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Abstract: Water distribution networks are vital hydraulic infrastructures, essential for providing
consumers with sufficient water of appropriate quality. The cost of construction, operation, and
maintenance of such networks is extremely large. The problem of optimization of a water distribution
network is governed by the type of water distribution network and the size of pipelines placed in the
distribution network. This problem of optimal diameter allocation of pipes in a distribution network
has been heavily researched over the past few decades. This study describes the development of
an algorithm, ‘Smart Optimization Program for Water Distribution Networks’ (SOP–WDN), which
applies genetic algorithm to the problem of the least-cost design of water distribution networks.
SOP–WDN demonstrates the application of an evolutionary optimization technique, i.e., genetic
algorithm, linked with a hydraulic simulation solver EPANET, for the optimal design of water
distribution networks. The developed algorithm was applied to three benchmark water distribution
network optimization problems and produced consistently good results. SOP–WDN can be utilized
as a tool for guiding engineers during the design and rehabilitation of water distribution pipelines.

Keywords: water distribution networks; optimization; genetic algorithm; EPANET

1. Introduction

A water distribution network (WDN) is comprised of various elements, such as
reservoirs, pumps, pipes, tanks, and valves. Around 80% of the total cost of a water supply
project is invested in its water distribution system [1]. Hence, the design of a cost-effective
and reliable water distribution network is a must. Optimization of the WDN involves
the design of a reliable, efficient, and cost-effective distribution network that fulfils the
necessary water demands, while maintaining adequate pressure heads.

This is crucial for conservation of water resources, as well as for reducing energy
requirements and maintenance costs. Optimization of WDNs can be categorized into many
types, viz. design, operation, calibration, level-of-service, monitoring system and network
testing. This paper deals with determining the optimal diameters of pipelines in a water
distribution network with a predetermined layout.

Background and Related Work

Over the years, numerous researchers have presented many different methods for
obtaining the optimal solution to the pipe network optimization problem. The Hardy cross
method is considered as the oldest method for solving a pipe network. In this method,
at any pipe junction, the algebraic sum of flow must be zero, and the algebraic sum of
pressure drops at any loop must also be zero [2]. This method was improved upon by
many other researchers. Alperovits and Shamir [3] proposed one of the most significant
approaches for solving the problem of water distribution network design by utilizing the
successive Linear Programming Gradient (LPG) method. This method was adopted and
further expanded upon by other researchers [4,5].
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However, deterministic methods, such as linear programming and non-linear pro-
gramming, presented drawbacks, such as entrapment in local minima, and dependence
on the starting point. Hence, they failed to obtain near optimal solutions for complex,
multi-objective, real-world pipe network problems. It is crucial to escape local minima [6]
and to overcome these drawbacks, researchers began to utilize meta-heuristic algorithms
(genetic algorithms, simulated annealing, etc.) for water network design problems. These
techniques include algorithms having some stochastic components. Goldberg and Kuo
introduced stochastic methods for the optimization of water distribution networks using
the principles of natural selection and genetics [7]. Simpson et al. used simple genetic
algorithms (GA), and obtained a near optimal solution [8], while Simpson et al. [9] com-
pared the GA technique with other methods, such as complete enumeration and non-linear
optimization, and concluded that the GA technique generates multiple alternative solutions
that are both practical and close to the optimum. The results obtained by Simpson et al. [8]
were further improved upon by Dandy et al. [10] using the concept of variable power
scaling of the fitness function, an adjacency mutation operator, and gray codes. Savic and
Walters developed the computer model GANET [11] that utilizes GA for the least-cost
design of pipe networks.

To avoid unfeasible solutions due to the violation of constraints, a penalty factor is
necessary during the selection process of GA. Deb and Agrawal [12] developed a niched-
penalty method to more effectively solve constrained optimization problems using GAs.
Wu and Simpson [13] demonstrated significant improvements in efficiency and robustness
for single-objective optimization utilizing a boundary search method. Liong and Atiquzza-
man used the shuffled complex evolution (SCE) linked with EPANET hydraulic network
solver [14] to obtain the least cost of some well-known water distribution networks in
the literature. SCE was demonstrated to be a potential alternative to other optimization
algorithms, due to its faster computational speed. Other algorithms, such the shuffled
frog-leaping algorithm (SFLA) by Eusuff [15] and the harmony search Algorithm (HS) by
Geem [16], have obtained comparable results, and have proven to be effective tools for the
optimal design of water networks.

Some studies consider a single economic objective (least-cost) to formulate the net-
work optimization and rehabilitation problem, whereas others consider a multi-objective
optimization approach that compares interesting trade-offs (e.g., a slight pressure deficit
can sometimes be outweighed by substantial cost reduction) [17]. To improve network relia-
bility, Chandramouli and Malleswararao [18] used fuzzy logic based on the excess pressure
available at demand nodes. Jin et al. analyzed additional objectives, such as considering
both pressure and velocity violations [19]. Prasad and Park utilized genetic algorithms and
considered both minimization of cost and maximization of network reliability [20]. More
recent developments include improving algorithm convergence by using an engineered
initial population, rather than a random one [21]; improvement of computational efficiency
via the reduction of search space [22]; combining GA and mathematical programming with
the inclusion of new elements such as pressure reducing valves [23]; using artificial neural
networks (ANNs) rather than hydraulic and water quality simulation models together with
differential evolution (DE) for optimization [24]; developing the Harris hawks optimization
algorithm (HHO) for WDN optimization [25].

