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Abstract: In this work we explore the use of blockchain with Internet of Things (IoT) devices
to provide visitor authentication and access control in a physical environment. We propose the
use of a “bracelet” based on a low-cost NodeMCU IoT platform that broadcasts visitor location
information and cannot be removed without alerting a management system. We present the design,
implementation, and testing of our system. Our results show the feasibility of implementing a
physical access control system based on blockchain technology, and performance improvements over
a similar system proposed in the literature.

Keywords: blockchain; physical access control; access control; internet of things; physical security;
wearables; IoT security

1. Introduction

Blockchain is a decentralized, digital ledger first introduced in 2008 as a transaction
ledger for Bitcoin [1]. A blockchain consists of a series of “blocks” which can be thought of
as pages in a traditional physical ledger. Each block is cryptographically linked such that a
change to one block requires changing every following block. The design of blockchain
makes it possible for systems to be tamper-resistant and protected from many outsider and
insider threats, and it has spawned many applications in the realms of cryptocurrency [2],
finance [3], healthcare [4], supply chain management [5], Internet of Things [6], crowd-
sensing [7], digital art [8], among others. Blockchain’s distributed nature makes it suitable
for systems in need of resiliency and fault-tolerance requirements, and there are many
applications that are currently being researched to take advantage of these properties. With
these much-desired properties, Blockchain technology has become a subject of study in
many application areas.

In this work we propose a prototype system for visitor physical access control based
on blockchain, the Internet of Things, and smart contracts technology. Advantages that
blockchain-based physical access control systems offer over centralized systems include
avoidance of a single-point of failure, avoidance of malicious data modification (including
modifications done by insiders), auditability, tamper-resistance, among others [9]. These
advantages can make blockchain-based physical access control systems more reliable and
trusted over centralized systems. While many systems have been proposed for physical
access control throughout the years using centralized solutions, only recently blockchain-
based systems have started to be researched for access control [10].

Our contributions in this work are as follows:

1. Design of a prototype system for physical access control system using Blockchain, IoT
devices, and smart contracts.

2. Development of a prototype wearable wristband to assist in the authorization and
tracking of visitors/users.
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3. Implementation and evaluation of the prototype system using the Ethereum platform.

The remainder of this paper is organized as follows. In Section 2 we review the
literature on access control, including Blockchain-based physical access control. Section 3
describes our proposed model and implementation in detail. In Section 4 we present the
results from our implementation of the model. Section 5 describes security analysis of our
system. In Section 6 we provide a discussion on the overall system. Finally, in Section 7 we
conclude our paper and provide possible ideas for future research.

2. Related Work

Access Control (AC) management systems have been studied in the context of central-
ized and decentralized systems. As centralized systems, early research dates back to the
60’s and 70’s with research done by Corbató [11], Graham and Denning [12], Lampson [13],
and Saltzer [14] who researched access control for multiuser, time-shared systems. In the
90’s with growth of the Internet systems, the Web, and commodity hardware and software,
research in this area was further expanded with the development of Role-Based Access
Control (RBAC) [15,16] and similar research [17,18]. In addition to centralized systems,
most of the research conducted in AC systems before 2010 was conducted to support
logical (data) AC, with implementations done to control Operating Systems (OS) and user
resources (e.g., access to files, applications, and devices such as printers).

The dawn of the Internet of Things (IoT) has expanded AC research into cyberphysical
systems using both centralized and decentralized systems [19–23]. IoT systems bring
a new set of features that AC must deal with including a large amount of traffic/data
generated by IoT devices, dynamic environments with new devices/users changing, a
concern for privacy, and multiple vendors/standards that work together to meet design
and application requirements [20,23]. The implementation of these AC systems for IoT can
be done currently in as centralized systems in the cloud [24–28], or by using blockchain
technology [10,29–34].

