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Abstract: Virtualization is one of the core technologies used in cloud computing to provide services
on demand for end users over the Internet. Most current research allocates virtual machines
to physical machines based on CPU utilization. However, for many applications that require
communication between services running on different servers, communication costs influence the
overall performance. Therefore, this study focuses on the optimal allocation of virtual machines across
multiple geographically dispersed data centers, with the objective of minimizing communication
costs. The original problem can be constructed as a quadratic assignment problem that is a
classical NP-hard combinatorial optimization problem. This study adopts an efficient deterministic
optimization approach to reformulate the original problem as a mixed-integer linear program that
may be solved to obtain a globally optimal solution. Since the required bandwidth matrix and
communication cost matrix are symmetric, the mathematical model of virtual machine placement
can be simplified. Several numerical examples drawn from the literature are solved to demonstrate
the computational efficiency of the proposed method for determining the optimal virtual machine
allocation in cloud computing.

Keywords: virtual machine placement; quadratic assignment problem; globally optimal solution

1. Introduction

Cloud computing has become a popular technology used to provide services on demand for
end users over the Internet within the last decade. It enables users to dynamically scale up software,
platforms, and hardware infrastructure services. The main advantages for enterprises of adopting
cloud-computing services such as Amazon EC2 Services are flexibility, reliability, and cost savings.
In addition, the rapid growth of mobile devices has encouraged enterprises to move applications to
the Internet. Because of this, more and more data centers are being built to satisfy increasing demand
for cloud-computing services.

The expansion of data centers has significantly increased the costs of data center operators. Indeed,
the average server utilization varies dramatically over time and physical resources in data centers are
seriously underutilized. In order to efficiently use physical resources in data centers, most physical
servers in data centers adopt virtualization technology. Visualization enables the sharing of computer
hardware by multiplexing virtual machines on the same set of hardware hosts. Based on a service
level agreement (SLA), data centers may provide services for use by separate virtual machines that are
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located in different physical machines. Each virtual machine maintains a specific level of resources,
such as CPU, storage, bandwidth, and memory, to guarantee application performance isolation
and security. Since many services only occupy a small portion of physical resources, visualization
technology provides flexible resource management and reduces the wastage of resources in data
centers [1–3].

Most current research allocates virtual machines to physical machines based on CPU utilization.
However, for many applications requiring communication between services, communication costs
influence the overall performance. Due to the shared nature of multi-tenant data centers [4], network
bandwidth becomes a scarce resource shared among many applications. Generally, data centers
are placed all across the world following consideration of reliability, security and user demand.
For distributed data centers, communication costs are the major cost. With limited bandwidth links
between data centers, bandwidth-intensive applications compete for scarce network resources and
execution times become unpredictable. Therefore, the quality of service cannot be guaranteed [5].

This study focuses on the optimal virtual machine placement across multiple geographically
dispersed data centers. The aim of the virtual machine placement in this study is to minimize
communication costs between network services under quality of service requirements. The original
problem can be constructed as a quadratic assignment problem (QAP) that is a classical NP-hard
problem. Many heuristic methods have been developed to solve the QAP. However, they cannot be
guaranteed to converge on a globally optimal solution, especially for large-scale problems. This study
adopts transformation techniques to reformulate the original problem as a mixed-integer linear
program that may be solved to obtain a globally optimal solution. Several numerical examples drawn
from the literature are solved to indicate computational efficiency by comparing the proposed method
with the current method for virtual machine placement problems.

When compared with existing methods, this study has the following merits:

• Global optimality guarantee: Compared with heuristic methods, the proposed approach
transforms the virtual machine placement problem into a mixed-integer linear programming
problem and is thus guaranteed to reach a global optimum.

• Computational efficiency enhancement: Compared with the existing deterministic method [5],
the proposed method adds appropriate constraints to reduce the number of feasible solutions for
enhancing computational efficiency.