Additionally, Bilal and Pant utilized a hybrid metaheuristic algorithm (FA-PSO) [26]
focusing on the Hanoi distribution network. Praneeth et al. demonstrated water cycle
optimization algorithm [27], whereas Pankaj et al. utilized Cuckoo search [28] for least
cost design of benchmark distribution networks. Surco et al. utilized a modified particle
swarm optimization (PSO) algorithm for the optimization of distribution networks [29].
Cassiolato et al. proposed a deterministic mathematical programming approach without
utilizing hydraulic simulators for cost minimization of looped WDNs, where generalized
disjunctive programming is used to reformulate the discrete optimization problem to a
mixed-integer nonlinear programming (MINLP) problem [30]. Pant and Snasel proposed
a fuzzy C-means adaptive differential evolution (FCADE) for optimizing well-known
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benchmark WDN problems [31]. Bi et al. compared the searching behavior of evolutionary
algorithms on water distribution system design optimization [32]. Zhao et al. proposed
an in-sync optimization model for network layout and pipe diameter determination of
a self-pressurized drip irrigation system [33]. Shao et al. utilized genetic algorithm for
optimal placement of flow meters and valves in a distribution system [34].

Moreover, many researchers have considered operational optimization of WDNs,
since minimization of operational energy costs during pumping must also be accounted for
together with the construction costs. Electricity consumption during operation is one of
the biggest marginal expenditures for water utilities [35]. Operational optimization can be
achieved by controlling times when pumps operate, also called pump scheduling [36,37],
flow rates [38], pump speeds [39] and tank-water trigger levels [40]. Furthermore, other fac-
tors such as real-time control and water quality can also be considered [41–43]. Metaheuris-
tics such as GA have been abundantly utilized for operational optimization of WDNs, pri-
marily with the objective of minimizing the overall cost of the pumping operation [44–46].
Research works in optimization of WDNs have been comprehensively reviewed by Mala
et al. for design and rehabilitation [47] and system operation [35]. GA have also been
abundantly applied for optimization in multiple fields of research [48–50]. Katoch et al. [51]
have elaborated the advancements made in the field of GA.

2. Materials and Methods
2.1. Problem Formulation

Cost-effective WDN design is a discrete optimization problem, as the individual pipe
sizes are to be selected from a list of available commercial size diameters. The search
space can be determined as the number of available diameters, raised to the power of
the number of pipes in the network [52]; e.g., if 8 different commercial pipe sizes are
available for the design of a WDN having 10 pipelines, the search space size would be
810, i.e., 1,073,741,824 different pipe combinations. Hence, even for a relatively small
pipe network, the search space is large. The design of an economically optimal water
distribution network is a difficult task, because it involves solving many complex, non-
linear, and discontinuous hydraulic equations, while simultaneously optimizing pipe sizes
and other network components [53,54].

Optimization of a water distribution network aims to find the optimal pipe diameters
in the network for the given layout and demand requirements. The optimal pipe sizes that
satisfy all implicit constraints (conservations of mass and energy), and explicit constraints
(hydraulic and design constraints) are selected in the final network.

The continuity equation is given as:

n

∑
i=1

qi = 0 (1)

The continuity equation is applied to each node, with qi being the flow rate (flow into
and flow out of the node), and n is the number of pipes connected at the node.

The energy equation is given as:

m

∑
i=1

hi = 0 (2)

The energy equation is applied to each loop in the distribution network, where hi is
the head loss in each pipe, and m is the number of pipes in the loop.

The objective function is the total cost of the given network. The total cost CT is
calculated as:

CT =
Np

∑
i=1

Ci(Di) · Li (3)



Water 2022, 14, 851 4 of 24

where, Np is the total number of pipes, Ci(Di) is the cost per unit length of pipe i with
diameter Di, and Li is the length of pipe i. The objective function is to be minimized under
the implicit constraints and explicit constraints.

The head loss is the sum of the local head losses and the friction head losses. The
equation used to calculate the head loss is the Hazen–Williams equation. This equation is
an empirical equation that relates the flow of water in a pipe with the physical properties of
the pipe and the energy loss due to friction. The Hazen–Williams coefficient, abbreviated
as C, is a dimensionless number used in the Hazen–Williams equation [55]. The equation
can be expressed as:

h f = 4.72C−1.85Q1.85D−4.87L (4)

where, h f is the head loss, Q is the flow rate, C is the Hazen–Williams coefficient, D is the
pipe inside diameter, and L is the pipe length.

