center connected to the software switches on each cloud
server (i.e., virtual switches built on one or multiple Linux software

422

bridges). NICE-A is a software agent implemented in each cloud
server connected to the control center through a dedicated and isolated
secure channel. OF tunneling or virtual local area network (VLAN)
approaches are used to separate them from the normal data packets.
The network controller is responsible for deploying attack counter-
measures based on decisions made by the attack analyzer.

The NICE system components include the following:

• NICE-A. This is a network-based intrusion detection system
(NIDS) agent installed in each cloud server. It scans the traf-
fic going through Linux bridges that control all the traffic
among VMs and in/out from physical cloud servers.

• VM profiling. To get precise information about the state, ser-
vices running, open ports, etc., of VMs in the cloud, we can
build profiles for those items. Connectivity with other VMs is
the major factor that counts toward a VM profile.

• Attack analyzer. The major functions of the NICE system are
performed by the attack analyzer, which includes procedures
such as attack graph construction and update, alert correla-
tion, and countermeasure selection.

• Network controller. This is a key component to support the
programmable networking capability to realize the virtual
network reconfigurations based on OF protocols.

In Ref. [2], they also gave an idea about NICE security measure-
ment, attack mitigation, and countermeasures. Several counter-
measures can be taken to restrict attackers’ capabilities. When
vulnerabilities are discovered or some VMs are identified as suspicious,
it is important to differentiate between compromised and suspicious
VMs. The countermeasure serves the purpose of (1) protecting the
target VMs from being compromised, and (2) making attack behavior
stand prominent so that the attacker’s actions can be identified.

The performance of NICE is conducted in two directions in
Ref. [2]: the security performance and the system performance. Both
have been measured in detail by using virtual environment. The sec-
ond one demonstrates the feasibility of NICE and shows that the pro-
posed solution can significantly reduce the risk of the cloud system
from being exploited and abused by internal and external attackers.

423Security iSSueS iN SdN/OpeNFlOw

To conclude, NICE used the attack graph model to conduct attack
detection and prediction. The proposed solution investigates how to
use the programmability of software switches to improve the detec-
tion accuracy and defeat the victim exploitation phases of collabora-
tive attacks. NICE only investigates the NIDS approach to counter
zombie explorative attacks.

FRESCO: Modular Composable Security Services for SDNs

In OF, we need to dramatically rethink the relationship between
the data and control planes of the network device. From a network
security perspective, these networks offer researchers with an unprec-
edented singular point of control over the network flow routing deci-
sions across the data planes of all OF-enabled network components.
An OF security application can implement much more complex logic
than simply halting or forwarding a flow.

There are a few challenges that motivate us to design a new secu-
rity scheme in SDNs: (1) information deficiency challenge: OF
controllers do not uniformly capture and store TCP session infor-
mation, among other key state tracking data. However, this is often
required to develop security functionality (e.g., TCP connection
status, IP reputation). This is referred to as information deficiency
challenge. They incorporated a database module, FRESCO-DB,
which simplified the storage and management of session state;
(2) security service composition challenge: The proposed frame-
work incorporated a modular and composable design architecture,
inspired by the Click router architecture. This fosters a rapid and
collaborative development of applications through module composi-
tion; and (3) threat response translation challenge: The OF protocol
enables the controlling software layer to communicate flow handling
instructions to the data plane.

The FRESCO framework consists of an application layer (which
provides an interpreter and application programming interfaces
(APIs) to support composable application development) and a secu-
rity enforcement kernel (SEK; which enforces the policy actions from
developed security applications). Both components are integrated into
Nox, an open-source OF controller.

424

Nox Python modules were used to implement FRESCO’s applica-
tion layer. This is extended through FRESCO’s APIs to provide two
key developer functions, as follows:

 1. FRESCO development environment (DE) and resource con-
troller (RC). They provide FRESCO application developers
with OF switch- and controller-agnostic access to network
flow events and statistics. Developers use the FRESCO script
language to instantiate and define the interactions between
Nox Python security modules, which, in turn, invoke
FRESCO internal modules. Those modules are instantiated
to form a security application driven by the input specified
via the FRESCO scripts. These are accessed via FRESCO’s
DE database API. These instantiated modules are executed
by FRESCO DE as the triggering input events are received.

 2. FRESCO SEK. Diverse security policies, such as DROP,
REDIRECT, and QUARANTINE, can be enforced by
security applications developed in FRESCO scripts to react
to network threats by simply setting an action variable.
These high-level security policies can help developers focus
on implementing security applications that are translated
into flow rules for OF-enabled switches by FRESCO DE.
FRESCO incorporates an SEK, which is integrated directly
into the OF controller on which FRESCO operates.

On the implementation perspective of the FRESCO architec-
ture, Python is used to implement the FRESCO application layer
prototype and runs as an OF application on Nox. The prototype
operates on Nox v.0.5.0 using the OF v.1.1.0 protocol and is imple-
mented in approximately 3000 lines of Python. FRESCO modules
are implemented as independent Python objects, and inputs and
parameters of a module are input variables to the Python object.
The return values of a Python object are considered as output values
of a module.

The FRESCO SEK is implemented as a native C++ extension of
the Nox source code in approximately 1160 lines of C++ code. The
modified OF command function was used to send OF commands to
network switches and to capture flow rules from all OF applications.

425Security iSSueS iN SdN/OpeNFlOw

To evaluate the components in FRESCO, Mininet was imple-
mented, which provided a rapid prototyping environment for the
emulation of OF network switches. Using Mininet, they have emu-
lated one OF network switch, three hosts connected to the switch,
and one host to operate their Nox controller. Flow generation has
been performed by selecting one or two hosts to initiate TCP or UDP
connections.

Despite the success of OF, developing and deploying complex
OF security services remains a significant challenge. The proposed
FRESCO is presented as a new application development framework
specifically designed to address this problem. The FRESCO archi-
tecture has been integrated with the Nox OF controller and pre sents
several illustrative security applications written in the FRESCO
scripting language [3].

Revisiting Traffic Anomaly Detection Using SDN

Small office/home office (SOHO) and purely home networks have had
an explosive growth over the last decade because of the widespread
penetration of broadband Internet in the home market. Moreover,
computers in such networks are often vulnerable. SDN offers a natu-
ral opportunity to delegate the task of network security to the home
network while sparing the home users a natural opportunity to dele-
gate the task of network security to the home network. Moreover, the
home user is spared from complex security management tasks. The
authors propose a programmable home network router that provides
the ideal platform and location in the network for detecting security
problems.

In Ref. [4], four prominent anomaly detection algorithms are
implemented in the Nox SDN controller. A detailed accuracy evalu-
ation has been performed on real-world traffic data sets collected at
three different network deployment points. Efficiency evaluation of
the SDN implementations on home and SOHO network data sets
shows that, in addition to providing better accuracy, this approach
allows line rate anomaly detection.

