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Abstract: The recent advancement in data science coupled with the revolution in digital and satellite
technology has improved the potential for artificial intelligence (AI) applications in the forestry
and wildlife sectors. India shares 7% of global forest cover and is the 8th most biodiverse region
in the world. However, rapid expansion of developmental projects, agriculture, and urban areas
threaten the country’s rich biodiversity. Therefore, the adoption of new technologies like AI in Indian
forests and biodiversity sectors can help in effective monitoring, management, and conservation
of biodiversity and forest resources. We conducted a systematic search of literature related to the
application of artificial intelligence (AI) and machine learning algorithms (ML) in the forestry sector
and biodiversity conservation across globe and in India (using ISI Web of Science and Google Scholar).
Additionally, we also collected data on AI-based startups and non-profits in forest and wildlife
sectors to understand the growth and adoption of AI technology in biodiversity conservation, forest
management, and related services. Here, we first provide a global overview of AI research and
application in forestry and biodiversity conservation. Next, we discuss adoption challenges of AI
technologies in the Indian forestry and biodiversity sectors. Overall, we find that adoption of AI
technology in Indian forestry and biodiversity sectors has been slow compared to developed, and to
other developing countries. However, improving access to big data related to forest and biodiversity,
cloud computing, and digital and satellite technology can help improve adoption of AI technology in
India. We hope that this synthesis will motivate forest officials, scientists, and conservationists in
India to explore AI technology for biodiversity conservation and forest management.

Keywords: forest; artificial intelligence; forest resource management; machine learning; biodiversity
conservation

1. Introduction

Artificial intelligence (AI) is a wide-ranging branch of computer technologies con-
cerned with building smart machines capable of augmenting, automating, and accelerating
key day-to-day tasks that typically require human intelligence. It involves extracting pat-
terns, predicting “future states”, and detecting anomalies. The computational, technological
and research breakthroughs in the field of AI have promoted a rise of their application in
every field (e-commerce, social network, agriculture, education, environmental sustain-
ability, healthcare, combating information manipulation, social care and urban planning,
public safety, transportation, environment conservation, and many more) including forest
and wildlife sectors [1–8]. The advancements have been driven by the following factors:
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(1) the pace with which information is available has increased—creating the opportunity to
drive impactful insights and decision-making; (2) the costs of data storage and computing
have dropped due to availability of cloud technologies—allowing us to build complex
solutions at scale to accelerate experimentation and research; and (3) availability of holis-
tic data sources due to availability of (a) high-resolution satellite imagery, (b) drone and
camera technologies, (c) sensors and telemetry technologies (IoT), and (d) people-centric
data sources (social networks, citizen science, and other open data sources). However, the
impact of AI technology has been uneven, mostly benefiting high economic return sectors,
with fewer applications for forestry [9,10] and biodiversity conservation [11–14]. Though,
application of artificial intelligence (AI) in forest and natural resources management started
three decades before [15], the research and adoption of AI technology in the forestry sector
lagged behind other fields such as health, transportation, and agriculture [3].

Forests cover approximately 30% of global land area and are dominant terrestrial
ecosystems harboring 90% of terrestrial biodiversity [16,17]. Forests are vital for proper
functioning of our planet as they provide several critical functions for sustaining life,
such as protective functions and environmental services. For instance, they provide clean,
breathable air by stabilizing greenhouse gasses in the atmosphere, and they absorb as
much as 30% (2 billion tons/year) of annual global atmospheric CO2 emissions [18]. They
play a major role in global food security by supporting pollinators, natural predators of
agricultural pests, and the hydrological cycle. They are an important source of medicinal
plants and supply about 40% of global renewable energy (biofuels) [19]. They are critical for
hydrological integrity of various ecosystems and contribute to people’s and the ecosystem’s
resilience to extreme events such as floods and droughts. To add to that, about 1.6 billion
people depend on forests for their livelihood [20].

Unfortunately, forests also face many challenges. Globally, forests are undergoing
rapid degradation due to exploitation for timber, agriculture expansion, and urbaniza-
tion. Impacts of climate change, such as wildfires, are further contributing to global forest
degradation [21]. In the last 25 years, 129 million hectares of forest area were lost globally,
resulting in a reduction of global carbon stock by 17.4 Gt [22]. It is predicted that the current
global trend of forest decline and carbon loss will continue in the near future [19]. Despite
the benefits the forest provides and the kind of threats it is experiencing, the forest sector is
still using traditional techniques to manage them. In fact, it is one of the few sectors where
adoption of new technology is slow [23]. For example, in many countries including India,
forest officials still use pen and paper to conduct forest inventories. Such traditional meth-
ods pose many drawbacks, like the introduction of personal bias, slowing data collection
and analysis, and lack of scalability of the approach [24]. In comparison to the forestry
sector, other sectors like agriculture—one of the prominent drivers of deforestation—have
embraced technological solutions at a rapid pace [25]. Precision agriculture is a result of
companies like sagarobotics.com, and farm.bot which use robots for precise de-weeding,
precise fertilization, or pesticide applications, as they contribute to higher yields per acres.