The rest of this paper is organized as follows. In Section 2, we discuss relevant research on the
optimal allocation of virtual machines. Section 3 introduces the proposed method for determining the
placement of virtual machines across multiple data centers. Computational results are presented in
Section 4. Finally, concluding remarks are made in Section 5.

2. Literature Review

Since use of server virtualization technology is an effective way to improve resource utilization
and reduce energy costs in data centers, the virtual machine placement problem has received much
attention from both researchers and practitioners. Virtual machine placement is the process of selecting
the most suitable physical machine (PM) for running a given virtual machine (VM). Therefore, a
VM placement algorithm aims to design the most appropriate mapping of VM to PM. Cloud service
providers may use different VM placement approaches. Silva Filho et al. [3] have provided a complete
survey on optimizing virtual machine placement and migration in cloud environments. They have
discussed the problem formulations, advantages, and shortcomings of relevant research.

Many different goals for VM placement have been considered in previous works, including energy
saving, cost reduction, load balancing, reduction of SLA violations, network delays, congestion, and
service downtime [3]. According to the goals of placement, VM placement approaches can be generally
divided into two types [1]:
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• Power-based approach: Determines an energy-efficient VM-PM mapping based on resource
utilization [6–8].

• QoS-based approach: Determines a VM-PM mapping using the maximum fulfillment of quality
of service requirements [7–9].

According to the type of optimization techniques used to obtain a VM-PM mapping, the VM
placement techniques can largely be categorized into six categories [1,10]:

• Heuristic Bin Packing: The VM placement problem is formulated as vector bin packing. VMs are
considered to be small items that are tightly packed into the minimum number of bins, each
considered a PM. Several heuristic methods are developed to approximate the optimal solution to
this packing problem.

• Biology-based optimization: Several bio-inspired optimization techniques such as the ant
colony optimization method, the self-adaptive particle swarm optimization method, and genetic
algorithms are applied to pack VMs into the smallest number of PMs, given the current workload.

• Linear programming: The VM placement problem is constructed as a linear programming problem
which considers a number of constraints derived from practical applications. LP-relaxation-based
methods are developed to solve the formulated model.

• Constraint programming: Van et al. [11] have presented a resource management framework,
which includes a dynamic utility-based VM provisioning manager and a dynamic VM placement
manager, to obtain a suitable VM-PM mapping. Both management tasks are regarded as constraint
satisfaction problems. More practical aspects can be taken into consideration by extending the
constraints in these problems.

• Stochastic integer programming: Because the future demand of VM for providing network
services is uncertain, the stochastic integer programming technique is used to predict a suitable
VM-PM mapping.

• Simulated annealing optimization: Liao et al. [12] have proposed a dynamic runtime mapping
framework that adopts a simulated annealing optimization algorithm to map VMs onto a small
set of PMs in order to minimize power consumption without significant system degradation.

Usmani & Singh [1] and Zheng et al. [10] have reviewed state-of-the-art VM placement and
consolidation techniques. The challenge with the VM placement problem is how to find an optimal
solution efficiently, especially when the VM placement problem is a kind of NP-hard problem. Most VM
placement methods only consider CPU and memory resources and ignore networking limitations.
However, communication between network services running on servers located in different data
centers makes the limited network bandwidth an important issue for allocating VMs to PMs. Some
research [13–15] has investigated networking needs in addition to CPU and memory needs, but most
scenarios have only involved a single data center [5,16].

This study discusses the VM placement problem, with reference to Stefanello et al. [5], with
consideration of multiple data centers interconnected with limited bandwidth links. We assume
there are multiple users connected to different data centers who use cloud-computing services. The
latency between every pair of data centers is known. To guarantee application performance for
users, the maximum latency between users and the virtual machines assigned for the application
must be lower than a specific level. To meet quality of service guarantees for the applications, the
minimum bandwidth and maximum latency between each pair of virtual machines assigned for
the applications must satisfy requirements. The objective is to derive an optimal VM placement
that satisfies performance requirements and minimizes communication costs. The notations used
throughout this study, with reference to Stefanello et al. [5], are as follows.