Here, the implementations of four prominent traffic anomaly
detection algorithms in the context of an SDN are briefly described.

426

 1. Threshold random walk with credit-based (TRW-CB) rate
limiting algorithm. It detects scanning worm infections on a
host by noting that the probability of a connection attempt of
being a success should be much higher for a benign host than
a malicious one. The algorithm leverages this observation
using sequential hypothesis testing (i.e., likelihood ratio test)
to classify whether the internal host has a scanning infection.
The algorithm maintains a queue of new connection initia-
tions (i.e., TCP SYNs) that are yet to receive a response (i.e.,
a SYN/ACK) for each internal host.

 2. Rate limiting. This uses the observation that, during virus
propagation, an infected machine attempts to connect to
many different machines in a short span of time. On the
other hand, an uninfected machine makes connections at a
lower rate and is more likely to repeat connection attempts to
recently accessed machines.

 3. Maximum entropy detector. This estimates the benign traf-
fic distribution using maximum entropy estimation. Training
traffic is divided into 2348 packet classes, and maximum
entropy estimation is then used to develop a baseline benign
distribution for each class. Packet classes are derived from
two dimensions. The first dimension contains four classes
(TCP, UDP, TCP SYN, and TCP reset (RST)). In the sec-
ond dimension, each of these four classes is split into 587 sub-
classes based on destination port numbers.

 4. Network advertisement (NETAD). This operates on rule-
based filtered traffic in a modeled subset of common pro-
tocols. The filter removes uninteresting traffic based on the
premise that the first few packets of a connection request are
sufficient for traffic anomaly detection.

In Ref. [4], the data have been collected at benign traffic at three
different locations in the network because the aim was to study the
accuracy of anomaly detection algorithms in a typical home network,
a SOHO network, and an internet service provider (ISP). To col-
lect the attack traffic, denial of service (DoS) (TCP SYN) and frag-
ile (UDP flood) have been launched simultaneously from three end
hosts.

427Security iSSueS iN SdN/OpeNFlOw

An SDN using OF and Nox allows a flexible, highly accurate line
rate detection of anomalies inside home and SOHO networks. The
key benefit of this approach is that the standardized programmabil-
ity of SDN allows the algorithms to exist in the context of a broader
framework.

Language-Based Security for SDNs

Analyzing the fundamental problem of how to program SDN in
a secure and reliable manner is discussed in Ref. [5]. The solution
involves the development of a new programming model that supports
the concept of a network slice. The isolation of the traffic of one pro-
gram from another is achieved with the help of slices. They also isolate
one type of traffic from another, within that same program. They have
developed a semantics for slices, which illustrates new kinds of for-
mal modular reasoning principles that network programmers can now
exploit. It provides definitions of the end-to-end security properties
that the slices entail and proves the correctness of a compiler for an
idealized core calculus in a slice-based network programming. They
have also described their implementation, which is equipped with a
translation validation framework that automatically verifies compiled
programs using the Z3 theorem prover.

It is challenging today to implement isolation in networks. For this, a
large set of devices, including routers, switches, and firewalls, to be man-
ually configured, can be used to block forbidden traffic, but they allow
other traffic to traverse the network. Developing and maintaining these
configurations will be done using low-level and vendor-specific configu-
ration languages, and this work is tedious for network operators. Simple
errors can often lead to serious security breaches. In Ref. [5], it was sug-
gested that using a high-level programming language can make it easy
to describe forwarding policies and construct isolated subnetworks while
leaving the tedious, error-prone work of generating correct and efficient
low-level configurations to a compiler and an SDN. Such an approach
seemed to solve the problem that was faced today: networks have tra-
ditionally been built out of closed devices that cannot be programmed,
except through proprietary and idiosyncratic interfaces. One cannot use
Nox as a solution because it lacks mechanisms for isolating the traffic of
one module from the traffic of another.

428

Moreover, we have to see that network programming is insecure
and noncompositional. Even the smallest, most trivial modules need
to explicitly avoid interfering with other modules whose functional-
ity is completely orthogonal. The programmer determines which traf-
fic will be processed and how it will be forwarded only by analyzing
every module in their program. A different approach is described in
Ref. [5]. They provided programmers with a high-level, correct-by-
construction abstraction that supports the programming-isolated
slices of the network, rather than forcing programmers to rely on an
external, coarse-grained hypervisor or their own on-off, ad hoc tech-
niques for building modular and secure network programs. A slice is
defined in terms of the following ingredients: a topology composed of
switches, ports, and links, and a collection of predicates on packets,
one for each of the outward-facing edge ports in the slice.

Several distinct technical contributions are made [5]. They devel-
oped a formal calculus that models a network program as a function
from packets to sets of packets to precisely analyze the semantics of
slices. The system can execute multiple programs in a single network.
The formalized isolation serves as a pair of noninterference condi-
tions: one with respect to a notion of confidentiality and another with
respect to integrity. A slice is isolated from another if running them
side by side in the same network does not result in a slice leaking
packets into the other slice. They defined several intuitive security
properties such as isolation and developed an operational condition
called separation that implies the isolation property. Finally, they for-
malized a compilation algorithm and proved that it establishes sepa-
ration and isolation.

In Ref. [5], a problem that arises in the context of configuring net-
works is addressed, but how should one express and verify the iso-
lation? This is a fundamental issue. Their solution used technology
developed by, and of interest to, the programming languages com-
munity: the foundation for their solution is a correct-by-construction
programming abstraction. To describe the execution of network pro-
grams, they used structured operational semantics. They have used
concepts such as confidentiality, integrity, and observational equiv-
alence, drawn from classic work on language-based information-
flow security. They used translation validation to obtain assurance.

429Security iSSueS iN SdN/OpeNFlOw

Moreover, they used familiar proof techniques to validate all of their
theorems.

Overall, in Ref. [5], they showed how to define, analyze, imple-
ment, verify, and use the slice abstraction to build secure and reliable
SDNs. The definition of slices leads to an elegant theory of isolation
and proofs of strong end-to-end properties based on observational
equivalence, such as confidentiality and integrity. The implementa-
tion is highly reliable because they encoded the semantics of their
network policies as logical formulae and the use of Z3 theorem prover
to validate that their compiler generates outputs that are equivalent to
inputs. These encodings also allow them to automatically verify the
isolation properties of compiled programs.

In summary, the slice abstraction provides network programmers
with a powerful means to seal off portions of their SDN programs
from outside interference, such as modules and abstract data types in
conventional programming languages. The ability to impose strong
boundaries between different program components provides impor-
tant security benefits and simplifies the construction of programs in
settings where security is not an issue. By carving a large program up
into slices, a programmer can reason locally about each slice instead
of globally when attempting to determine how and where their traffic
is forwarded.