2.2. Genetic Algorithm

A genetic algorithm (GA) is a search algorithm based on the mechanics of natural se-
lection and natural genetics [56]. Although stochastic at certain aspects, a genetic algorithm
is not entirely random, as it utilizes historical information to determine new search points.
GAs have been widely utilized to solve optimization problems in multiple fields [57]. Fol-
lowing the concept of ‘survival of the fittest’, improvements in solutions evolve from past
generations, until a near optimal solution is obtained. In genetic algorithms, the candidate
solutions are represented by chromosomes (e.g., binary strings), and are collectively known
as the population. The chromosomes are then evolved in each subsequent generation,
according to their fitness. The fitness evaluation of each candidate solution depends upon
how well it the meets the requirements of a pre-defined objective function (e.g., lowest cost).
The more fit the candidate solution, the greater probability it will have of being selected for
reproduction. Hence, the more fit chromosomes replace the less fit chromosomes, and the
process continues until a near optimal solution is found.

The general idea of GA in a pipe network optimization problem is to select a population
of initial solution points, scattered randomly in the optimization space, and then converge
iteratively to better solutions, until the desired criteria for stopping are achieved. The steps
for using GA for pipe network optimization can be briefly described as follows [8]:

1. Generation of initial population

The GA randomly generates an initial population of coded strings (binary) represent-
ing pipe network solutions of population size N. Each of the N strings represents a possible
combination of pipe sizes.

2. Computation of network cost

For each N string in the population, the GA decodes each substring into the corresponding
pipe size and computes the total network cost (material cost, construction cost, etc.).

3 Hydraulic analysis of each network

A steady state hydraulic network solver computes the heads and discharges under
the specified demand patterns for each of the network designs in the population. The
actual nodal pressures are compared with the minimum allowable pressure heads, and any
pressure deficits are noted. Similarly, the actual water velocities at pipes are compared with
the desired velocity of the water distribution network and any deviation in velocity are
also noted.

4. Computation of penalty cost

The GA assigns a penalty cost for each individual network design in the population if
a pipe network does not satisfy the pressure and velocity constraints (for example, pressure
violation at a particular node if the pressure in the node is less than or greater than the
desired pressure).
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5. Computation of total network cost

The total cost of each network in the current population is then taken as the sum of
the network cost (Step 2) and the penalty cost (Step 4).

6. Computation of the fitness

The fitness of the coded string is taken as some function of the total network cost. For
each proposed pipe network in the current population, fitness can be computed as the
inverse or the negative value of the total network cost (Step 5).

7. Generation of a new population using the selection operator

The GA generates new members for the next generation by a selection scheme that
depends on the fitness of the initial members.

8. The crossover operator

Crossover occurs with some specified probability for each pair of parent strings
selected in Step 7. A uniform type of crossover operator is commonly used to accompany
the comparatively large string size for pipe network optimization.

9. The mutation operator

Mutation occurs with some specified probability of mutation for each bit in the strings
that have undergone crossover. The purpose of the mutation operator is to maintain genetic
diversity from one generation of a population to another.

10. Production of successive generations

The use of the three operators described above produces a new generation of pipe
network designs using Steps 2 to 9. The GA repeats the process to generate successive
generations. The final costs and pipe network designs are stored, and the cheaper cost
alternatives that meet the required constraints are updated.

2.3. EPANET

EPANET is a hydraulic simulator that can perform extended hydraulic and water
quality simulations for pressurized water distribution networks (Rossman, [58]). Gener-
ally, a water distribution network consists of many elements, such as pipes (links), pipe
junctions (nodes), pumps, control valves, and tanks/reservoirs. EPANET solves the water
distribution network for the flow of water in each pipe, pressure at each junction, water
height in each tank, concentration of chemical species, etc. During the hydraulic analysis
of the water distribution network, EPANET solves both the conservation of mass and
energy equations.

EPANET–MATLAB Toolkit is a software for interfacing a drinking water distribution
system simulation library, EPANET, with the MATLAB technical computing language
developed by Eliades [59]. The Toolkit allows users to access EPANET and EPANET-MSX
through their shared object libraries, as well as their executables. EPANET can be called
and used through a programming interface by an external software, which can be written
in different programming languages (such as C/C++, Python, or MATLAB). Generally, a
large number of commands have to be written to achieve specific results, such as extracting
the node pressures, pipe diameters, pipe roughness coefficients, or specifying demand
patterns. However, in the EPANET–MATLAB toolkit, a significant part of the repetitive
code is already included in the toolkit functions and can be used directly.

2.4. SOP–WDN

Smart optimization program for water distribution networks (SOP–WDN) is an al-
gorithm that has been developed by Smart Water Grid (SWG) research works for water
distribution network optimization by using a genetic algorithm. The algorithm is written
in MATLAB programming language. It interfaces with EPANET-MATLAB toolkit [59]
(hydraulic solver integrated within SOP-WDN) for steady state hydraulic simulation and
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solution. The algorithm imports the network layout and data from EPANET. Design pa-
rameters, such as available pipe sizes, respective cost of pipes, roughness coefficient, and
required pressure and velocities for the network, are to be added. GA optimization param-
eters, such as population size, crossover probability, and mutation rate, are prerequisites
for the algorithm, and can be set by the user. Figure 1 shows a flowchart of the overall
algorithm:

Figure 1. General Flowchart of the SOP–WDN.