Unlike agricultural systems, forests are dynamic in nature, and so they need to be
managed accordingly, especially when many governments are currently identifying ways
to achieve transformational change to meet their nationally determined contributions—
NDCs [19]. This is where technology can play a significant role by filling the gaps/drawbacks
of traditional approaches of data collection and analytics, which is crucial for effective forest
management and conservation. The forest sector will benefit significantly by technology’s
inherent ability to support innovation and adopt innovation to various geographies and at
various scales, and at a much faster pace.

This synthesis article discusses the scope of artificial intelligence and its applications to
the Indian forest sector and biodiversity conservation with following objectives: (1) provide
a global overview of AI application in the forest sector and biodiversity conservation, and
(2) discuss challenges in the Indian forest sector, biodiversity conservation, and relevance
of innovative AI technology to solve those challenges.
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2. Materials and Methods

We identified published literature and reports that addressed the application of ar-
tificial intelligence (AI) and machine learning algorithms (ML) for biodiversity conser-
vation, forest management, and related services across the globe and in India using a
systematic literature search. To establish a database, we searched the ISI Web of Sci-
ence (http://webofknowledge.com, accessed on 3 August 2021) and Google Scholar
(https://scholar.google.com/, accessed on 18 June 2021) for peer reviewed journal articles
published since 1980. Literature/reports published by the industry, nonprofit organizations,
and government organizations were also considered. We used a different combination of
keywords such as AI and ML application in: biodiversity conservation, wildlife conserva-
tion, forestry, illegal logging, plant inventory and identification, forest classification and
mapping, wildlife identification and monitoring, forest restoration and conservation, above-
ground carbon stock, forest health and phenology monitoring, detecting, and predicting
anthropogenic threat to forest, etc. (Table S1). The initial search yielded 900 peer-reviewed
studies after removing duplicates (300 studies), of which we excluded 628 studies by read-
ing title and abstract, as they did not qualify the objective of our study. We reviewed full
texts of the remaining 272 publications to find studies that reported application of AI and
ML in forest management and their related services across the globe and in India.

We only included studies that reported application of AI and ML at least in one of the
areas related to forestry, biodiversity research, and conservation as mentioned in Table S1.
We gave priority to primary studies to avoid the duplication. Following the mentioned
search and criteria for literature selection, we finally selected 172 studies to include in
the review. Additionally, we also collected data on AI-based startups and non-profits in
forestry, and biodiversity conservation from published reports, literature, blogs, and from
google search.

3. Results and Discussion
3.1. Global Overview of AI Research and Application in Biodiversity Conservation and the
Forest Sector

One of the main pre-requisites for developing and applying AI in any field is access to
high-volume and high-quality datasets, network infrastructure of the Internet-of-Things
(IoT), advanced technology (high resolution camera, satellite technology, sensors, drones,
and unnamed aerial vehicles (UAVs)), and computational space and storage. Access to a
combination of these requirements has motivated AI application research in many domains
of biodiversity conservation and forestry, ranging from forest inventory and detecting illegal
wildlife and timber trafficking and felling [6,26,27] (Figure 1 and Table S1). Further, these
research efforts have revolutionized real-time application of AI technology in biodiversity
conservation [28–30] and forestry sectors [9,10,31], as indicated by an increasing number of
related AI-technology-based start-ups (Table S2).

3.2. The Growth of AI-Based Start-Ups and Non-Profits in Biodiversity Conservation and the
Forest Sector

Balancing preservation with sustainable utilization of forest resources is a daunting
task, particularly given the lack of transparency and the persistent corruption in the forestry
sector. Unlawful practices such as illegal logging, deforestation and illegal timber trade
have increased over time. While technology cannot solve all the problems, it can certainly
contribute to prevention of such unlawful practices, ultimately improving transparency in
the forestry sector and even helping tackle climate change through sustainable practices.
In the following section, we describe economic markets for AI applications in the forestry
sector and how such economic growth has led to a number of promising AI technology
start-ups and non-profits all over the globe, that aim to digitize forests, improve forest
management [7,32–34], combat rising levels of CO2 [35–38], protect endangered animal
species [39,40], prevent wildlife trafficking and illegal trading [41–44], help in wildlife

http://webofknowledge.com
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census and monitoring [27,45–47], and automate taxonomic identification and classification
of animals and plants, ect. [48–53] by embracing digital advancements (Table S2).
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AI applications in the forestry sector are expected to significantly contribute to the
global economy primarily through the precision forestry market which was worth USD
3.9 billion in 2019 and is projected to reach USD 6.1 billion by 2024. The major drivers
of the precision forestry market are increasing mechanization in emerging countries of
Europe, Asia Pacific, and Africa for logging operations, rising construction activities, grow-
ing demand for timber from sawmills, decreasing cost of forestry mapping technologies,
and advanced monitoring and surveillance technologies, as well as the push to drive pre-
vention of illegal logging and deforestation, and increase government support towards
digitalization of forest resources.