Scalable Fault Management for OF

High reliability is an important requirement because a transport con-
nection aggregates traffic. Automatic recovery mechanisms that are
triggered by operations, administration, and maintenance (OAM)
tools [6] are required for reliability to reestablish connectivity when a
path failure occurs.

Recovery is categorized into restoration and protection. For resto-
ration, detour or alternate paths are computed and configured only
after a failure is detected. This method is relatively slow. In contrast,
for protection, a backup path is configured parallel to the working
path. Hence, a fast switch-over minimizes traffic disruption when-
ever a failure is detected. Transport applications demand a 50-ms
recovery time protection to be supported by any transport network

430

technology. The traffic engineering function can calculate recovery
paths in later stages.

In Ref. [6], they proposed to relax the separation of control
operations to include connectivity monitoring OAM in the switch
to overcome the scalability limitations of centralized connectivity
monitoring. The connectivity monitoring must operate in a proactive
manner to ensure fast detection of any impairment along the path.
The source end of the monitored flow will be the entry point of a
transport tunnel. It periodically emits probe packets and interleaves
them into the data flow running along that path. The destination end
extracts the probe packets from the data flow. If the destination end
stops receiving the probe packets for a long enough period (which is
referred to as the detection time) or a received packet indicates that
the source endpoint detects some errors in the other direction, known
as remote defect indication, some node or link in the monitored flow
is assumed to have failed, and the destination end node switches over
to an alternate path.

They applied the strict integration of the aforementioned functions
with the OF switch forwarding to implement an improved fault man-
agement efficiently. They proposed to extend the OF v.1.1.0 switch
forwarding model with new entities and showed what protocol exten-
sions are essential to provide these novel entities. Nevertheless, they
did not intend to provide a comprehensive protocol specification but
rather an insight on the necessary switch model and protocol updates.

To generate monitoring messages within the switch, they allow
multiple monitored entities to use the same message rate to share a
monitoring packet generator. To reduce the amount of processing
required in the switch, they separate packet generation from format-
ting that is filling in identifiers or timers.

Like any other packet, incoming OAM packets enter the switch
through ports. First, the monitored tunnel including the OAM pack-
ets is identified with a flow table entry. The typical actions associated
to that entry are removing the tunnel tags and passing the packet to
the next stage, where the payload is further processed. At this phase,
demultiplexing is either done as part of popping the tunnel tag or
expressed as an additional rule deployed in a later flow table.

The OAM packets can be terminated at a group table entry con-
taining a single action bucket. The content of the OAM packet is

431Security iSSueS iN SdN/OpeNFlOw

processed, and the timers associated to the OAM termination points
are updated. The switch notifies the controller on the occurrence of
any monitoring and protection events. To support a generic notifica-
tion message, an OF error message was modified. Two notification
messages are defined here: (1) the messages that report any changes to
the status of the monitoring entity and (2) the messages that report the
protection reactions. This separation is considered to allow mixed sce-
narios, where controller-driven restoration is combined with switches
that perform continuity monitoring.

 1. Fault management in MPLS transport profile. In multiproto-
col label switching-transport profile (MPLS-TP) protection,
switching is performed by the endpoints of the working path
and the backup path. The endpoints may notify each other on
protection actions using a data plane–associated protocol, such
as Protection State Coordination or a mechanism that is part
of the control plane, or using the generalized MPLS (GMPLS)
Notify message to stay synchronized. The MPLS-TP OAM
supports a continuity check packet flow to detect label switch
path (LSP) failures. The recommended implementation is based
on the Bidirectional Forwarding Detection (BFD) protocol.

 2. Adding BFD and protection support to OF. The current
implementation is based on an extension of the OF v.1.0 ref-
erence switch implementation that supports MPLS forward-
ing. As a consequence, they rely on configurable virtual ports
instead of using group table entries to implement the moni-
toring packet construction procedure. This means that not
only the packet generator, but also the other packet construc-
tion steps are implemented with virtual ports and configured
through virtual port management commands.

To evaluate their scheme, they measured the failure time in a
 testbed consisting of two OF label edge routers (LERs) with two LSPs
between them (one working and another as a backup). The switches
were implemented as modified OF v.1.0 soft switches on Linux, and
the controller was a modified version of the Nox open-source control-
ler running on Linux. Two BFD sessions, both running with a packet
transmission interval of 10 ms, monitor the working and backup of
LSP by giving a maximum detection time of 30 ms. They transmit

432

constant bit rate (CBR) traffic with roughly 800 packets per second
from the source across the working LSP. The captured inter-arrival
time of the CBR packets before and after recovery at the sink is an
approximation of the full protection time.

Central control entity is expected to enhance scalability by means
of offloading the controller by placing control functions at the
switches. By redefining the role of the link-layer discovery protocol
(LLDP)-based centralized monitoring, the aforementioned gain can
be achieved. As a first step, LLDP is not used any longer for the con-
tinuity check, which relaxes the time constraints from milliseconds
to seconds. Afterward, the new link detection and failure declaration
are decoupled by using switch monitoring features together with link-
down notifications. As a consequence, there is no need to consider
accidental packet losses and jitters, which further increases packet
sending intervals.

In conclusion, they proposed to slightly relax the separation of con-
trol and forwarding operations to overcome the scalability limitations
of centralized fault management. To provide a scalable way for data
plane connectivity monitoring and protection switching, they argue
that OAM is a function that needs to be distributed and deployed
close to the data plane. They propose to place a general message gen-
erator and processing function on OF switches. They describe how
the OF v.1.1.0 protocol should be extended to support the monitoring
function. Moreover, they prove that data plane fault recovery within
50 ms can be reached in a scalable way with their proposed extensions,
through their experiments.

A Dynamic Algorithm for Loop Detection in SDNs

The existence of loops, which are cyclical paths through the network’s
switches, which can cause some packets to never leave the network,
will be a potential problem in computer networks. In Ref. [5], a
dynamic algorithm that is built on header space analysis is presented,
which allows the detection of loops in SDNs like the ones created
using OF over a sequence of rule insertions and deletions on the net-
work’s switches, and the key ingredient in the algorithm is a dynamic,
strongly connected component algorithm. In the article, the network
model has been illustrated as a directed graph because it will be easier

433Security iSSueS iN SdN/OpeNFlOw

to understand. Hence, concepts of header space analysis have been
translated into the language of graph theory.

 1. Rule graphs and the dynamic loop detection problem. In
Ref. [7], they show how to model a network in the same way
as a directed graph. Through this, the translation can intro-
duce notions from dynamic graph algorithms to help one
compute port-to-port reachability in their network over rule
updates in an efficient manner.