In the realm of blockchain systems for IoT access control, Novo [29] presents an
architecture for IoT access control management based on blockchain and smart contracts.
Their implementation makes use of blockchain nodes combined with management hubs
to integrate resource-constrained IoT devices in a global access control network. In their
work, smart contracts are used to define policies and operations in a private blockchain
network. This prototype architecture and implementation makes use of managers who
control IoT devices. No external users (different to the managers) are part of the prototype
architecture. Zhang et al. [30] make use of a smart contract-based system for IoT AC to
implement policy-based and dynamic access control policies. IoT devices are connected
to gateway devices which then become peers in a blockchain network. Ding et al. [31]
propose an Attribute-based Access Control (ABAC) blockchain for IoT AC. They argue
that due to the large amount of devices and unknown identities, ABAC is more suitable
for IoT device management. Liu et al. [32] examine the usage of blockchain to apply
access control policies to the data collected by IoT devices. They propose a system with
three types of smart contracts. The first type (device contracts) stores the URL to the data.
Storing the URL instead of the full data helps with the rapidly growing blockchain storage
size. The second type of smart contract (access contracts) determines whether a user is
allowed to access the data on a device contract. Finally, policy contracts are used to modify
and create access policies. They implement their model on Hyperledger Fabric. Their
results show that their proposed method can “maintain high throughput in largescale
request environment and reach consensus efficiently in a distributed system to ensure data
consistency”. Abdi et al. [34] designed a blockchain based IoT security and management
system addressing the problems with traditional access control systems such as single
point of failure, low scalability, and lack of privacy. Their proposed model is light- weight
and reduces the computational load on the IoT devices and provides scalability. They
propose a clustering approach with three main components: an Edge Blockchain Manager
(EBCM) responsible for authenticating and authorizing constrained devices locally; an
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Aggregated Edge Blockchain Manager (AEBCM) containing various EBCMs to control
different clusters and manage access control policies, and a Cloud Consortium Blockchain
Manager (CCBCM) that ensures that only authorized users access the resources. Smart
contracts are used in the model to self-enforce decentralized access control policies. A proof
of concept implementation of their proposed system on the permissioned Hyperledger
Fabric shows that their solution is efficient and effective.

Li et al. [33] proposed an identity authentication system for constrained devices called
Intelligent Electronic Devices (IEDs) found in the Chinese power system. They use a
consortium blockchain to store credentials required for authentication. For authentication
they propose hash chains which are one-time authentication passwords and require only
one hash calculation in the authentication process without the need to deploy any third
party for key management. This provides the much needed lightweight computations
and efficiency in IoT systems. An automatic regeneration method of the hash chain is also
proposed for the continuity of the identity authentication.

The studies briefly described above are mainly for AC for computer system resources
(no for user authentication/physical access). For more information on blockchain-based
AC for IoT devices, we recommend the surveys by Rouhani et al. [35], Abdi et al. [19], Qui
et al. [20], Bagga et al. [36] and similar ones.

While there has been extensive work for blockchain-based AC for IoT devices, this has
not been the case with blockchain-based physical access control, IoT devices, and smart
contracts. We review recent work in this topic by Rouhani et al. [10], Mayle et al. [37], Chan
et al. [38] and Bindra et al. [39].

Rouhani et al. [10] developed a system for physical access control based on RBAC,
Hyperledger (a consortium-based blockchain), and smart contracts. Hyperledger is used
in their system to provide storage for transactions (logs), as well as to define roles and
permissions in the system. In their implementation, it is assumed that the authentication
mechanism for physical access is provided by smart cards/smart card readers. Mayle
et al. [37] propose a security system using MultiChain to build a private blockchain. Multi-
Chain is built on the core Bitcoin, and by using a concept called smart filters in MultiChain
they build a security system using microwave sensors and visual imagers (e.g., cameras).
The implementation included five admin nodes and eight member nodes. The admin
nodes have the authority to create and approve filters and add new nodes to the system
and the member nodes represent the imagers, sensors, validators, and network admins in
the system. Their results confirmed the resilience of the blockchain-based system against
power failures, and it was also able to detect tampering of data and disregard the data
associated with the tampering. Chan et al. [38] propose a system for visitor access control
in a physical environment based on the public Ethereum blockchain platform in which
a token is assumed to periodically scan a fingerprint of the visitor and get the visitor’s
location. These data are then submitted to a node on the blockchain.

Bindra et al. [39] propose an access control system for smart buildings using blockchain
smart contracts to describe, grant, audit, and revoke fine-grained permissions for building
occupants and visitors. Their system uses blockchain for physical access control involves
four steps: (1) creating a unified Resource Description Framework (RDF) graph of a building
by aligning the building’s Build To Operate (BOT) and Brick (a metadata model for smart
building) models; (2) identifying all possible paths between two locations using a graph
traversal algorithm; (3) determining the cost of each path (4) granting, revoking, and
verifying user permissions to access rooms and equipment therein using smart contracts.
They implement their system using a private Ethereum blockchain which is then simulated
in a building with five conference rooms.