Additionally, the AI technology market in inventory and logistics management, fire
detection, digital mapping of forest for biomass, and carbon and timber resources is also ex-
pected to grow in the coming years. Such promising AI technology market growth relevant
to the forestry sector has encouraged multiple start-up companies and non-profits to use
AI-powered technology to tackle a wide range of problems such as detecting anthropogenic
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threats to the forest (deforestation, illegal felling), hazard assessment and prediction (fire,
pest, and disease prediction and detection; predicting storm and flood damage to forest),
restoration and reforestation, forest resource quantification and mapping (forest classifica-
tion, estimating forest cover in real time, estimating carbon stock, and biomass and timber
resource), tracking illegal wood trafficking, and monitoring forest health and phenology
(Table S2). Most of these starts-ups and non-profits are located in developed countries such
as the USA, Europe, Canada, Australia, and South Africa. Except Brazil, most developing
countries which hold biodiversity-rich tropical forests are very slow in adoption of AI
technology (Table S2).

3.3. AI and ML Application in Managing Forests and Their Resources, and Biodiversity Conservation
3.3.1. Addressing Challenges of Deforestation and Illegal Felling

AI and machine learning algorithms coupled with spatial analysis have been used to
predict and monitor deforestation rates across the globe [54–59]. For instance, Rainforest
Connection (https://rfcx.org/, accessed on 26 June 2021) is working to address the chal-
lenge of deforestation. The company is using old, discarded cellphones, powering them
with solar power, and installing them on the treetops to record chainsaw sounds from the
forest. These recordings/data are sent to cellphone towers and then to the base station
where Google’s AI and machine learning library called TensorFlow is used to identify and
detect chainsaw noise over others. Once identified, this information along with location
information of installed sensors is then shared with forest managers so that further due
diligence can be carried out to identify and stop illegal tree felling. Similarly, other startup
companies and non-profits such as Outland Analytics, Terramonitor, Global Forest Watch,
and Future Forest Map project also make use of open-source satellite data and AI technol-
ogy to map and monitor deforestation in real time. For example, Outland analytics makes
use of audio recognition AI algorithms to detect chainsaw sounds or unauthorized vehicles
and sends real-time alerts via email to officials to efficiently manage environmental crime.
Terramonitor and Satelligence use a database of satellite images collected every day by
multiple satellites and AI to create low-cost satellite data for natural area management and
to monitor deforestation and forest health in real time (Table S2).

The World Resources Institute in collaboration with Central Africa Regional Program
for the Environment (CARPE) used spatial modeling and AI to understand what factors
influence deforestation in the Democratic Republic of Congo and to map where future forest
loss is most likely to occur. Their analysis suggests that human presence factors such as
shifting cultivation, and the presence of roads, had highest influence on forest loss followed
by climatic variable precipitation. Further, analysis suggested that forests near to farmland
are most vulnerable to deforestation. Their study can help DRC authorities to proactively
make land use decisions that shift development pressure away from high-value forests.

3.3.2. Forest Inventory, Mapping, Carbon, and Biomass Estimation

Various startups are also making use of openly available and proprietary high-resolution
satellite imageries and combining them with various other datasets to produce highly de-
tailed maps of forests and landcover [60–63]. For example, SilviaTerra combines openly
available high-resolution satellite imagery with field survey data from the US forest de-
partment to develop a predictive model that estimates forest conditions at a 15 m × 15 m
resolution. The data contains information about tree height, type, and diameter, for example,
which is being used by various timber and conservation organizations for guiding their
plans (https://silviaterra.com/bark/index.html, accessed on 26 June 2021). Chesapeake
Bay Conservancy teamed with Esri, and the Microsoft Azure team used machine learning
libraries, to develop a highly detailed (one square meter resolution) landcover map of
the region (https://chesapeakeconservancy.org/, accessed on 26 June 2021). Now, that
the algorithm and mechanics are available, with some modification, to develop a detailed
landcover map either for the entire US or other parts of the globe. 20tree.AI, a start-up in
Portugal, made use of remote sensing, big data, cloud computing, and artificial intelligence

https://rfcx.org/
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for real-time forest inventory and monitoring. The Finnish forest center makes use of GIS
data, imagery sources, climate and weather data, and AI for accurate measurements of
forest stands and to better predict forest inventory. Similarly, CollectiveCrunch a for-profit
company based in Germany and Finland has developed an AI platform dubbed as “Linda
Forest”, that predicts wood mass, wood species, and wood quality of target areas far more
accurate than any existing conventional methods. Linda Forest uses multiple sources of data,
such as VHR2 image of Europe from the Copernicus Land Monitoring Service, Sentinel-2
images for growth modeling, and Copernicus Climate Change Reanalysis data for microcli-
mate modeling and growth predictions, to accurately estimate wood mass and wood quality
in standing forest of the target area. Using this information, companies can then estimate
resource-efficient production and consumption of wood products.