2.4.1. Encoding Scheme, Interpretation and Redundancy

A sequence of binary numbers is used to represent a water distribution network in
SOP–WDN, as it enables a relatively extensive exploration of the search space. The coding
scheme is also simple in implementation for the given task. Reflected binary code (RBC) or
grey ode is utilized since it assures that two successive values differ by only one bit (binary
digit). The number of bits required to represent an individual pipe in the network depends
upon the number of available pipe diameters. The total binary sequence represents the
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entire pipe network. An example for the process of interpretation of a water distribution
network by the algorithm is demonstrated.

Consider, a water distribution network having 1 reservoir, 1 tank, 5 demand nodes
and 6 pipelines (all 100 m in length); there are 8 available pipe sizes for this network as
shown in Table 1.

Table 1. Example: Available pipe sizes.

S.N. Available Pipe
Sizes (mm) Unit Cost (per m) 3-Bit (Binary)

Representation
3-Bit (Grey)

Representation

1 8 100 000 000
2 10 120 001 001
3 12 150 010 011
4 14 180 011 010
5 16 200 100 110
6 18 250 101 111
7 20 300 110 101
8 24 350 111 100

As there are 8 available pipe sizes in the example, the number of bits required to
represent each individual pipe is 3 bits (starting from 000 to 100).

Any 18-character-long binary string can, hence, represent all 6 pipelines in this
distribution network. Consider a randomly generated binary string of length 18 (exe.
101110011001000111). Since there are 6 pipes in the distribution system layout, the gen-
erated binary string of length 18 can be divided into six binary strings, each a length of
3 bits. Each binary string of 3 bits then represents a unique pipe size and the position of
that binary string represents the position of the pipe in the overall network layout. The
resulting pipe network and its respective cost can be obtained as shown in Table 2 and the
network layout can be visualized as shown in Figure 2.

Table 2. Example: Interpretation of binary to pipe networks.

Randomly Generated
Binary String 101110011001000111

6 Individual Pipes 101, 110, 011, 001, 000, 111

Pipe Position in WDN Pipe No.1 Pipe No.2 Pipe No.3 Pipe No.4 Pipe No.5 Pipe No.6

Chromosome (Binary) 101 110 011 001 000 111
Pipe Diameter (mm) 20 16 12 10 8 18

Unit Cost (per m) 300 200 150 120 100 250
Length (m) 100 100 100 100 100 100

Cost of individual pipe 30,000 20,000 15,000 12,000 10,000 25,000

Total Cost of Network 112,000

Figure 2. Example: Pipe network showing pipe position and diameter.

When a parameter belonging to a finite discrete set is encoded with binary notations,
some of the codes may become redundant. For example, consider the design of a water
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distribution system where the number of commercially available diameters is 13. In this
case, a minimum of 4 bits are required for coding the elements of the set of diameters, and
this gives 24 = 16 discrete values. With 13 diameter options, three of the substrings become
redundant (do not represent any diameters). The challenges of dealing with redundant
binary codes have been overlooked in the literature and in published methods [60]. Saleh
and Tanyimboh proposed representing redundant codes with closed pipes of fictitious
diameters and low fitness values, assuming their extinction through evolution and natural
selection [61]. However, this approach was found to prematurely lose valuable genetic
information.

Alternatively, the redundant codes may be mapped to valid codes. In this case, some
diameter options will be represented more than once. The mapping options may be fixed or
random. In fixed mapping, the redundant codes are assigned to valid pipe diameter options
prior to optimization. Random mapping assigns the redundant codes to the valid diameter
options randomly. Tanyimboh [62] observed that, during mapping, over-representation of
the largest pipe diameter performed better than over-representation of the smallest pipe
diameter. It was also overserved that a balanced, unbiased allocation achieved good results.
SOP-WDN handles redundant mapping by linearly scaling the probability of allocation
of pipe diameters prior to optimization, where the largest pipe has 2 times the allocation
chance than the smallest.

2.4.2. Genetic Algorithm Operators

Genetic algorithms differ from conventional optimization algorithms and search pro-
cedures as they work with a coding of the solution set and not the solutions themselves [56].
GA mainly consists of four basic operators: selection, crossover, mutation and elitism and
utilizes these operators together to produce new generations.

1. Selection

Selection is a crucial step in GA that determines whether a particular candidate will
participate in the reproduction process or not. The selection operators give preference to the
fitter chromosomes (candidate solutions), allowing them to pass on their ‘genes’ (informa-
tion) to the next generation. Hence, worse chromosomes (with poor fitness) get eliminated.
SOP-WDN algorithm computes fitness of an individual as the reciprocal of (the total cost
times the imposed penalty). The selection operator then randomly picks chromosomes out
of the population according to fitness. Roulette wheel, rank, and tournament selection are
well-known techniques for selection and are commonly utilized in the literature.

In general, the probability of selection of an individual is calculated as the fitness
values of the individual divided by fitness value of the population. Selection pressure is
defined as the degree to which the better individuals are favored in the population; it drives
the GA into improving the fitness over successive generations. In this study, power-law
based probability selection was utilized, where P(i) is the preserved probability based on
rank of the ith ranked individual (ranked based on fitness) in the population a having total
of n individuals. The value of τ = 1.1∼ 1.2 (controlling selection pressure) was found ideal
after numerous simulations.