From our literature review, we found that while there has been significant work on
blockchain technology for IoT logical access control, not much work has been done in
the study of decentralized, blockchain-supported physical access control systems thus
far. Our work differentiates from the past works by making use of a prototype wearable
device that serves a dual-purpose to authenticate and identify visitors while interacting
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with a blockchain. While we use a private Ethereum blockchain and smart contracts in
our system, we use a proof-of-authority algorithm, instead of a proof-of-work (or proof-
of-stake) algorithm that increases the system’s performance while keeping the system
relatively lightweight and secure.

3. Materials and Methods

In this work we propose and implement a system that uses a private blockchain for
controlling visitors’ access to a physical site. In this section, we provide a description of
the system, how the components of the system interact with each other, and details of our
implementation of the system.

3.1. Proposed System

The proposed system consists of four main components: visitor devices, access points
(APs), blockchain, and a management system as depicted in Figure 1. In the system the
blockchain is assumed to be started by a trusted authority. The nodes of the blockchain are
access points that are spread around the site. It is also assumed that two contracts, one for
visitor registration and one for access policies are already deployed on the blockchain. The
access policy in our implementation is based on levels. Levels are assumed to correspond to
types of visitors. Regular visitor, privileged visitor, and other types as may be appropriate
for the application. The levels are assumed to map to certain areas of the site that can
be identified by ranges of longitudes and latitudes. In our implementation, we assume a
hierarchical level structure in which higher level access allows access to areas that are in
the lower level access.
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Figure 1. Overview of system architecture.

When a visitor arrives, their identity and access level are recorded in a special bracelet
device which we call the visitor device. The visitor device, via the access points, com-
municates with the blockchain and registers the user via the registration contract on the
blockchain. The registration contract issues a visitor contract on the blockchain that records
the identification data as well as the access level of the visitor. The visitor device needs to
be always worn by the visitor during their visit; it becomes the authentication token for the
visitor as they tour around the site. The device is designed in such a way that its removal
breaks the authentication and issues an alert to management indicating that the bracelet is
no longer in place.

The visitor contract periodically receives requests to obtain updates about its corre-
sponding visitor’s location. If a visitor’s location is not updated or is found to be in an
area they are not authorized for, the smart contract emits an event which is received by the
management system and appropriate action is taken by the security team on site. Figure 2.
provides an overview of the interactions between the components of the system.
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Figure 2. Overview of interactions between system components.

The main components of the system and their roles can be summarized as follows

• Visitor devices: Register visitors with the management system and report visitors’
location.

• Access points: Request updates from visitor devices and connect with blockchain
nodes.

• Blockchain: Serve as both the access control system and data storage (database).
• Management system: Serves as an administration interface for the system. It commu-

nicates with the blockchain nodes via smart contracts.

3.2. Implementation
3.2.1. Visitor Devices

In our proposed system, a visitor device registers the visitor in the system, reports
the visitor’s location to the system, and assures that the visitor is indeed at the reported
location with a high certainty. The registration of a visitor starts with the site authority
setting up the visitor device and loading it with the information about the visitor including
the access level for the visitor. The visitor device registers the visitor in the system by
sending a transaction to the registration contract on the blockchain via an access point.
The registration transaction creates a contract on the blockchain for the visitor associated
with the visitor device sending the registration request. This “visitor contract” includes
identifying information for the visitor, their access level, and their current location. After
registering the visitor in the system along with their access data, the visitor device reports
the location data to the system via the access points.

We implemented the visitor device as a wearable bracelet using a NodeMCU device
with a basic circuit as seen in Figure 3. The circuit is simply a loop between a power
and a ground pin on the board. A wire connects the A0 pin to this circuit, enabling the
NodeMCU to quickly detect if this circuit is broken. A wire is looped around the visitor’s
wrist such that when the visitor removes the device from their wrist, the circuit between
the power and ground pin will break. If the circuit breaks, the NodeMCU sends an alert to
the management system via an access point.

The device determines and transmits its locations using NodeMCU’s Wi-Fi capabilities
and the Google Geolocation API. The device continuously computes the visitor’s location at
frequent intervals. When a visitor device receives a request to update its recorded location,
it sends the most recently computed location to the access point, which is in turn logged in
the system as long as it is authenticated as explained in the next paragraph.
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Figure 3. Prototype wearable visitor device based on a NodeMCU open IoT platform. The red wire
must be worn around the visitor’s wrist.