 2. A dynamic, strongly connected component algorithm. It
introduces an algorithm that allows to dynamically track
the strongly connected components (SCCs) in a graph over
a sequence of edge insertions and deletions. It also shows
how to use this dynamic algorithm to solve the dynamic loop
detection.

Discussion

A comparison of all the aforementioned SDN security schemes is pre-
sented in Table 16.2.

Conclusion

In conclusion, SDN is an emerging technology that allows for granu-
lar security by giving complete control of the network to the adminis-
trator. The controller is the brain of SDN, and without proper security
wrapped around the controller, the network becomes completely vul-
nerable to accidental changes or malicious attacks. There are different
approaches that can be used to achieve this task and take the full ben-
efit of this new technology.

Table 16.2 Comparison of the Schemes Discussed

SCHEME SOURCES [2] [3] [4] [5] [6] [7] [8]

Uses OF/Nox (Y/N) Y Y Y Y N Y Y
Introduce new architecture based on OF/Nox Y N Y N N Y Y
Experiments (E) or real cases (R) E E E E E E E
Software (S) or hardware (H) S S S S S S S
Introduces new language for SDN (Y/N) N N N N Y N N

434

http://www.fp7-sparc.eu
http://www.fp7-sparc.eu
http://www.snac.eas.asu.edu
http://people.tamu.edu
http://people.tamu.edu
http://www.wisnet.seecs.nust.edu.pk
http://www.wisnet.seecs.nust.edu.pk
http://www.cs.princeton.edu
http://www.kth.diva-portal.org
http://www.kth.diva-portal.org
http://www.cs.toronto.edu
http://www.cs.toronto.edu

435

17
InvestIgatIon of

anycast ImplementatIon
In software-DefIneD

networkIng

Contents

Introduction 436
Related Work 438
Preliminaries of SDN and OpenFlow 440
Implementation of Anycast Service Based on OpenFlow in
Intradomain Environments 441

The System Architecture 441
The Design of the Anycast Controller 442

Information Gathering Module 443
Routing Decision Module 444
Address Resolution Module 446
Data Transmission Module 447

Numerical Results and Analysis 447
Extension of Anycast Implementation in Interdomain
Environment 452
The Merit of the Proposed Anycast Implementation Strategy
in the Interdomain Environment 453
Conclusion 454
Acknowledgments 455
References 455

436

Introduction

Anycast is a paradigm of communication for service discovery, which
selects the best one of the service providers in an anycast group as
a destination in a robust and efficient manner, which has been an
important service model adopted in various networks for diverse
applications. Anycast technologies are widely used in content delivery
networks (CDNs) for the large-scale distribution of content on the
Internet and the direction of requests to find the desired content [1].
To avoid the substantial delays because a transmitting node needs to
wait for its next-hop relay node to wake up, wireless sensor networks
(WSNs) adopted an anycast-based scheme for each node to oppor-
tunistically forward packets to the first neighboring node that wakes
up among multiple candidate nodes [2]. Mobile ad hoc networks
(MANETs) also used anycast-like proposal to shorten the transmis-
sion paths between the requester and service providers and reduce the
amount of request and reply packets [3].

Currently, application-layer anycast and network-layer (or IP)
anycast are the two main research directions on anycast communi-
cations and have been widely used in many scenarios because of its
inherent ability of service discovery. However, the nonawareness of
the topology changes and load conditions hampers the deployment
of application-layer anycast [4]. In addition, the address translation
of application-layer anycast is costly when the network is under heavy
load [5]. IP anycast overcomes these issues with simple implementa-
tion but needs to modify existing routing protocols with new router
configurations to support anycast service, and thus, the anycast server
selection process and the packet routing process are accomplished in
the switching equipment, resulting in higher efficiency and robustness
than that of application-layer anycast [6]. However, the existing net-
work equipment (e.g., routers and switches) act as black boxes, leading
to the poor scalability for the deployment of IP anycast. Furthermore,
because of its inherent nature, IP anycast makes the address non-
aggregatable in the routing table [7].

Software-defined networking (SDN) has been proposed to pro-
grammatically control networks by decoupling the control from the
data plane, which is a promising technique to lower the barrier for
deploying and managing new functionality, applications, and services

437ANYCAST IMPLEMENTATION IN SDN

in the networks. Thus, the preceding issues encountered in the wide
deployment of application-layer anycast and IP anycast can be read-
ily solved by this new paradigm of architecture. The main thrusts
in SDN are OpenFlow [8] by the Open Networking Foundation
(ONF); Protocol Oblivious Forwarding (POF) [9] by Huawei
Technologies Co., Ltd.; PEARL [10] by the Institute of Computing
Technology, Chinese Academy of Sciences; etc. OpenFlow is cur-
rently the most promising and popular realization of SDN and has
been commercially produced by CISCO, HP, Juniper, NEC, etc. In
OpenFlow, the software running at a logically centralized controller,
manages a collection of switches hosting programmable forwarding
tables. In an effort to ease the development and deployment of any-
cast service in the Internet, this chapter makes the following main
contributions:

• This chapter presents a new load-aware anycasting based
on OpenFlow technology for intradomain environments
and develops the Information Gathering Module, Routing
Decision Module, Address Resolution Module, and Data
Transmission Module to support anycast service and load-
aware mechanism at the controller.

• Extensive Mininet experiments are conducted to validate the
effectiveness and accuracy of the proposed OpenFlow-based
anycast scheme. The results demonstrate that the performance
of the developed load-aware anycast scheme outperforms that
of existing solutions in terms of anycast request delay and loss
probability.

• The developed OpenFlow-based anycast scheme for the
intradomain environment is then extended to the solution for
interdomain networks of global deployment strategies. The
analysis shows that this strategy can be adopted as an evolv-
able way for the large-scale deployment of load-aware anycast
service in the current Internet.

The remainder of this chapter is organized as follows. “Related
Work” presents the existing studies on anycast implementation and
the issues encountered. The preliminaries of SDN and OpenFlow are
shown in “Preliminaries of SDN and OpenFlow.” “Implementation of
Anycast Service Based on OpenFlow in Intradomain Environments”

438

describes the design of load-aware anycasting based on OpenFlow
for a single autonomous system (AS), including the system architec-
ture and, particularly, the design of the OpenFlow controller, with
Information Gathering Module, Routing Decision Module, Address
Resolution Module, and Data Transmission Module to support
 anycast service. The extensive Mininet experiments and analysis are
conducted in “Numerical Results and Analysis.” “Extension of Anycast
Implementation in Interdomain Environment” then extends the pro-
posed scheme to the solution for the interdomain of multidomain
 scenarios to support evolvable deployment of load-aware anycast ser-
vice in a global environment. This chapter ends with the “Conclusion.”