Deforestation and forest degradation account for approximately 11% of carbon emis-
sions, more than the entire global transportation sector and second only to the energy
sector. Reducing emissions from deforestation and forest degradation (REDD+) is a mech-
anism developed by Parties to the United Nations Framework Convention on Climate
Change (UNFCCC). It creates a financial value for the carbon stored in forests by offering
incentives for developing countries to reduce emissions from forested lands and invest
in low-carbon paths to sustainable development. However, designing effective REDD+
policies, assessing their GHG impact, and linking them with the corresponding payments,
is a resource-intensive and complex task. AI and machine learning techniques have shown
a high potential in mapping and monitoring CO2 stock and other ecosystem services in
forests [35–38]. Start-ups such as GainForest and Panchama make use of AI technology to
solve such complex tasks. GainForest uses large amounts of unlabeled satellite imagery, a
video prediction model, game theory, and machine-learning-based Measurement, Report-
ing, and Verification (MRV) processes to monitor and forecast deforestation and design
carbon payment schemes. Similarly, Panchama uses machine learning on a combination
of satellite, drone, and lidar images to precisely estimate individual tree size, volume,
and carbon density. Non-profit collaboration such as for Erol Foundation, the Center for
Global Discovery, and Conservation Science (GDCS) at ASU and non-profit Planet.Inc use
computer vision models, LiDAR, and satellite imagery at 3–5 m resolution for automatic
and cost-effective direct measurement and mapping of carbon stock and emission at high
resolution and high frequency in the Peruvian forest.

3.3.3. Automated Reforestation and Afforestation

Another example of AI application is reforestation of recently deforested areas that
can promote the planting of 1.2 trillion more trees on the planet [64]. This has the potential
to absorb CO2 from the atmosphere in the order of hundreds of gigatons [64]. Three start-
ups, Droneseed, Dendra, and Land Life, are creating products to address this challenge.
Droneseed is a company which has developed an innovative product called the seed
vessel that carries seeds of desired species, helping to protect and germinate faster once
planted. The company deploys drone swarms and FAA heavy lift certified a group of
four or five drones that carry weight of about 57 lbs, scan the study area to be planted to
identify suitable conditions for planting-like moisture availability, and drop seed vessels.
This technology provides numerous advantages over manual reforestation method because
it enables faster dispersal of seeds, and it can cover a larger area than planting by hand;
most importantly, it also provides the ability to quickly monitor and measure the status of
reforestation using drones. As it provides a bird eye view, it also helps to identify exact
locations of problematic areas where appropriate interventions could be done to achieve
better results (https://www.droneseed.com/, accessed on 26 June 2021).

The Nature Conservancy’s Oregon chapter has teamed up with Droneseed to restore
rangeland that was disturbed by invasive species in Oregon (https://uavcoach.com/
droneseed-oregon/, accessed on 26 June 2021). A similar start-up in UK called Dendra
uses AI-based automation and digital intelligence to identify suitable planting areas to
disperse seedpods filled with seeds of desired species and nutrients to support germination.

https://www.droneseed.com/
https://uavcoach.com/droneseed-oregon/
https://uavcoach.com/droneseed-oregon/
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Land Life, a start-up in Amsterdam, uses multiple technologies such as GPS, satellite
imagery, an automated driller, Cocoon (a seedling support technology), and AI technology
for mass-scale reforestation and monitoring reforestation success.

3.3.4. Hazard Assessment and Prediction

Another area where technological advances are bringing transformational changes
to the forestry sector is through the collection of inventory data. Such advances have
led to novel ways of collecting and preparing highly accurate, high-resolution data that
will significantly improve the way we are managing forests and conservation activities.
For example, a lot of data exists in paper format from past forest monitoring, which
technologies like Optical Character Recognition (OCR) and Natural Language Processing
(NLP) can digitize. Once the data is available in digital format, they can be fed into several
analytical algorithms for conducting analyses. Internet-enabled sensors (Internet of Things
devices), that can measure temperature, moisture, etc., when installed in forests, provide
near-real-time information about forest activities and conditions. Such data are being
used to develop predictive models for identifying and getting insights into forest health
and threats like deforestation [55–59], drought [65,66], wildfires [67–69], pests, diseases
outbreak [70–72], soil health, storm damage, and other forest disturbances [71]. Terrafuse,
a start-up in Canada, uses physics-enabled AI models to understand climate-related risk at
the hyperlocal level. Terrafuse leverages historical wildfire data, numerical simulations, and
satellite imagery on Microsoft Azure to model wildfire risk for any location. It also estimates
temporal change in carbon density because of fire, deforestation, and other calamities.