All transactions from a visitor’s device are authenticated with a hashchain created and
stored locally on the NodeMCU. A hashchain is the ordered list of hash values obtained by
repeatedly hashing a random value. The authentication via hashchain is done by publishing
the hash values one by one starting with the last one in the list and confirming that the
hash of a newly published value is the same as the previously published hash value. In our
implementation the last value of the hash chain stored on the device is submitted as part of
the registration and stored on the visitor contract. Every message from the visitor device
after that includes the next hash value from the tail of the hashchain and is submitted
to the visitor contract in the updateLocation transaction (Figure 4) to authenticate the
visitor device. If the hash of the new value sent in the transaction is different from the
currently stored hash value, then the message is not coming from the visitor device and an
alert is issued. Otherwise, the stored hash value is replaced by the new value. With this
authentication, we can assume the only entity capable of updating a visitor’s location is the
corresponding visitor device assuming the hash function used is cryptographically secure.
In our implementation we used SHA-256.
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3.2.2. Access Points

The visitor devices are assumed to be simple, cheap devices and hence do not have
the capability to directly interact with the blockchain, necessitating an intermediate device.
Visitor devices use access points as an intermediary to send information to the blockchain.
In addition to providing a network access point for visitor devices, access points serve as
nodes on the blockchain. In our implementation, we used Raspberry Pi devices as access
points which are an affordable and practical option that can be deployed at various places
on a site. The visitor devices and access points communicate using the MQTT protocol.
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The MQTT broker can be run on one of these such access points or an entirely separate
device depending on the requirements of the implementation.

The access points, in addition to communicating with the blockchain, are responsible
for requesting updates from the visitor devices. Access points run a Python script that
enables two-way communication between visitor devices and the blockchain. The script
listens to the central MQTT broker and when a message is published from a visitor device,
the access point passes the message onto the corresponding contract via a transaction. The
script also listens for events from the blockchain and when an event is emitted which
requires a visitor to respond, such as a request for a new location, the script notifies the
appropriate visitor device by publishing a message through the MQTT protocol.

3.2.3. Blockchain

In our proposed system, a blockchain serves both as a database and an access control
system. We use a private Ethereum blockchain with the Clique consensus algorithm. Clique
is a proof of authority algorithm and does not require the computational work of the typical
Ethereum proof of work algorithm (before the Ethereum merge).

The access control functionality of our system is implemented via smart contracts
on the blockchain. There are three smart contracts in our system: Registration Contract
(RC), Visitor Contract (VC), and Access Policies Contract (APC). The RC and the APC
are deployed to the blockchain by the authorized officials in the system The RC’s only
purpose is to register new visitors and therefore only has one main function, Register. The
Register function takes three arguments, namely, the access level of the visitor, the first
published hash of a visitor’s hashchain, and an identifier for the visitor, and creates a visitor
contract on the chain. The Register function will do so only if the request comes from an
authorized account, the management account in our case. If the transaction which accessed
the Register function was not sent from a management account, then the request is ignored,
and a security alert is issued. Figure 5 shows the steps of the registration process and
Figure 6 shows the code for the Register function of the Registration Contract.
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An instance of a VC stores all the data for one specific visitor. It stores the visitor’s
access level which determines the locations the visitor is allowed to enter. It stores the
current and previous locations of its paired visitor device and provides a method called
updateLocation (provided in Figure 4) to submit new locations. The updateLocation
function is the only way to update the current location stored in a visitor contract. As it
was mentioned in the Visitor Device description, the VC also stores a published hash value
that is used to authenticate that incoming messages are from the corresponding visitor
device. Finally, the VC also has a method called RequestNewLocation that emits an event
to request the paired visitor device send a location update. The communication for the
request is done via an access point. Figure 7 shows this process.
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Figure 7. Diagram describing a location update request to a visitor device.