Related Work

The existing studies on the investigation of anycast service can be
classified into two categories: application-layer anycast and IP any-
cast. For example, Ma et al. [11] targeted the challenges of anycast
implementation in the large-scale global environments and managed
to solve the problems of scalability to worldwide implementation,
anycast query latency minimization, and optimal server selection
strategies. The authors in Ref. [12] presented a context-aware any-
cast multimedia provisioning scheme in the application layer by
using the distributed deployed service registry nodes that collect and
maintain the server’s contexts and content descriptions, and perform
the mapping of the anycast address of the client request to the uni-
cast address of the most convenient server based on the contexts of
the clients and servers. Bhattacharjee et al. [13] designed a special
name structure for application-layer anycast service and adopted a
resolver to translate anycast address to IP address. The communi-
cation procedure is similar with the domain name system (DNS)
resolution. The proposed scheme is simple and easy to be deployed,
but it is nonsensitive to the topology and load status changes. The
authors in Refs. [14] and [15] used the statistic and stochastic meth-
ods in the scheduling of the anycast manager, which improves the
performance of application-layer anycast. Garcia-Luna-Aceves and
Smith [16] proposed a mechanism to accelerate the process of any-
cast address translation, which alleviates the performance degrada-
tion resulted by address translation, but this scheme cannot solve the

439ANYCAST IMPLEMENTATION IN SDN

problem radically. The authors in Ref. [17] investigated the problem
of directing clients to the replicated servers and presented an any-
casting paradigm at the application layer by providing a service that
uses an anycast resolver to map an anycast domain name and a selec-
tion criteria into an IP address.

On the other hand, the main focus of IP anycast is the design
of routing strategies and the improvement of protocols to support
anycast service in the current IP architecture. For example, Alzoubi
et al. [18] presented a practical architecture for load-aware IP any-
cast based on the traditional route control technology and its usage
in CDN environments. The proposed scheme made use of route
control mechanisms to consider server and network load to realize
load-aware anycast. The authors in Ref. [19] developed a distrib-
uted system that can offload the burden of replica selection while
providing these services with a sufficiently expressive interface for
specifying mapping policies. The prototyping of the system sup-
ports the IP anycast and can handle many customer services with
diverse policy objectives. Katabi and Wroclawski [20] proposed an
infrastructure to achieve global deployment of IP anycast, which
was extended by Ballani and Francis in Ref. [6]. Lenders et al. [21]
proposed a density-based anycast routing strategy to improve the
stability of IP anycast. The authors in Ref. [22] proposed a new any-
cast communication model based on IPv6 to solve the problems of
scalability and communication errors between clients and servers. A
proxy-based architecture that provides the support for stateful any-
cast communications, while retaining the transparency offered by
the native anycast, was proposed in Ref. [23] to overcome the rout-
ing scalability issues and the lack of stateful communication support
in the traditional IP anycast.

To the best of our knowledge, there is little research conducted in
the current literature to investigate the performance of anycast service
using OpenFlow. Very recently, Othman and Okamura [24] proposed
a content anycast solution using OpenFlow to improve the effective-
ness of content distribution. However, this study only presented
a mapping mechanism between each file and its associated identi-
fier (ID) and redirected the content requests that cannot be handled
by one server to another, rather than solving the inherent problems
resulting from the traditional anycast service.

440

Preliminaries of SDN and OpenFlow

SDN [25] is a promising technique to lower the barrier for deploying
and managing new functionality, applications, and services in the net-
works. OpenFlow [26] was raised in 2008 by the Clean State Team of
Stanford University, and it has been the promising and popular tech-
nology to realize the SDN because of its ability to support the decou-
pling of the control plane and the data (forwarding) plane. OpenFlow
centralizes the control of the flow table in the switch devices to an
external programmable and flexible controller, and provides a secure
protocol to facilitate the communication between the controller and
switch devices. OpenFlow has been commercially deployed in data
center networks and wide area networks such as Google.

A packet is forwarded by the switches based on the entries in the
flow table. OpenFlow switches possess a much simpler flow table than
ordinary switches. The flow table in the OpenFlow switch consists of
many flow entries, each of which includes six parts: Match Fields,
Priority, Counters, Instructions, Timeouts, and Cookie, as shown in
Figure 17.1. The Match fields is used to match against packets, which
consists of ingress port and packet headers; the Priority is adopted for
matching the precedence of the flow entry; the Counters is used to
update for matching packets; the Instructions is used to modify the
action set or pipeline processing; the Timeouts sets the maximum
amount of time or idle time before flow is expired by the switch; and
the Cookie is the opaque data value chosen by the controller, which
can be used by the controller to filter flow statistics, flow modification,
and flow deletion.

The standard v1.3 of OpenFlow supports 40 match fields, where
10 match fields are required to be supported by a switch, including
Ingress Port, Ethernet Source Address and Destination Address,
Ethernet Type, IPv4 or IPv6 Protocol Number, IPv4 Source Address
and Destination Address, IPv6 Source Address and Destination
Address, transmission control protocol (TCP) Source Port and

Match fields InstructionsPriority Counters Cookie Timeouts

Figure 17.1 Main components of a flow entry in a flow table. (From OpenFlow switch spec
ification. Available at http://www.opennetworking.org/images/stories/downloads/specification/
openflowspecv1.3.0.pdf.)

http://www.opennetworking.org
http://www.opennetworking.org

441ANYCAST IMPLEMENTATION IN SDN

Destination Port, and user datagram protocol (UDP) Source Port and
Destination Port [26].

Implementation of Anycast Service Based on
OpenFlow in Intradomain Environments

The System Architecture

The proposed architecture for an anycast system based on OpenFlow
technology consists of anycast servers providing anycast service,
the anycast client, OpenFlow-enabled anycast (OFA) switches, and
the anycast controller, where anycast servers and anycast clients are
directly or indirectly connected by OFA switches. In this section, we
consider the case for the intradomain networks of a single AS, where
the OFA switches are deployed in the subnetworks of an AS and are
interconnected through IP tunnel or dedicated link to form a wide-
area layer 2 network (see Figure 17.2). The anycast controller has IP
connections with OFA switches.

The anycast controller is the key component in this system, with
the aim of assigning and recycling anycast addresses and making the
reasonable and appropriate routing decisions. To increase the scal-
ability of supporting more anycast service, we apply a set of addresses
for anycast services. The anycast controller can collect the status and
information of OFA switches and the connected anycast servers/

IP tunnel or dedicated link

Connection between controller and switch

Connection between server/client and switch

Anycast
server

Anycast
server

Anycast
server

Anycast
clientAnycast

controller

AS

OFA
switch

OFA
switch

C

Subnetwork

Figure 17.2 System architecture of OpenFlowbased anycasting in an AS.