P(i) =
i−τ

∑n
i=1 i−τ

(5)

2. Crossover

Crossover is a genetic operator that combines two chromosomes (parents) in order to
produce new chromosomes (children). Some common crossover techniques utilized in the
literature are one-point crossover, two-point or k-point crossover, uniform crossover, shuffle
crossover, three-parent crossover. In one point crossover, a crossover point is selected at
random through the length of the chromosome. Summation of genes from the first parent,
put before crossover point and second parent after the crossover point creates the new
child. In two-point or k-point crossover, genetic material is exchanged between two or
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more random positions along the length of chromosome. Uniform crossover operates in
individual genes of the selected chromosome, rather than on blocks.

Since GAs are problem specific, crossover is applied considering the chromosomes as
group of distribution pipelines. Here, change of any single gene in a chromosome means
changing and replacing the current pipe with another one of a different diameter. It is
preferred to alter and test many different pipe combinations when searching for the optimal
solution. After experimenting with varying crossover operators, k-point crossover was
selected as the preferred crossover method. The number of crossover points is taken as
(0.8 × Np) rounded to the nearest integer, where Np is the total number of pipelines in the
distribution system. The locations of crossover points are taken randomly. For example,
the number of crossover points for a distribution network with 6 pipes is shown in Figure 3.
The higher mixing ratio showed faster convergence. Uniform crossover also showed good
results whereas the worst results were obtained from one-point crossover. The applied
crossover probability was 85–90%.

Figure 3. k-point crossover.

3. Mutation

After crossover, the chromosomes are subjected to mutation. Mutation prevents the
algorithm from being trapped in a local optimum (premature convergence of the GA).
It involves the modification of the value of each ‘gene’ of a chromosome with a small
probability, called the mutation probability. Mutation plays the role of re-discovering lost
or unexplored genetic materials, as well as for maintaining genetic diversity [56]. Mutation
operators produce random changes in various chromosomes of the population.

Generally, a mutation probability of (1/l), where l is the chromosome length considered
appropriate in the literature. In this study, mutation rate was kept around (4–6)%, which
is considered higher, especially for networks with large number of pipelines, and a hill-
climbing mutation operator was applied for the final 10% of the generations, which would
permit mutation only if it improved the quality of the solution. The mutation strategy
utilized in the study, shown in Figure 4, was bit-flip mutation since it complements the
encoding scheme of the algorithm.

4. Elitism

Elitism involves selecting a small proportion of the fittest chromosomes of one genera-
tion and copying them directly into the next generation. Elitism is used to protect the fittest
chromosomes from crossover and mutation. The least-cost distribution networks, without
violating any pressure and velocity constrains per generation are considered as the elite
chromosomes. The 2 best performing individuals from each generation are saved prior to
crossover and mutation for the next generation.
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Figure 4. Bit flip mutation.

2.4.3. Penalty Functions

The following Equations (6) and (7) are used to calculate the penalty cost [63]. The
penalty imposed will be higher, the larger the violations of pressure and velocity from
the target values. The penalty equation for violation of pressure constraint in the water
distribution network implemented by SOP–WDN can be represented as:

PP = 1 +
Nn

∑
j=1

∣∣TP − Pj
∣∣ · PP1 +

Nn

∑
j=1

∣∣TP − Pj
∣∣ · PP2 (6)

where, Nn is the number of nodes in the network, PP the pressure penalty, Pj is the pressure
of node j, TP is the target pressure, PP1 is the pressure penalty coefficient if the pressure
at the node is above the target pressure, and PP2 is the pressure penalty coefficient if the
pressure at the node is below the target pressure.

The penalty equation for the violation of velocity constraint in the distribution network
implemented by SOP–WDN can be represented as:

VP = 1 +
Np

∑
i=1
|TV −Vi| · VP1 +

Np

∑
i=1
|TV −Vi| · VP2 (7)

where, Np is the number of pipes in the network, VP is the velocity penalty, Vi is the
flow velocity at link i, TV is the target velocity, VP1 is the velocity penalty coefficient if the
velocity at a given link is above target velocity, and VP2 is the velocity penalty coefficient if
the velocity at the link is below target velocity.

2.4.4. Sensitivity Analysis

Optimal solutions are not guaranteed in evolutionary algorithms; hence, maximizing
‘near optimal’ solutions is essential [64]. Genetic algorithm parameters are user input
parameters that significantly affect the overall performance and speed of SOP-WDN. These
parameters interact in a complex way [65] and must be tuned to obtain better solutions and
faster convergence.