The final contract, APC, maintains access levels for locations. It has a simple method
CheckAccess which takes a latitude-longitude pair and a visitor’s access level as input.
Latitudes and longitudes are put into a mapping function and the access level for that area
is found. If the visitor access level provided is not valid for the location, then an alert is
sent to the Management system. If the access level is correct, then the visitor contract emits
an event confirming its new location. It is important to note that when a VC updates its
location, it automatically submits to the APC to validate its location. Since checking of
access is done on the blockchain, an attacker is unable to stop the verifications or modify
the transactions sent to the APC. Figure 8 shows the implementation of the CheckAccess
function in our system.
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3.2.4. Management System

The management system communicates with the blockchain primarily through events
emitted from smart contracts. When the registration contract registers a new user, it
emits an event containing the visitor’s information which the management system then
records. After a visitor contract receives a location update an event is emitted which the
management system logs. If too much time has passed since a visitor has updated their
location, the management system calls a method in the visitor’s contract which will prompt
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the corresponding visitor device to update its recorded location. After such a request has
been sent, management waits for the visitor contract to emit an event giving notice of a
new location. If a window of time passes and the management system does not detect this
event, security is alerted. Note that the visitor device does not control the interval at which
its location is sent to the blockchain. Security is also alerted if the access policies contract
emits an event that a visitor is in an unauthorized location. We implemented this process
in a JavaScript file. The frequency of requests and the timings for waiting for a response
can be specified according to the use case’s security requirements.

4. Results

We conducted experiments on a private Ethereum blockchain with two full nodes. One
node ran on a laptop with an Intel i7-11375H microprocessor at 3.30 GHz clock rate, and the
other on a Raspberry Pi 400 computer with a Broadcom BCM2711 quad-core Cortex-A72
microprocessor running at 1.8 GHz clock rate. The Raspberry Pi also served as an access
point, running a Python flask server in addition to its blockchain node. The laptop served
as the management system, running a JavaScript file in addition to the blockchain node.
Simulated visitors were also run on the laptop with JavaScript code. Figure 9 shows our
experimental setup. We collected data on three aspects of our system: 1. The time to register
a new visitor; 2. The time to update a visitor’s location; and 3. The storage required of the
system. In this section we present our results.
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Registration Time: Registration time is measured as the time it takes from the start
of a visitor device creating its hash chain to the detection of a new visitor contract by the
management system. We tested this with three different experiments. The first experiment
measured the time for one physical device to register. The NodeMCU prototype initiated
the registration process, and we measured the time between the NodeMCU first requesting
registration and when the corresponding block on the blockchain was mined. We repeated
this process 10 times and the average of those trials is presented in Table 1. The second
experiment repeated the process as the previous, except, instead of a NodeMC, a singular
simulated visitor device was used. Finally, in the third experiment, 50 simulated visitors
simultaneously requested the registration of visitors. In this experiment, we measured the
time between when the first request was sent to the blockchain and the block containing
the contract for the 50th visitor was mined. When just comparing one physical device to
one simulated device, the physical device was 25% slower to register, though both had
an average registration time of under 150 milliseconds. For 50 simulated visitors, the
registration time per device is lower due to the fact that the very first visitor registration
will take up some time for startup that the later registrations will not need. This results in
lower registration times and hence lower average registration times.
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Table 1. Average registration time per visitor, rounded to the nearest millisecond.

1 Physical Visitor Device 1 Simulated Visitor Device 50 Simulated Visitors

140 112 87

Location Update Time: Location update time was measured as the time elapsed
from when a request by the management system to a visitor contract is sent, to when the
management system detects a successful update event from the blockchain. The results
of our measurements are summarized in Table 2. The first two columns show the average
for all measurements collected in a 10 min interval for one device, one physical prototype,
and one simulated. The third column shows the average of the collected measurements for
one physical device when there were 50 simulated visitors also on the network. The data
shows that the response time for more frequent requests is higher in each case. In the case
of one physical NodeMCU, the increase in location update time is 9%. The increase is about
19% for one simulated visitor device and 5% with 50 simulated devices. This indicates that
the frequency of the requests impacts the location update times so needs to be taken into
account when setting up the system.

Table 2. Average time to update a location in milliseconds. Data were collected during 10 min trials,
with updates at 15 s intervals and 60 s intervals.