442

clients, and make the routing decisions for anycast requests according
to various performance metrics. The routing decisions are added to
the OFA switches as the entries in the flow table. The OFA switches
forwards the packets according to the entries in the flow table. In
addition, the OFA switches possess the ability to advertise the prefix
of anycast addresses.

The Design of the Anycast Controller

OpenFlow achieves the higher flexibility in the routing of network
flows and the freedom to change the behavior of network traffic by sep-
arating the control plan in network devices from the data plane, result-
ing in the importance of the controller in OpenFlow technologies. In
this section, the controller will be designed to support anycast service,
as shown in Figure 17.3. Many kinds of OpenFlow controller system
have been widely reported, such as POX, NOX, Maestro, Beacon,
simple network access control (SNAC), Floodlight, etc. Because of the

Anycast controller

Information
gathering
module

Routing decision
module

Address
resolution

module

Data transmission
module

Anycast server

�e network formed by
OFA switches

Anycast server Anycast client

Figure 17.3 Design of the anycast controller.

443ANYCAST IMPLEMENTATION IN SDN

feature of rapid development and prototyping of network control soft-
ware, in this chapter, we develop the anycast controller based on the
POX platform [27] and particularly design the Information Gathering
Module, Address Resolution Module, Routing Decision Module, and
Data Transmission Module for anycast service. In what follows, the
detailed design of these modules will be presented.

Information Gathering Module The anycast controller is responsible for
being aware of the topology changes and the status changes of loads
at the anycast servers/clients and network links to make appropriate
decisions of routing strategies. If the server selection in anycast ser-
vice depends on the metrics of hop-count from the anycast client who
originates the requests to the anycast server, the anycast controller
must be aware of the network topology. On the other hand, if the load
balance needs to be considered in routing decision making, the load
status of each network link and anycast servers and clients should be
known by the controller.

The anycast controller possesses the abilities to detect the network
topology and load status of anycast servers and clients and network
links by communicating with OFA switches based on the OpenFlow
protocol [26].

• The OFA switches report the changes of ports to the anycast
controller when receiving a Port-Status message of asynchro-
nous type. This can be used by the anycast controller to detect
the topology changes of the underlying networks.

• The anycast controller can get the status information of OFA
switches by sending a Read-State message of controller-to-
switch type. Keeping track of the status statistics of all OFA
switches, the anycast controller can be aware of the required
information, for example, load status on network links, of the
whole network.

For the implementation, we can set a timer in the anycast control-
ler to trigger a request for the required information to OFA switches
periodically. According to the response of the OFA switches, the any-
cast controller can be aware of the topology of the whole network
and monitor the load status of each link and port, which is helpful to

444

support routing decision making, stated in the next subsection, under
different measurement metrics.

Routing Decision Module This module makes routing decisions
for packets that fail to match the entries in the flow tables of
OFA switches. In the proposed controller, two routing metrics are
considered: hop counts and link loads. In what follows, the imple-
mentation of the two strategies in the routing decision module will be
presented.

The Routing Strategy Based on Hop Counts The routing strategy based
on the hop counts choose the nearest anycast server to serve the
request, where the term nearest is calculated by the hop counts from
the anycast server and the anycast client who originates the request.
To achieve this purpose, it is necessary to calculate the hop counts
between any two OFA switches in the network. If the entire network
topology is abstracted as a graph, then the problem is transformed into
calculating the shortest path between any two points in the graph.

The Floyd-Warshall algorithm has been widely adopted in the lit-
erature [28–30] for the fundamental graph problem of all-pairs short-
est path, which is then used in this chapter to carry out the shortest
path calculation between two OFA switches. In the Floyd-Warshall
algorithm, there are two possible shortest paths from Point A to Point
B in the graph. One is the path that connects Point A and Point B,
and the other is the path from Point A to Point B through some other
points, say, Point C. Let Distance(A, B) represent the shortest path
from Point A to Point B, and let P denote the set of all points in the
graph. Thus, for ∀C ∈ P, C ≠ A, C ≠ B,

 Distance(A, C) + Distance(C, B) > Distance(A, B).

Then, once traversing all points in the graph, Distance(A, B) records
the shortest path from Point A to Point B.

The Routing Strategy Based on Link Loads The routing strategy based
on link loads choose the best anycast server to serve the request, where
the term best means that the link between the anycast client and the
anycast server has the optimal loads. The link loads can be measured
as the number of packets transferred through the link per time unit,

445ANYCAST IMPLEMENTATION IN SDN

which can be obtained by the counters of flow table entries in the OFA
switches [26] as specified in “Preliminaries of SDN and OpenFlow,”
and thus can be captured by the anycast controller through the
OpenFlow protocol between the controller and the switches.

In the design of the anycast controller, we also adopt the Floyd-
Warshall algorithm [30] to perform routing strategies based on the
link loads, where the difference from the routing scheme based on
the hop counts is that the links in the network topology are weighted
with the loads. Algorithm 1 shows the calculation of the path using
the routing strategy based on link loads.

Algorithm 1: The calculation of the path based on link loads

Input: Load_matrix[N][N] // representing the link load between
node i and node j
Output: Path[N][N] and Output_port[N][N] // Path[i][j] denotes the
path between node i and node j; Output_port[i][j] represents the out-
put port at node i if the packet destination is node j

1. N is the number of OFA switches;
2. Initialization Output_port[N][N];
3. For i in the range (1, N)
4. For j in the range (1, N)
5. If there exists a link between node i and node j
6. Output_port[i][j] = get_port(link(i, j));
7. Else
8. Output_port[i][j] = NULL;
9. EndIf
10. EndFor
11. EndFor
12. Path = Load_matrix;
13. For k in the range (1, N)
14. For i in the range (1, N)
15. For j in the range (1, N)
16. If Path[i][j] > Path[i][k] + Path[k][j]
17. Path[i][j] = Path[i][k] + Path[k][j];
18. Output_port[i][j] = Output_port[i][k];

446

19. EndIf
20. EndFor
21. EndFor
22. EndFor
23. Return Path[N][N] and Output_port[N][N]

Address Resolution Module The main task of the Address Resolution
Module is to generate Address Resolution Protocol (ARP) response
packets for anycast requests. Specifically, the anycast controller extracts
anycast IP address from the ARP request packets and invokes the
Routing Decision Module to select a destination anycast server. The
Routing Decision Module then returns the Medium Access Control
(MAC) address of the selected anycast server and generates an ARP
response packet using the destination MAC address. Finally, the
Address Resolution Module invokes the Data Transmission Module
to deliver the ARP response to the anycast client.

An anycast client should convert an IP address into a MAC address
before communicating with anycast servers in the same AS. In par-
ticular, according to the ARP protocol, an IP address can be resolved
into only one MAC address in an AS. With an anycast service, there
may be more than one anycast servers that share the same anycast
address in an AS, and thus, an anycast client who originates an ARP
request may receive multiple ARP responses, resulting in ARP reso-
lution collision.