Parameters:

N: set of data centers;
K: set of virtual machines;
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U: set of users;
ai: capacity in number of VMs that data center i can host;
Bij: bandwidth between data centers i and j;
Lij: latency between data centers i and j;
Cij: cost of transferring a unit of data between data centers i and j;
bvw: required bandwidth between VMs v and w;
lvw: required latency between VMs v and w;
tvu: required latency between user u and VM v;
d(u): the data center which hosts user u;
civ: cost of allocating VM v in data center i;
z: scaling cost factor.

Decision variables:

xiv:xiv = 1 if VM v is allocated to data center i, and otherwise xiv = 0.

The VM placement problem, with reference to Stefanello et al. [5], can be formulated as follows.
Minimize

∑i∈N ∑v∈K civxiv + z ∑i∈N ∑j∈N ∑v∈K ∑w∈K xivxjwCijbvw, (1)

subject to:

∑v∈K xiv ≤ ai, ∀i ∈ N, (2)

∑i∈N xiv = 1, ∀v ∈ K, (3)

∑v∈K ∑w∈K xivxjwbvw ≤ Bij, ∀i, j ∈ N, (4)

∑i∈N ∑j∈N xivxjwLij ≤ lvw, ∀v, w ∈ K, (5)

∑i∈N xivLi,d(u) ≤ tvu, ∀u ∈ U, ∀v ∈ K, (6)

xiv ∈ {0, 1}, ∀i ∈ N, ∀v ∈ K. (7)

The objective function (1) consists of two parts. The first part is the initial cost and the second
part is the cost of communication. The VM placement problem considered in this study aims to
minimize the cost of allocating VMs to PMs and communication costs resulting from each pair of
virtual machines. Constraint (2) indicates that the number of VMs allocated to a data center cannot
exceed the capacity of the data center. Constraint (3) ensures that each VM is assigned to exactly one
data center. Constraint (4) guarantees that the total bandwidth required by all pairs of VMs allocated
to data centers i and j must be less than or equal to the given bandwidth between the data centers
i and j. Constraint (5) ensures that the latency between each pair of VMs allocated to data centers i
and j should be less than or equal to the given latency between data centers i and j. Constraint (6)
indicates that the latency between data centers i and d(u) should be less than or equal to the given
latency between VM v and user u if user u is located in data center d(u) and accesses network services
on VM v in data center i. Constraint (7) defines the variables domain.

The above model of the VM placement problem is a quadratic assignment problem (QAP) because
the objective function and constraints (4) and (5) involve bilinear terms xivxjw of discrete variables.
Since multiple virtual machines may be assigned to a VM, the VM placement problem is, more precisely,
a generalized quadratic assignment problem (GQAP), which has been proven to be a definitively
NP-hard problem [17]. Additionally, the complexity of the GQAP is significantly higher than that of
the QAP [17].

Letting yivjw = xivxjw, ∀i, j ∈ N, v, w ∈ K, Stefanello et al. [5] proposed a mixed-integer linear
mathematical model for the VM placement problem, named the LMVMP (Linear Model for the VM
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Placement), with reference to the Frieze and Yadegar [18] method for the QAP and the Lee and Ma [17]
method for the GQAP. The LMVMP can be formulated as follows.

LMVMP [5]:
Minimize

∑i∈N ∑v∈K civxiv + z ∑i∈N ∑j∈N ∑v∈K ∑w∈K yivjwCijbvw, (8)

subject to:

∑v∈K xiv ≤ ai, ∀i ∈ N, (9)

∑i∈N xiv = 1, ∀v ∈ K, (10)

∑i∈N yivjw = xjw, ∀v, w ∈ K, ∀j ∈ N, (11)

yivjw = yjwiv, ∀v, w ∈ K, ∀i, j ∈ N, (12)

∑v∈K ∑w∈K yivjwbvw ≤ Bij, ∀i, j ∈ N, (13)

∑i∈N ∑j∈N yivjwLij ≤ lvw, ∀v, w ∈ K, (14)