Frequency of
Requests

1 Physical
Visitor Device

1 Simulated
Visitor Device

1 Physical Device W/50 Simulated
Visitors Network Load

Requests every 15 s 1020 133 1050

Requests every 60 s 936 166 1002

Figures 10 and 11 show the behavior of the system with respect to location updates.
The figures show the recorded response times of our physical visitor device over a 10 min
testing interval in two situations: (a) when it was the only device on the network; and
(b) when there were 50 simulated visitors on the network with it. The plots in Figure 10
show three trials in each of these scenarios when requests were sent at 15 s intervals.
Figure 11 is similar, though requests were sent at 60 s intervals. The plots show that the
first location update requires some extra time. After the first update, the time needed
for location updates falls within a range of 500–1500 milliseconds timeframe for most
measurements. Over all the data collected, we saw no response over 4000 milliseconds.
Therefore, in our experiments the management system was configured to raise an alarm
if 5 s elapsed since sending a request without a response. This threshold value can be
configured in the system according to the requirements and needs of the application.
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In both Figures 10 and 11, a comparison of the update location times in scenarios
(a) and (b) tells us that the location update time is not significantly impacted by how
many visitors are in the system. Even when there were 50 additional visitors in the
system, the measured response times stayed stable on the most part. This shows that our
system is scalable, and that blockchain-based systems for real-world physical access control
applications are feasible. Another encouraging observation is that the location updates
time measurements are not significantly impacted by the frequency of the requests from
each visitor. There is a threshold that needs to be respected when setting up the system
as discussed previously, but the increase from one request per visitor per minute to four
requests per visitor per minute does not significantly impact the location update time. This
also hints at the scalability of the system for practical applications in which checking access
frequently is crucial.

Data Storage: Measuring how much data is used by our system was accomplished by
recording the size of the “chaindata” subdirectory found inside of the data directory on
our blockchain nodes. The size of the directory was recorded at the start of the experiment
and then again at the end of the experiment, the difference between the two measurements
was recorded as the storage usage for that scenario. We recorded storage usage of two
scenarios, the first being the registration of a new user, and the second was the registration
of new users followed by 10 min of location updates at two different intervals (60 and
15 s). The data from these experiments are summarized in Tables 3 and 4, respectively.
These results were consistent across the different experiments; thus the type of device and
number of devices do not affect the data stored per visitor. The size of data is determined
by the implementation of the relevant smart contracts. We note that the storage required
per visitor is significantly less when there were 50 visitors on the network as compared
to only one. This seems paradoxical as there are more transactions, however, when there
is only one visitor, each block added to the chain contains only one transaction, the new
location. When multiple visitors submit transactions to the blockchain at roughly the same
time, they can be bundled into the same block, making the data usage more efficient as
fewer blocks can be used, minimizing the ratio of block metadata to new locations.

Table 3. Average storage used to register visitors, rounded to the nearest byte.

1 Physical Visitor
Device

1 Simulated Visitor
Device

50 Simulated
Visitors

Average Storage Used 5520 5500 5420
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Table 4. Storage usage in Bytes to store 10 min of location updates.

Frequency of
Requests

1 Physical
Visitor Device

1 Simulated
Visitor Device

1 Physical Device W/ 50 Simulated
Visitors Network Load

Requests every 15 s 93,908 93,834 4,992,656

Requests every 60 s 32,993 32,993 1,667,138

5. Security Analysis

In this section we consider ways an adversary may attempt to compromise the system
and the mechanisms we have in place to prevent these attacks.

5.1. Creating Unauthorized Visitor Contracts

In the proposed system registration of visitors is done via the registration contract that
lives on the blockchain. A visitor contract that is not created by the registration contract
will not be registered by the management system or the access points. The registration
contract will not honor any requests for registration unless they come from an authorized
management account, therefore, an attacker must break the cryptographic functions used
to generate management accounts if they wish to create unauthorized visitors.

5.2. Impersonating a Visitor

In the proposed system, a visitor transaction is invalid if it is not accompanied by
a value that hashes to the visitor’s most recently published element of its hash chain.
So, impersonating a visitor would require knowledge of the hash values in the chain.
These values are stored locally, and, unless intercepted during transmission, are not stored
elsewhere. To predict the identifying value from the published hash value would amount
to ‘cracking’ the underlying hash algorithm. Since the underlying hash algorithm is
cryptographically strong, this would be infeasible.

Another impersonation attack could involve the attacker registering their own “device”
on the blockchain. In the current implementation, this is possible because, even though
the registration contract is accessible only by management accounts, there is currently no
verification of the device sending the registration request between the access point and the
visitor device. This can be addressed in various ways. A proposed solution would be to
delegate the creation of visitor hash chains to the management system. Before a visitor
device is given to a visitor, the management system creates a visitor contract, using the
final element of the chain, and securely transmits the hash chain to the visitor device along
with the address of this new contract, so that the device may access its corresponding
contract. With this system, an attacker would have to gain access to a management account
to register their own visitor device. This would require breaking the encryption algorithms
utilized by the blockchain, which is assumed to be computationally infeasible. Another
solution would be to include a unique identifier with each visitor device and have the active
identifiers stored on the registration contract. When a registration request comes from a
device with an inactive or illegitimate id, it will not be honored by the registration contract.