A sensitivity analysis was carried out to determine the most influential parameters
and to obtain the best parameter combinations for effective execution of the algorithm. The
parameters tested were:

1. Population Size
2. Crossover Probability
3. Mutation Rate
4. Velocity Penalty 1
5. Velocity Penalty 2
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6. Pressure Penalty 1
7. Pressure Penalty 2

A total of 100 individual runs were performed (2000 iterations each) for any one
alteration of any one of the seven parameters. Crossover rate and mutation rate were
further tuned in combination since a proper balance between these operators is essential
to ensure global optima. In total, 10–12 different values were tested in total for any one
parameter and the value assigned per alteration was based on the literature and the
preceding results. The final set of parameters selected, and the results obtained are given
in Table 3 and Figure 5. It is to be noted that larger population size and iterations may be
required for large water distribution networks.

Table 3. Set of Genetic Algorithm parameters.

S.N. GA Parameters Values

1 Population Size 80–100
2 Crossover Probability (%) 85–90
3 Mutation Rate (%) 4–6
4 Velocity Penalty 1 0.3
5 Velocity Penalty 2 0.06
6 Pressure Penalty 1 0.02
7 Pressure Penalty 2 1.9

Figure 5. Sensitivity analysis results.

3. Results and Discussion

The conventional approach when testing the functionality, validity, and efficiency
of a developed optimization algorithm is to choose some benchmark water distribution
network problems and obtain their solution. Benchmark WDNs have provided a common
testbed for newly developed optimization algorithms and design approaches. To prove
their significance, the developed optimization algorithms are applied to benchmark WDN
problems and are compared to the existing algorithms. Using SOP–WDN, some benchmark
networks of the literature have been examined.

3.1. Example 1: Two-Loop Network

The two-loop network is an imaginary network introduced by Alperovitz and Shamir [3]
that consists of 8 pipelines and 7 nodes (with reservoir), all fed by gravity flow from a
single reservoir with an elevation of 210 m. The layout of the two-loop network is given in
Figure 6. All pipes in the layout are 1000 m in length, and the Hazen–Williams coefficient
is 130. The minimum head requirement in each node is 30 m above ground level. The
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commercially available diameters for the distribution network are described below on
Table 4. The details of the distribution network have been provided in Appendix A:

Figure 6. The Two-loop network layout.

Table 4. Available pipes for selection for the Two-loop network.

Diameter (in) Diameter (mm) Unit Cost (USD/m)

1 25.4 2
2 50.8 5
4 101.6 11
6 152.4 16
10 254.0 32
14 355.6 60
16 406.4 90
18 457.2 130

Table 5 gives the solution obtained by SOP–WDN for the two-loop network. Figure 7
shows the EPANET network layout of the solved network and Figure 8 shows the pressure
heads obtained at the nodes of the distribution network. Table 6 compares the solution
obtained from SOP–WDN with the solution obtained by other research reports:

Table 5. SOP–WDN results for the Two-loop network.

Pipe No. Pipe Diameter
(mm)

Pipe Length
(m) Cost (USD) Node No. Nodal

Pressure (m)

1 457.2 1000 130,000 1 Reservoir
2 254.0 1000 32,000 2 53.25
3 406.4 1000 90,000 3 30.46
4 101.6 1000 11,000 4 43.45
5 406.4 1000 90,000 5 33.81
6 254.0 1000 32,000 6 30.44
7 254.0 1000 32,000 7 30.55
8 25.4 1000 2000 - -

Total Cost: 419,000 Check OK
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Figure 7. The Two-loop network solution obtained (pressure and velocity).

Figure 8. The Two-loop network nodal pressure heads.

Table 6. Comparison of SOP–WDN results to past studies for the Two-loop network.

Studies Alperovitz and Shamir Savic and Walters Geem Van Dijk et al. SOP–WDN

Least cost obtained (USD) 479,525 420,000 419,000 419,000 419,000

The optimal cost of USD 419,000 was obtained for the Two-loop network, and the
minimum pressure requirement of 30 m was fulfilled for all nodes. Table 6 shows the
results obtained by other research reports for comparison. The optimal cost of USD 419,000
obtained by SOP-WDN for the two-loop network, is same as the solution obtained by Van
Dijk et al. and Geem.
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3.2. Example 2: Hanoi Network

Hanoi network, located in Vietnam, was first presented by Fujiwara and Kang [66].
It consists of 32 nodes, 34 pipes, and 3 loops, and is fed by gravity from a reservoir with
a 100 m fixed head. The layout of the Hanoi network is given in Figure 9. All pipes
available for this distribution network have a Hazen–Williams coefficient C of 130. The
elevation of all nodes is 0 m, and minimum head limitation is 30 m above ground level.
The commercially available diameters for the distribution network are described below on
Table 7. The details of the distribution network have been provided in Appendix A.

Figure 9. The Hanoi network layout.

Table 7. Available pipes for selection for the Hanoi network.

Diameter (in) Diameter (mm) Unit Cost (USD/m)

12 304.8 45.73
16 406.4 70.40
20 508 98.38
24 609.6 129.33
30 762 180.75
40 1016 278.28

Table 8 gives the solution obtained by SOP–WDN for the Hanoi network, while Table 9
compares the solution obtained from SOP–WDN with the solution obtained by other
research reports. Figure 10 shows the EPANET network layout of the solved network and
Figure 11 shows the pressure heads obtained at the nodes of the distribution network.

Table 8. SOP–WDN results for the Hanoi network.