∑i∈N xivLi,d(u) ≤ tvu, ∀u ∈ U, ∀v ∈ K, (15)

xiv ∈ {0, 1}, ∀i ∈ N, ∀v ∈ K, (16)

0 ≤ yivjw ≤ 1, ∀i, j ∈ N, ∀v, w ∈ K. (17)

In the LMVMP model, all bilinear terms xivxjw are replaced with yivjw. Constraints (11) and (12)
define the relationship between variables xiv, xjw and yivjw, ∀i, j ∈ N, v, w ∈ K. However, the number
of variables changes from O(|N||K|) to O(|N|2|K|2) [5].

3. Proposed Method

Since the LMVMP model [5] introduces numerous variables, the combination of variables increases
rapidly as the number of virtual machines and/or the number of data centers increases. This study
improves the LMVMP model [5] by adding three constraints (22), (28), and (29) to reduce the number of
feasible solutions for enhancing computational efficiency. The proposed model is described as follows.

Minimize

∑i∈N ∑v∈K civxiv + z ∑i∈N ∑j∈N ∑v∈K,v≤(|K|−1) ∑w∈K,w≥(v+1)(Cijbvw + Cjibwv)yivjw, (18)

subject to:

∑v∈K xiv ≤ ai, ∀i ∈ N, (19)

∑i∈N xiv = 1, ∀v ∈ K, (20)

∑i∈N yivjw = xjw, ∀v, w ∈ K, ∀j ∈ N, (21)

∑j∈N yivjw = xiv, ∀v, w ∈ K, v < w ≤ K, ∀j ∈ N, (22)

∑v∈K ∑w∈K yivjwbvw ≤ Bij, ∀i, j ∈ N, (23)

∑i∈N ∑j∈N yivjwLij ≤ lvw, ∀v, w ∈ K, (24)

∑i∈N xivLi,d(u) ≤ tvu, ∀u ∈ U, ∀v ∈ K, (25)

xiv ∈ {0, 1}, ∀i ∈ N, ∀v ∈ K, (26)

0 ≤ yivjw ≤ 1, ∀i, j ∈ N, ∀v, w ∈ K, (27)

yiviv = xiv, ∀i ∈ N, ∀v ∈ K, (28)

yivjv = 0, ∀i, j ∈ N, j 6= i, ∀v ∈ K. (29)
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Since the required bandwidth matrix and communication cost matrix are symmetric, the objective
function in the model above considers half of the yivjw variables. Because each VM is assigned to
exactly one data center, in constraint (22)

∑j∈N yivjw = (∑j∈N xjw)xiv = xiv. (30)

xiv is a binary variable. Therefore, in constraint (28)

yiviv = xivxiv = xiv. (31)

Because each VM can be only assigned to a single data center, xiv and xjv are not equal to one
simultaneously if j 6= i. In constraint (29),

yivjv = xivxjv = 0, j 6= i. (32)

The fact that there are numerous feasible solutions in the integer programming problem is a
key factor to solving performance. The proposed method uses appropriate constraints so that only a
fraction of the feasible solutions actually need to be evaluated.

4. Numerical Experiments

The purpose of the numerical experiments in this section is to demonstrate the effectiveness and
efficiency of the proposed method in globally solving the VM placement problem. The experiments
were conducted on a PC with a 4.3 GHz Intel Core i7-4770K CPU and 16 GB memory. All reformulated
models were solved using an optimization solver IBM ILOG CPLEX 12.5 with default settings to
evaluate the computational efficiency of optimization methods.

In order to compare the computational efficiency of the proposed method with the LMVMP
model [5], the examples drawn from Stefanello et al. [5] were solved. Table 1 lists the experimental
results of solving the VM placement problems with the proposed method and the LMVMP model [5].
All instances are encoded with the name of the number of data centers, the number of virtual machines,
the number of users and the percentage of overall data center occupation. The CPU time is the average
running time of CPLEX to solve each instance over five runs.