Further, researchers in Columbia University are using AI technology to understand
the effect of Hurricane Maria on Puerto Rico forests. Researchers want to understand how
tropical storms, which may worsen with climate change, affect the distribution of tree
species in Puerto Rico. In 2017, a NASA flyover of Puerto Rico yielded very high-resolution
photographs of the tree canopies, using this images and AI technology, scientists hope to
analyze which tree species were destroyed and which withstood the hurricane to predict
patterns associated with future hurricanes.

3.3.5. Tracking Illegal Wood Trafficking

The illegal timber trade is considered as lucrative as the illegal wildlife trade. Accord-
ing to Interpol, the illegal timber trade is worth USD 50 billion to 150 billion annually. The
supply of illegal timber not only contributes to deforestation (leading to significant loss
of carbon) but also threatens many rare tree species such as rosewood, dipterocarps and
mahogany. Illegal timber trade lowers global timber prices by 7 to 16%, costing source
nations up to USD 5 billion as losses in annual revenue and providing a significant incentive
for governments to act. Thus, to protect forests from illegal felling and to guide legal timber
use globally, there is a need for a system which can track illegal timber [73]. Timbeter is a
start-up in Estonia, which uses the world’s largest database of photometric measurements
of roundwood and AI for online tracking of roundwood to individual shipments and
piles to fight illegal logging and timber trafficking. Xylene, a start-up in Germany, uses a
combination of space technology, blockchain and supply chain mapping, automatic data
gathered by IoT devices, and Earth Observation and AI technology to track the wood
supply chain in real-time.

3.3.6. Monitoring Ecosystem Health and Biodiversity Conservation

The conservation community often seeks to promote forest characteristics that influ-
ence richness and diversity of fauna in the forest, making it critical to understand what
interventions are successful, and AI technology is helping in such interventions [11–14].
Scientists from The Nature Conservancy and its partner organizations have developed a
novel way of automated soundscape monitoring to evaluate the impact of conservation
actions on biodiversity. To understand how species respond to disturbances like recent
deforestation or poaching, they developed tiny sound recorders and installed them across
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various locations in the forest. They recorded sounds of the forest, referred to as a sound-
scape, which was then analyzed to identify various species sounds, and activity across
various times of the day and various periods of the year. They are developing a global
platform to store such data from various efforts across the globe and provide analytical
services to analyze these datasets to understand benefits of conservation interventions.
Such technology has various implications for understanding how species react to distur-
bance or benefit from interventions [13]. Classification of vibration patterns from oncoming
trains using machine learning has also been used in providing early warning to wildlife in
Banff National Park, Canada, where train strikes have been a major source of mortality for
grizzly bears Ursus arctos horribilis [74]. By using such classifications to trigger sound and
light-based alarms before trains reached the location, animals were found to leave the track
29–62% earlier than they would have otherwise done [74].

Apart from sound recognition, the widespread use of imagery in wildlife monitoring
has led to a strong use-case for AI-based automation for identification of species [48–53]
(Tables S1 and S2). Imagery may be obtained, for example, through automated camera traps,
which are triggered by heat and motion. Millions of photographs or video clips may result
from the widespread deployment of such devices. Given the massive amount of data, this
may make it challenging to analyze and extract data on species of conservation importance.
The application of AI to this problem can result in accurate species classification. For
example, in the Serengeti ecosystem, a community of 48 species was classified using such
an approach [27]. Similar methods have also been applied in the identification of individual
animals. For example, the strip patterns of tigers, (Panthera tigris) have been used to identify
individuals [75]. Based on this, Shi et al. [76] developed a convolutional neural network
(CNN) to identify individual tigers. The ability to identify both species and individuals has
important implications for monitoring biodiversity, but also in conservation applications
such as mitigating human-wildlife conflict. For example, farmers could be provided with
early warning on the entry of elephants (Elephas maximus) into crop fields and villages
by combining automated cameras with image analysis software. Similarly, individual
tigers that become habituated to humans, increasing risk of conflicts, can be identified
using such systems. A key requirement in implementing such systems in the field is rapid
classification and information transfer, for this computation on the device itself is ideal but
can be expensive to set up. Further, the lack of mobile towers in remote forested areas can
hamper information transfer.