Pipe No. Pipe Diameter
(mm) Pipe Length (m) Cost (USD) Node No. Nodal

Pressure (m)

1 1016 100 27,828 1 100 (Reservoir)
2 1016 1350 375,678 2 97.14
3 1016 900 250,452 3 61.67
4 1016 1150 320,022 4 56.92
5 1016 1450 403,506 5 51.02
6 1016 450 125,226 6 44.81
7 1016 850 236,538 7 43.35
8 1016 850 236,538 8 41.61
9 1016 800 222,624 9 40.23
10 762 950 171,712.5 10 39.20
11 609.6 1200 155,196 11 37.64
12 609.6 3500 452,655 12 34.21
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Table 8. Cont.

Pipe No. Pipe Diameter
(mm) Pipe Length (m) Cost (USD) Node No. Nodal

Pressure (m)

13 508 800 78,704 13 30.01
14 406.4 500 35,200 14 35.52
15 304.8 550 25,151.5 15 33.72
16 304.8 2730 124,842.9 16 31.30
17 406.4 1750 123,200 17 33.41
18 609.6 800 103,464 18 49.93
19 508 400 39,352 19 55.09
20 1016 2200 612,216 20 50.61
21 508 1500 147,570 21 41.26
22 304.8 500 22,865 22 36.10
23 1016 2650 737,442 23 44.52
24 762 1230 222,322.5 24 38.93
25 762 1300 234,975 25 35.34
26 508 850 83,623 26 31.70
27 304.8 300 13,719 27 30.76
28 304.8 750 34,297.5 28 38.94
29 406.4 1500 105,600 29 30.13
30 304.8 2000 91,460 30 30.42
31 304.8 1600 73,168 31 30.70
32 406.4 150 10,560 32 33.18
33 406.4 860 60,544 - -
34 609.6 950 122,863.5 - -

Total Cost: 6,081,115.4 Check OK

Table 9. Comparison of SOP–WDN results to past studies for the Hanoi network.

Studies Savic and Walters Liong and
Atiquzzaman Geem Van Dijk et al. SOP–WDN

Least cost obtained
(Million USD) 6.187 6.220 6.056 6.110 6.081

Figure 10. The Hanoi network solution obtained (pressure and velocity).
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Figure 11. The Hanoi network nodal pressure heads.

The optimal cost of USD 6.081 million was obtained for Hanoi network, and the
minimum pressure constraint of 30 m was fulfilled for all nodes. It was observed to be the
best solution (lowest cost) without the violation of any constraints. The solution obtained
by Geem [16] has a lower cost. However, this solution failed to meet the pressure constraint
of 30 m at five nodes.

3.3. Example 3: GoYang Network

The GoYang water network is located in South Korea, and consists of 30 pipes,
22 nodes, and 9 loops. This network was first introduced by Kim et al. [67] and is fed by
a single fixed pump of 4.52 kW from a 71 m constant head reservoir. The layout of the
GoYang network is given in Figure 12. The Hazen–Williams coefficient for all pipes in the
network is 100. The minimum head limitation for this network is 15 m above ground level.
The commercially available diameters for the distribution network are described below on
Table 10. The details of the distribution network have been provided in Appendix A.

Figure 12. The GoYang network layout.
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Table 10. Available pipes for selection for the GoYang network.

Diameter (mm) Unit Cost (Won/m)

80 37,890
100 38,933
125 40,563
150 42,554
200 47,624
250 54,125
300 62,109
350 71,524

Table 11 gives the solution obtained by SOP–WDN for the GoYang network. Figure 13
shows the EPANET network layout of the solved network and Figure 14 shows the pressure
heads obtained at the nodes of the distribution network. Table 12 compares the solution
obtained from SOP–WDN with the solution obtained by other research reports.

Table 11. SOP–WDN results for the GoYang network.

Pipe No. Pipe Diameter
(mm)

Pipe Length
(m) Cost (Won) Node No. Nodal

Pressure (m)

1 200 165.0 7,857,960 1 15.62
2 125 124.0 5,029,812 2 29.33
3 125 118.0 4,786,434 3 28.73
4 100 81.0 3,153,573 4 26.58
5 80 134.0 5,077,260 5 24.20
6 80 135.0 5,115,150 6 21.51
7 80 202.0 7,653,780 7 27.72
8 80 135.0 5,115,150 8 26.70
9 80 170.0 6,441,300 9 21.20
10 80 113.0 4,281,570 10 16.17
11 80 335.0 12,693,150 11 16.03
12 80 115.0 4,357,350 12 18.16
13 80 345.0 13,072,050 13 17.46
14 80 114.0 4,319,460 14 15.33
15 80 103.0 3,902,670 15 15.48
16 80 261.0 9,889,290 16 28.31
17 80 72.0 2,728,080 17 26.75
18 80 373.0 14,132,970 18 26.44
19 80 98.0 3,713,220 19 27.36
20 80 110.0 4,167,900 20 26.68
21 80 98.0 3,713,220 21 19.74
22 80 246.0 9,320,940 22 19.36
23 80 174.0 6,592,860 - -
24 80 102.0 3,864,780 - -
25 80 92.0 3,485,880 - -
26 80 100.0 3,789,000 - -
27 80 130.0 4,925,700 - -
28 80 90.0 3,410,100 - -
29 80 185.0 7,009,650 - -
30 80 90.0 3,410,100 - -

Total Cost: 177,010,359 Check OK
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Figure 13. The GoYang network solution obtained (pressure and velocity).