Table 1. Experimental results of the LMVMP (Linear Model for the VM Placement) model [5] and the
proposed method.

Case No. Instance Objective
CPU Time (Seconds)

LMVMP Proposed Method

1 005_015_007_070 25,844.02 0.73 0.66
2 005_015_007_090 23,557.30 7.27 3.25
3 005_015_015_070 10,904.78 0.37 0.39
4 005_015_015_090 24,354.96 1.15 0.69
5 005_015_022_070 14,163.60 0.37 0.41
6 005_015_022_090 32,318.02 1.81 1.53
7 005_020_010_070 38,572.62 33.24 41.43
8 005_020_010_090 64,710.80 16.07 12.86
9 005_020_020_070 55,288.76 25.65 31.81

10 005_020_020_090 57,574.90 0.83 0.70
11 005_020_030_070 28,433.34 2.42 1.68
12 005_020_030_090 66,088.70 0.73 0.70
13 005_025_012_070 43,300.76 154.39 151.15
14 005_025_012_090 10,0865.02 N/A * 6877.55
15 005_025_025_070 42,890.40 10.75 13.96
16 005_025_025_090 103.791.96 N/A * 8021.09
17 005_025_037_070 97,335.12 16.24 27.81

* error due to out-of-memory.
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As seen in Table 1, CPU time increased as the number of virtual machines increased, but CPU
time did not obviously increase as the number of users increased. In most cases, the proposed
method required less CPU time to solve the problem. Additionally, out of seventeen cases, two cases
(005_025_012_090 and 005_025_025_090) formulated by the LMVMP model [5] were solved by CPLEX
and reported an error due to out-of-memory. However, the proposed method could solve all test cases.
Compared with the LMVMP model [5], the proposed method that reduces the number of feasible
solutions requires less memory when solving the formulated models.

In order to clearly compare the results of the proposed method with those of the LMVMP
model [5], CPU times for solving the VM placement problems using the two methods, with 15 VMs
and 20 VMs, respectively, are illustrated in Figures 1 and 2. Figure 1 shows that the proposed method
requires less CPU time for solving Cases 1, 2, 4, and 6. Figure 2 indicates that the proposed method
requires less CPU time for solving Cases 8, 10, 11 and 12. Although the proposed method does not
require less CPU time than the LMVMP model [5] in all cases, the proposed method outperforms the
LMVMP model [5] for all cases with 90% overall data center occupation, that is, Cases 2, 4, 6, 8, 10,
and 12. For the VM placement problems with 5 data centers and 25 VMs, the experimental results
are not plotted in a figure because the LMVMP model [5] could not solve Cases 14 and 16 due to
out-of-memory error. Hence, the out-of-memory errors shown in Table 1 indicate that the LMVMP
model [5] cannot solve Cases 14 and 16, but that the proposed method can solve these two problems in
an identical software and hardware environment.
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5. Conclusions

Visualization technology provides an effective solution for flexible resource management within
data centers. Virtual machine placement significantly affects resource utilization and quality-of-service
guarantees. This study focuses on the optimal placement of virtual machines across multiple
geographically dispersed data centers with minimal communication costs. The original problem
is reformulated as a mixed-integer linear program which may be solved to reach a globally optimal
solution. Experimental results indicate the proposed method can enhance computational efficiency
in most cases compared with the current method for determining the optimal allocation of virtual
machines across multiple data centers. The obtained solution suggests the optimal virtual machine
placement for IT managers to use to reduce the costs of data center operators.

Experimental results indicated that CPU time for solving VM placement problems tends to grow
exponentially as the number of virtual machines increases. Although the proposed deterministic
approach guarantees the obtaining of a globally optimal VM placement under the specified constraints,
its complexity grows rapidly as the number of virtual machines increases. More research will be
required to optimize virtual machine allocation in large-scale problems, including, for instance,
developing a more efficient linearization method or integrating heuristic algorithms. These issues are
important to solving practical VM placement problems and are worthy of future investigation.
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