3.3.7. Solving Supply and Demand Problem

With rising global population, there is high demand for timber and non-timber forest
products. Therefore, the forestry sector, globally, is facing demand uncertainty, higher
supply risk, and increasing competitive intensity. Thus, there is a need for smart supply
chain management to solve supply and demand problems in the forestry sector [77,78]. One
area of AI’s potential application is the emerging management philosophy of supply chain
management (SCM). The aiTree Ltd. in Canada, for over 20 years, has been focusing on
systematic technologies to solve demand and supply problems in the forestry sector with AI
algorithms. The aiTree has applied its typical application Forest Simulation Optimization
System (FSOS) in British Columbia, Canada to solve demand and supply problems in the
forestry sector. The demands from a forest include wildlife habitat, biodiversity, water
quality, visual quality, carbon storage, timber production, and economic contributions.
FSOS focuses on both “what we can take from the forest” and “what we can create in
the forest”. Forest design is a complicated problem because the trees are growing and
dying, and all the values must be considered every year for over 400 years. FSOS is a good
example that uses AI, big data, and cloud computing technologies to solve the complicated
demand and supply problems.
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3.3.8. Forest Hydrology

One of the most critical aspects of forest management is understanding its linkages
with watershed/forest hydrology, as it drives nutrient cycling, precipitation inputs, and
surface and subsurface flow networks that support forest growth and downstream water
quality [79]. With improvements in technologies such as high-performance sensors, smart
phones, autonomous vehicles, remote sensing, and GIS, increasing volume and complexity
of data on ecohydrological parameters are being collected. Tools such as AI and ML are
being applied in the field of ecohydrology, including forest hydrology, to fully realize the
potential of these data and obtain new insights into ecohydrological processes [80]. For
instance, AI/ML methods have been used to estimate and model precipitation interception
by forest canopies [81,82], canopy water content [83], spatiotemporal behavior of soil mois-
ture in vegetated areas [84–86], global [87] and regional [88] terrestrial evapotranspiration,
water-use efficiency in terrestrial ecosystems [89], vegetation water storage [90], terres-
trial/groundwater storage [91] using vegetation cover as an indicator [92], and plant water
stress [93]. The recent growth of big hydrologic data through remote sensing and data
compilation has also fostered the adoption of ML in land surface modeling which simulates
land surface processes including partitioning of water between land and atmosphere, such
as in groundwater dynamics [94]. Big data and AI/ML have been increasingly used to
predict extreme geoclimatic events such as droughts, floods, and landslides [95], which
have direct implications for forest management. More recently, efforts are being made
to improve prediction of terrestrial ecohydrological extremes (TEE) (e.g., the extremes of
evapotranspiration, soil moisture, streamflow, and terrestrial water storage) at seasonal to
decadal scales using AI-based integrated modeling [96]. Taken altogether, these advances
in technology, data interpretation, and modeling are slowly transforming our ability to
understand forest and watershed hydrology [97] and have important policy and manage-
ment implications [80]. Use of AI/ML methods for forest hydrology, however, seem to be
limited to scientific research and are yet to be applied for conservation and management at
a large scale. These methods have a tremendous potential for better decision support in
forest hydrology management.

3.3.9. Aquatic and Marine Biodiversity and Water Resource Conservation

Artificial intelligence (AI) applications in aquatic and marine biodiversity and water
resource optimize the conservation of aquatic and marine flora and fauna and water
resources and attracted significant reserch attention since last decade. For instance, AI and
ML models have been used to predict stream flow [98–103], water quality [104–125], water
pollution and toxicology [126–132], aquatic and marine biodiversity diversity prediction
and extinction [133–149], predicting species distribution and habitat mapping [150–164],
and marine and aquatic species recognition and classification [165–183]. Above mentioned
AI research in aquatic and marine biodiversity and water resource conservation highlight
that AI will be key to developing new technology to uncover new aspects of conservation
and potential threats to aquatic and marine ecosystems’ structures and functions, thereby
informing effective monitoring and conservation of aquatic and marine biodiversity and
managing water resources. This new knowledge will directly address several of the key
challenges identified for the aquatic and marine ecosystems, from effective water resource
management and biodiversity conservation, to creating a digital representation of the
freshwater and ocean ecosystems and delivering data, knowledge, and technology to all.

3.4. Status of Indian Forests and Need of AI Technology

Indian forests are an important defining feature of the country’s landscape that hold
both cultural and biological importance [184]. India’s wide range of climate, geography,
and culture is unique among biodiversity-rich nations and is known for its diverse forest
ecosystems and megabiodiversity. It ranks as the 10th most forested nation in the world [19]
with 24.56% (81Mha) of its geographical area under forest and tree cover [185]. Out of
34 global biodiversity “hot spots,” four are located in India, namely, the eastern and north-
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eastern Himalayas, Indo-Burma (North-east India), Sundaland, and Western Ghats [186].
Being one of the 17 megadiverse countries, with only 2.4% of global land area, India
accounts for 7 to 8% of recorded species in the world [98]. In addition, Indian forests
provide many ecosystem services and livelihoods to people. Approximately 275 million
people of India live in the fringes of forest and earn the bulk of their livelihood from
forests [187]. It is estimated that Indian forests sequester 5.84–7.39 Gt of carbon every
year [188].

Despite their cultural, economic, and ecological importance, Indian forests face many
adverse challenges.