5.3. Tampering with Records

An attacker may attempt to tamper with transactions on the network to change the
records of previous visitor locations or change the access level for the visitor device to
a higher access level than what it should be. In the proposed system the location data
as well as the access levels are stored on the blockchain and updates to data can only be
done by authorized accounts. The location updates are sent by visitor devices and all
communication from the visitor device is authenticated using the hash chain on the visitor
device. Tampering with the hash chain would result in no updates being submitted to the
blockchain, and in turn, to the management system, and hence an alert would be issued
about the incident.
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Physical tampering of the visitor device would require the breaking of the bracelet
which would notify the blockchain via the access point. In such a case, an event would be
emitted by the visitor contract notifying the management of the incident.

5.4. Unauthorized Access between Updates

In the proposed system visitors update their locations at set intervals. Theoretically, it
would be possible for a visitor to walk into an area they are not allowed in right after an
update and leave before their device updates their location on the blockchain. The time
interval between updates can be set by the management based on the topography of the
area in which this system is implemented. Location updates can be set to be relatively
frequent making it practically impossible for a visitor to linger in any unauthorized area
long enough to do harm without their location being reported.

5.5. Replay Attacks

In a replay attack the attacker intercepts the communication between two devices
and fraudulently delays or resends it to the receiver. In our scenario the communication
between the visitor device and the access point is susceptible to replay attacks. The rest
of the communication in the system goes on the blockchain and hence replay attacks are
not feasible.

In our proposed system, an attacker without a visitor device may conduct a replay
attack to present itself as a legitimate visitor to the access point. This requires that the
attacker authenticates itself to the access point. Because the authentication requires a
previously calculated hash value to be transmitted with each message, the attacker could
intercept the communication including the hash values and replays the hash values for
authentication. One solution to this may be an implementation of a timeout system like the
one proposed by Li [28] where transactions are forced to timeout after a carefully selected,
short time frame. To successfully launch a replay attack, the access point would send twice
the number of messages if an attacker is relaying and replying to a visitor. Thus, creating
a timeout after a short interval would diminish a replay attack because timeouts would
happen before the attacker has time to complete the computations required to replay a
visitor: an attacker would need to finish the double amount of computations before the
timeout. The timeout would hinder attackers without harming legitimate transactions.
However, the timeout would need to be set up correctly for this countermeasure to work.
This is left as a future work.

6. Discussion

Our study shows that blockchain based access control for a physical site is feasible
and has advantages over traditional decentralized systems, including the removal of the
control from a decentralized system protects the system against a single point of failure, the
use of the cryptographically chained blocks to avoid tampering from outsider and insider
attacks, the tamper-proof ledger that records all transactions to provide reliable logging
and auditing for the system, and finally, the automated registration of visitors and location
updates using smart contracts to reduce the authorization and management tasks, while at
the same time providing flexibility for more fine-grained access control if needed.

Additionally, the results from our experiments indicate a flexible and scalable system
where the number of visitors and the frequency of location updates do not significantly
impact the efficiency of the system. A challenge for real-life applications might be the
limited storage capacity of access points, which depends on the number of visitors and the
frequency of location updates. One solution to this challenge is to allow for light nodes
(instead of full-nodes) on the blockchain. Light nodes can store a certain number of recent
blocks instead of all blocks thereby reducing the storage requirement. This solution is
viable for large geographical sites with many access points, some of which can serve the
full nodes and some others as light nodes.
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Although our current work models one physical site under a single authority with sev-
eral nodes, the advantages of using a blockchain for visitor authentication and access control
can be amplified when a consortium of sites (with multiple managing authorities) wants
to track users’ locations and behaviors. The decentralized nature of the blockchain allows
consortium members to reliably track visitors without having to trust each other’s practices.

7. Conclusions and Future Work

In this study, we propose a system that deploys blockchain technology for physical
visitor access control and authentication. We also constructed a visitor device that is easy
and relatively cheap to build to provide user authentication and tracking. Our results show
that a blockchain-based physical access control system is feasible and scalable.

Future work can include improvements on the design of the wearable bracelet,
study on accessibility issues, and improvements and considerations when deploying the
physical authentication over a consortium (instead of a single authority) with light/full
blockchain nodes.
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