Figure 14. The GoYang network nodal pressure heads.

Table 12. Comparison of the SOP–WDN results to those of past studies of the GoYang network.

Studies Original Network Kim et al. Geem Menon et al. [68] SOP–WDN

Least cost obtained
(Million Won) 179.428 179.142 177.135 177.417 177.010

The lowest cost obtained by SOP–WDN for the GoYang network was 177,010,359 Won,
which compared to the other studies, is the cheapest cost. The obtained solution also has no
nodes containing pressure violations, as all nodes in the distribution network have fulfilled
the minimum pressure requirement of 15 m.
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4. Conclusions

In this study, the developed Genetic Algorithm based optimization algorithm SOP–
WDN was tested on three benchmark water distribution networks, and in comparison, to
the other studies, it was able to produce competitive results. EPANET software, which
was used for the hydraulic analysis and calculations of the water distribution systems is a
well-accepted and utilized software. EPANET–MATLAB toolkit enabled the SOP–WDN
algorithm to perform EPANET based calculations directly in the MATLAB environment,
which greatly improved the overall computational speed, performance, and efficiency of
the algorithm. Hence, the EPANET–MATLAB toolkit can prove to be an important tool that
enables the facile use of EPANET software in the MATLAB environment for many different
research purposes. SOP–WDN can be used as a reliable algorithm and can easily be
implemented and adapted to aid engineers and designers during the design process of new
water distribution networks, or the rehabilitation of existing water distribution networks.
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Appendix A

Table A1. Node data for the Two-loop network.

Node No. Elevation (m) Demand (m3/h)

1 210 Reservoir
2 150 100
3 160 100
4 155 120
5 150 270
6 165 330
7 160 200

Table A2. Pipe data for the Two-loop network.

Pipe No. Begin Node End Node Length (m)

1 1 2 1000
2 2 3 1000
3 2 4 1000
4 4 5 1000
5 4 6 1000
6 6 7 1000
7 3 5 1000
8 5 7 1000
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Table A3. Node data for the Hanoi network.

Node No. Demand (m3/h)

1 Reservoir
2 890
3 850
4 130
5 725
6 1005
7 1350
8 550
9 525
10 525
11 500
12 560
13 940
14 615
15 280
16 310
17 865
18 1345
19 60
20 1275
21 930
22 485
23 1045
24 820
25 170
26 900
27 370
28 290
29 360
30 360
31 105
32 805

Table A4. Pipe data for the Hanoi network.

Pipe No. Begin Node End Node Length (m)

1 1 2 100
2 2 3 1350
3 3 4 900
4 4 5 1150
5 5 6 1450
6 6 7 450
7 7 8 850
8 8 9 850
9 9 10 800
10 10 11 950
11 11 12 1200
12 12 13 3500
13 10 14 800
14 14 15 500
15 15 16 550
16 17 16 2730
17 18 17 1750
18 19 18 800
19 3 19 400
20 3 20 2200



Water 2022, 14, 851 21 of 24

Table A4. Cont.

Pipe No. Begin Node End Node Length (m)

21 20 21 1500
22 21 22 500
23 20 23 2650
24 23 24 1230
25 24 25 1300
26 26 25 850
27 27 26 300
28 16 27 750
29 23 28 1500
30 28 29 2000
31 29 30 1600
32 30 31 150
33 32 31 860
34 25 32 950

Table A5. Node data for the GoYang network.

Node No. Elevation (m) Demand (m3/d)

1 71.0 Reservoir
2 56.4 153.0
3 53.8 70.5
4 54.9 58.5
5 56.0 75.0
6 57.0 67.5
7 53.9 63.0
8 54.5 48.0
9 57.9 42.0
10 62.1 30.0
11 62.8 42.0
12 58.6 37.5
13 59.3 37.5
14 59.8 63.0
15 59.2 445.5
16 53.6 108.0
17 54.8 79.5
18 55.1 55.5
19 54.2 118.5
20 54.5 124.5
21 62.9 31.5

Table A6. Pipe data for the GoYang network.

Pipe No. Begin Node End Node Length (m)

1 1 2 165
2 2 3 124
3 3 4 118
4 4 5 81
5 5 6 134
6 6 12 135
7 12 15 202
8 2 22 135
9 2 21 170
10 21 22 113
11 22 20 335
12 20 19 115
13 2 19 345
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Table A6. Cont.

Pipe No. Begin Node End Node Length (m)

14 19 17 114
15 3 16 103
16 16 17 261
17 17 18 72
18 7 18 373
19 3 7 98
20 7 8 110
21 4 8 98
22 8 9 246
23 5 11 174
24 10 11 102
25 6 10 92
26 6 9 100
27 10 13 130
28 12 13 90
29 13 14 185
30 15 14 90
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