• About 85% of forest area is publicly owned and 15% privately owned [19]. Most of the
public forests are administered by the government, and some of them by communities
and indigenous groups, and only around 27% of publicly owned forest is protected
in 2019, compared to 31.63% in 2003. Further, 14% of tree cover assumes unclassified
status (Table 1), indicating that Indian forests suffer from low protection status.

• Of the approximately 81 Mha of forest, 9928 Mha are dense primary forests, 30.847 Mha
are moderately dense forests, 40,775 Mha are open forests, and 9503 Mha consists of
agroforestry, social forestry, and plantations [185]. The forest cover data from 2003 to
2019 suggests that there is a consistent increasing trend in open forest and a decrease
of dense forest cover with the gain of 1,917 Mha of open forest and loss of 2599 Mha of
moderately dense forest (Table 1), indicating a continuous degradation of dense forest
in India.

• Further, Indian forests suffer from low growing stock. The data from 2003 to 2019
suggest that there is an loss of 507,944 million cubic meters of growing stock in forests,
whereas trees outside forests show a gain of 0.61 million cubic meter, suggesting that
Indian forests are poorly managed (Table 1).

• Illegal logging and trade of high-value timber is a major problem in many parts of the
country. In 2009, the Ministry of Environment and Forests estimated that 2 million m3

of logs were illegally felled per year. Underlying this logging are several uncertainties
relating to legal rights to harvest, tax, perform timber harvesting activities, third
parties’ rights, and trade and transport.

• As India is one of the world’s largest importers of wood-based products, it is also a
major consumer of illegal timber. The volume of illegal imports has increased, and in
2012, almost 20% of timber imports were estimated to be illegal [189].

• India’s population and economic growth in the last several years has raised several
concerns in terms of its present and future resource demands for timber and non-
timber material and energy needs from the forest. With 18% of global livestock and
17% of the human population on 2.4% of the world’s land area, the Indian forest
faces immense biotic pressure. Around 30% of fodder needs for cattle and 40% of
domestic fuel wood needs directly come from these forests. Despite protection status,
87% of national parks experience grazing. Further, in eastern and northeastern India,
around 1.2 Mha of forest land is under shifting cultivation. Therefore, there is high
anthropogenic and other biotic pressure on Indian forests.

• Moreover, the Indian forest sector still depends on resource-intensive and time-
consuming traditional forestry practices to manage and protect forests. Compared to
the wildlife sector, the forestry sector in India has been slow in adapting innovative
technology, which can bring transformative change in conservation and management
of forests and their resources.

While these challenges persist in the Indian forest sector, they coincide with an era in
which there is unprecedented innovation and technological change. The rapid advancement
in AI technology supported by the Internet of Things (IoT), open-source big data, unmanned
aerial vehicles (UAVs), high-resolution satellite images, sensors, and cheaper computing, is
a boon to the Indian forestry sector for solving many of its challenges. Given the similar
nature of problems plaguing tropical forests globally and in India (such as deforestation,
encroachment for farming, forest degradation to extract timber and non-timber resources,
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illegal logging, illegal timber import and export, and inefficient supply chain management),
AI technologies being developed for the forestry sectors in other countries and related
learnings can also be applied for improving forest management in India (Table S2).

Table 1. Status of forest in India from 2003 to 2019.

Forest Resource
Variable 2003 2005 2009 2011 2013 2015 2017 2019

Net Change
between 2003

to 2019 (In
Million ha)

% Change
between

2003 to 2019

Very dense forest
(in million ha) 5.452 5.457 8.351 8.347 8.35 8.59 9.816 9.928 4.476 45.08

Moderately dense
forest (in million ha) 33.406 33.265 31.901 32.074 31.875 31.537 30.832 30.847 −2.599 −8.43

Open forest
(in million ha) 38.858 38.722 40.252 40.421 40.225 31.54559 40.648 40.775 1.917 4.7

Tree cover
(in million ha) 9.99 9.166 9.277 9.084 9.127 9.257 9.382 9.503 0.487 4.87

Growing stock
in forest

(million cubic meter)
4781.414 4602.04 4498.66 4498.731 4173.362 4195.057 4218.38 4273.47 −507.944 −10.62

Growing stock in
trees outside forest

(million cubic meter)
1632.338 1616.24 1599.57 1548.427 1484.684 1573.34 1603.997 1642.29 9.952 0.61

Reserve forest
(in million ha) 39.99 41.903 43.05 42.25 42.9 42.5 43.47 43.49 3.5 8.60%

Protected forest
(in million ha) 23.84 21.661 20.62 21.39 22.66 20.94 21.94 21.9 −1.94 8.80%

Unclassified forest
(in million ha) 13.63 13.4 13.27 13.3 13.4 13.01 11.39 11.37 −2.26 19.80%

Note: Data for the table was assembled from India State of Forest Report, 2003–2019 (https://fsi.nic.in/forest-
report, accessed on 15 August 2021).