The ARP resolution collision can be resolved by changing the
way that ARP requests are sent. In anycast service, only one server is
selected to respond to an anycast request, and thus, it does not require
all the anycast servers to respond to the ARP request. With the help
of the anycast controller, the OFA switches along the path between
the anycast client and the given anycast server can be built. The any-
cast controller can then respond to the ARP request on behalf of the
selected anycast server. To avoid the collision, this method ensures
that only one ARP response would be generated in the process of
ARP resolution.

The entry in the flow table of all OFA switches for the ARP request
packet should be added previously to direct this kind of packet to the
anycast controller, which will choose an appropriate anycast server
with the help of the Routing Decision Module, and then generate

447ANYCAST IMPLEMENTATION IN SDN

an ARP response packet using the selected anycast server’s MAC
address as the MAC source address of the ARP response packet to
send back to the anycast client. Under this circumstance, there is only
one ARP response packet sent to the anycast client from multiple
anycast servers to accomplish an ARP resolution.

Data Transmission Module The Data Transmission Module is a middle-
ware between OFA switches and the Routing Decision Module and
the Address Resolution Module. It receives packets from the OFA
switches and transfers the packets into different modules, and vice
versa.

The data packets that fail to match the entries in the flow table of
an OFA switch will be delivered to the anycast controller. The Data
Transmission Module resolves the header of this packet and, accord-
ing to its protocol type, delivers the packets to the corresponding
modules for the further process, as shown in Figure 17.4.

Numerical Results and Analysis

To evaluate the effectiveness and accuracy of the proposed scheme, we
designed the anycast controller using POX and implemented the OFA
switches and anycast servers/clients in Mininet [31]. POX is a piece
of SDN ecosystem [27], which is a platform used for the rapid devel-
opment and prototyping of network control software using Python.
Mininet is a network emulator that runs a collection of clients/servers,
switches, and network links on a Linux kernel. It adopts lightweight
virtualization to make a single system over the physical network. The
clients/servers in Mininet behaves just like a real machine: one can
secure shell (SSH) to it and run arbitrary programs.

In this chapter, we consider the simulation environment with the
topology of 100 OFA switches in a 10 × 10 grid structure, and each
switch connects with a terminal, where we choose 5% of the terminals
as anycast servers, and the others act as anycast clients who originate
requests. A POX running on another machine acts as the anycast con-
troller. OFA switches, anycast clients/servers, and anycast controllers
are connected by virtual links (VLs) that are generated by Mininet.

Anycast request delay and request loss probability are the two
key performance metrics adopted to evaluate the effectiveness and

448

accuracy of the proposed load-aware anycast scheme. Extensive simu-
lation experiments are conducted under various combinations of the
number of OFA switches, the number of anycast clients/servers, the
bandwidth of VLs, and the status of background traffic. Each simu-
lation was run until the network reaches the steady state. However,
for the sake of specific illustration and without loss of generality, the
results are presented based on the parameters shown in Table 17.1.

Packets that fail to match
the entries in the flow
table of OFA switches

ARP? No

IP? NoYes

No

Yes

ARP request?

Yes Invoking Routing Decision
Module to get next hop

for the packet
Invoking Address

Resolution Module to
generate address resolution

protocol (ARP)
response packets

OFA switch delivers the
packet

Finish

Figure 17.4 Data transmission procedure.

449ANYCAST IMPLEMENTATION IN SDN

Figure 17.5 depicts the anycast request delay and request loss prob-
ability predicated by the existing hop-based scheme and proposed
load-aware scheme against the request generation rate under 1-Mbps
bandwidth of the VL. As can be seen from the figure, increasing the
request generation rate results in the higher request delay and request
loss probability. In addition, as the request generation rate increases,
the proposed load-aware anycasting has the lower request delay and
loss probability in comparison with those predicted by the existing

0 2000 4000 6000
0

100

200

300

Traffic rate (packets/s)
(a)

A
ny

ca
st

 re
qu

es
t d

el
ay

 (m
s)

Existing hop-based scheme
Proposed load-aware scheme

0 2000 4000 6000
0

0.12

0.24

0.36

Traffic rate (packets/s)
(b)

Re
qu

es
t l

os
s p

ro
ba

bi
lit

y

Existing hop-based scheme
Proposed load-aware scheme

Figure 17.5 (a) Anycast request delay and (b) request loss probability predicated by the existing
hopbased scheme and proposed loadaware scheme against a traffic rate under 1Mbps bandwidth
without background traffic.

Table 17.1 System Parameters of the Simulation

SYSTEM PARAMETERS VALUE

Physical machine (PM) 2.5GHz Intel Core i5 processor
4GB 1600MHz memory

Operating system (OS) of PM Mac OS X 10.7.5 Lion
Virtual machine (VM) Oracle VirtualBox 4.2.4 r81684
VM image Official Mininet 2.0.0 [32]
No. of OFA switches 100
No. of anycast servers 5
No. of anycast clients 95
VL type Mininet TCLink
VL bandwidth 1 Mbps, 2 Mbps
Background traffic UDP
Queue size of OFA switches 64 packets
Queue size of anycast clients 64 packets
Packet size 64 B

450

hop-based anycast, especially under a moderate and higher request
generation rate.

Figure 17.6 depicts the anycast request delay and request loss
probability for both the hop-based anycast scheme and the proposed
load-aware anycast scheme against the request generation rate under
2-Mbps bandwidth of VLs and 0.5-Mbps background UDP traf-
fic to mimic the behavior of networks running for a certain period.
The results reveal the similar phenomenon as shown in Figure 17.5,
although the network has run for some time. The results also empha-
size that, as the loads of the network are going moderate, the load-
aware anycasting has significant advantage on the request delay and
loss probability.

To further evaluate the merit of the proposed load-aware any-
cast scheme, we consider the case that some VLs are congested in
the topology of 100 OFA switches in a 10 × 10 grid structure with
2-Mbps bandwidth of VLs, and each switch connects with a terminal
where we choose 2 terminals (i.e., the upper left corner and the bot-
tom right corner shown in Figure 17.7) as anycast servers, and the
other 98 terminals act as anycast clients. In particular, we consider
the three cases shown in Table 17.2 with VLs 1, 2, and/or 3 added
with 2-Mbps background UDP traffic to mimic the congested sta-
tus of the link. To this end, Figure 17.8 presents the anycast request
delay and request loss probability predicted by the existing hop-based
anycast scheme and load-aware anycast scheme under the three cases
shown in Table 17.2, and the anycast request generation rate is set

0 1750 3500 5250 70000

100

200

300

Traffic rate (packets/s)
(a)

A
ny

ca
st

 re
qu

es
t d

el
ay

 (m
s) Existing hop-based scheme

Proposed load-aware scheme

0 1750 3500 5250 70000

0.08

0.16

0.24

Traffic rate (packets/s)
(b)

Re
qu

es
t l

os
s p

ro
ba

bi
lit

y Existing hop-based scheme
Proposed load-aware scheme

Figure 17.6 (a) Anycast request delay and (b) request loss probability predicated by the exist
ing hopbased scheme and proposed loadaware scheme against a request generation rate under
2Mbps bandwidth and 0.5Mbps background UDP traffic.

451ANYCAST IMPLEMENTATION IN SDN

to be 200 packets per second. From the figure, we can find that the
anycast request delay and loss probability predicted by the existing
hop-based scheme are greater than those of the proposed load-aware
scheme because the hop-based anycasting encountered the congested
VLs 1, 2, and/or 3, whereas the load-aware anycast scheme can bypass
the congested link and leverage the light-load link to forward packets.

OFA switch

Anycast controller

Anycast client
4

3

1

2

Figure 17.7 Network topology in the 10 × 10 grid structure of OFA switches for performance
analysis.

Table 17.2 Three Cases Considered for Performance Analysis

CASES DESCRIPTION

Case I Add 2Mbps background UDP traffic on VL 1
Case II Add 2Mbps background UDP traffic on VLs 1 and 2
Case III Add 2Mbps background UDP traffic on VLs 1, 2, and 3

Case I Case II Case III
0

20

40

60

(a)

A
ny

ca
st

 re
qu

es
t d

el
ay

 (m
s) Existing hop-based scheme

Proposed load-aware
scheme

Case I Case II Case III
0

0.15

0.3

0.45

(b)

A
ny

ca
st

 lo
ss

 p
ro

ba
bi

lit
y

Existing hop-based scheme
Proposed load-aware
scheme

Figure 17.8 (a) Anycast request delay and (b) request loss probability predicated by the existing
hopbased scheme and proposed loadaware scheme against the three cases shown in Table 17.2.

452

In addition, the performance of the load-aware anycast scheme under
Case II does not degrade too much in comparison with that under
Case I. This is because at least two alternative links can be shared by
the load-aware scheme under these two cases, which alleviates the
burden of each VL. In contrast, the performance of the load-aware
anycasting under Case III has significant degradation compared with
that of Case I and Case II.

Extension of Anycast Implementation in Interdomain Environment

The anycast has been viewed as a powerful packet addressing and
delivery model, and its implementation in the interdomain environ-
ment has been widely reported [6,20,33]. In this section, the proposed
intradomain anycasting scheme will be extended to the case of inter-
domain environments with the gradual deployment mode.

In particular, we consider three cases of the configuration and
deployment of OFA switches and anycast servers at each AS shown
in Figure 17.9: (1) the AS with the deployment of OFA switches and
the connected anycast server (see AS 1 and AS 2 in Figure 17.9);
(2) the AS with the deployment of OFA switches only (see AS 3 in
Figure 17.9); and (3) the AS without the deployment of any OFA
switch and anycast server (see AS 4 in Figure 17.9).

The anycast requests originated by an anycast client need to be
directed to an OFA switch. In this chapter, we consider the cases
that (1) the anycast clients are located at the AS with one or more
OFA switches (see AS 3 in Figure 17.9) and (2) the anycast clients are
located at the AS without the OFA switch (see AS 4 in Figure 17.9).
For both cases, the OFA switches advertise the address prefix for any-
cast service. Note that only one OFA switch makes the advertisement
if multiple switches exist in an AS. For the former case, according to
the address prefix advertisement by the OFA switches, the packets
with the anycast address as the destination can be directed to the
OFA switch in the AS. For the latter case, the anycast requests will
be directed to the Border Gateway Protocol (BGP) router in the AS,
and the BGP router can then, according to the address prefix adver-
tisement, find the AS that possesses the OFA switches. The anycast
requests will then be directed to the BGP router of that AS, and also,

453ANYCAST IMPLEMENTATION IN SDN

according to the address prefix advertisement in that AS, the anycast
request can be finally directed to the OFA switch.

Once they reach the OFA switch, the anycast requests will be
directed to the anycast server according to the entries in the flow table
of the OFA switch. If the anycast requests cannot be matched against
the entries in the flow table, they will be directed to the anycast con-
troller who can calculate the required routing path based on the design
mechanism stated in “The Design of the Anycast Controller” and add
the corresponding entries in the flow table of the OFA switches along
the path to the anycast server.

The Merit of the Proposed Anycast Implementation
Strategy in the Interdomain Environment

In this section, the proposed scheme will be analyzed in terms of
flexibility, feasibility, and scalability. The DNS is a typical example

BGP
router

OFA
switch

AS 1 Anycast
server

Router
Anycast

client

AS 4

Anycast
controller

Anycast
server Anycast

client

AS 2

AS 3

C

IP tunnel or dedicated link

Connection between anycast controller and OFA switch

Connection between server/client and switch, between BGP router
and routers in the AS, between routers in the AS and OFA switches

Figure 17.9 Implementation of anycast service based on OpenFlow in the interdomain
environment.

454

of anycast implementation in interdomain environments. Because the
DNS has been widely deployed, its flexibility and scalability has been
validated. Therefore, we mainly compare the flexibility between these
two schemes.

• Flexibility. Different anycast services should provide diverse
strategies on load-aware routing for different scenarios.
However, such consideration is quite difficult to be realized
for DNS. In contrast, with the proposed interdomain anycast
implementation, the strategies for the different load-aware
requirements can be readily realized at the anycast controller
with a low cost.

• Feasibility. The proposed strategy does not need to change the
current network protocols and architecture; however, it needs
to deploy OFA switches in the current Internet to gradually
support anycast service.

• Scalability. With a new anycast service, the proposed scheme
only needs to provide an address in the anycast address space,
establish the connection between new anycast servers and the
OFA switches, and add the corresponding new entries in the
flow tables of OFA switches for this new anycast service by
the anycast controller.

Conclusion

This chapter has investigated the anycast implementation in SDN/
OpenFlow environments and presented a load-aware anycasting
implementation in the OpenFlow networks of intradomain envi-
ronments. Extensive Mininet experiments have been conducted to
validate the effectiveness and accuracy of the proposed load-aware
anycast scheme. The results have demonstrated that the performance
of the developed anycasting outperforms that of existing solutions
in terms of anycast request delay and loss probability. The developed
OpenFlow-based anycast scheme for intradomain environments has
then been extended to a solution for the interdomain global deploy-
ment strategies. The analysis has shown that this strategy can be
adopted as an evolvable way for the large-scale deployment of load-
aware anycast service for the current Internet.

	CHAP15,16.pdf (p.1-48)
	020
	021

	CHAP17.pdf (p.49-68)
	022