3.5. Barriers to Adoption of AI-Based Systems for India’s Forests and Biodiversity Conservation
3.5.1. Inadequate Awareness

There is often a lack of awareness among stakeholders (such as forest managers,
policymakers, and civil society) on the availability and applicability of technologies. This
is partly due to the inherent complexity of these new technologies, which may lead to
disinterest. On the other hand, the use of terms such as artificial intelligence may also create
unrealistic expectations for solutions. Therefore, building the capacity of stakeholders on
the appropriate use of these technologies is an important step in applying them in the field.
Strong case studies and pilot demonstrations are important in building both understanding
and realistic expectations.

3.5.2. Lack of Ethical Standards and Safeguards

The use of technologies such as AI brings with it several possibilities for misuse.
When using such technologies in areas with particularly vulnerable communities, such
as indigenous groups or forest-dependent communities, safeguards need to be especially
strong. Concepts such as free, prior, and informed consent, data security, and permitted
applications need to be defined and followed. Such standards also need to be accompanied
by capacity development of communities in areas where such technologies are deployed,
to ensure equity in outcomes.

3.5.3. Limited Suitability to Harsh Field Conditions

Technologies that are implemented under the harsh conditions of the field need to be
robust enough to function over meaningful timeframes. Climatic and weather conditions,
animal damage, and vandalism are key challenges for such technologies. Inadequate

https://fsi.nic.in/forest-report
https://fsi.nic.in/forest-report
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planning for such conditions may lead to equipment failures, thereby also undermining
trust in the concept itself. Such planning is particularly important given the high capital
and running costs of such technologies. Further, inadequate supporting infrastructure in
the field, such as unstable connectivity, may limit the reliability of equipment.

3.5.4. Limited Commercial Scalability

Applications of AI in the forest sector in India are currently driven by enthusiasts and
small startup companies. The lack of a strong market limits the investments that can be
made in the sector, in turn leading to inadequate scaling. Further, the fragmentation of
efforts among small competitors working on similar applications may hinder the large-scale
economic development of AI technology. Such limitations may also prevent the develop-
ment of user-friendly interfaces, leading to AI models being deposited in repositories such
as GitHub but not being used by practitioners.

3.6. Uncertainties Associated with AI

Though, AI technology has potential applications in forestry and biodiversity conser-
vation, it is increasingly important to evaluate the reliability and efficacy of AI and ML
systems before they could be applied in practice. Because the predictions made by AI
and ML models may not be always reliable due to uncertainty associated with data and
expert knowledge. For example, the AI and ML algorithms will not be able to differentiate
plantations from reforestation areas and natural forest, especially in a species-rich tropical
forest, if there is no good number of labeled images of natural forest, plantations, and
reforestation areas. Thus, the reliability of output produced by AI and ML models depends
on large amount of training and test data and expert knowledge.

4. Conclusions

Globally, there is a need for forestry practices to contribute to sustainable develop-
ment goals that attempt to conserve forests as carbon sinks and biodiversity habitats,
and to sustain and cultivate forests as green infrastructure. The emerging technological
innovation to manage, monitor, and conserve the forest and its resources is helping the
sector achieve sustainable development goals. Globally, there is an increasing number
of countries adapting smart forest and precision forestry techniques which make use of
technological innovation in digital, satellite, sensors, and AI technology to manage, protect,
and sustainably utilize forest resources. However, adoption of these innovations is mostly
limited to developed countries and a few developing countries where forest is managed for
commercial purposes. On the other hand, for countries like India, where forests are mostly
managed for non-commercial purpose of biodiversity conservation, storing carbon, and
benefiting rural livelihood, the adaption of innovative technologies in the forest sector has
been slow.

Challenges or limitations, such as (1) the unavailability of better data or limited access
to available big data, and (2) technical and computation challenges of using technologies
like AI (e.g., accessibility to the wider community), have resulted in a limited application
of these technologies in the Indian forest sector. Therefore, to make technologies like AI
more beneficial and accessible to the Indian forest sector, we suggest the following actions:

1. Interdisciplinary collaborations between forestry practitioners, forest ecologists, con-
servation practitioners, forestry officials, academicians working in the forestry sector,
and technologists will be important in facilitating long-term adoption of AI technol-
ogy for forestry sector applications (for example, corporations like Microsoft and
Google initiative’s “AI for earth innovation” bringing together researchers and conser-
vationists to incorporate AI solutions into nature conservation by providing technical
support, infrastructure, and training [190]),

2. Cheap and cost-effective computational resources for both data analysis and storage
(e.g., cheaper cloud-based options for online data analysis and storage) will have an
advantage of minimal investment and hardware maintenance [191].
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3. Continued expansion of data collection capabilities (for example, emerging technologies
such as the wireless sensor networks, digital recording devices, drones and camera
technology, and crowd-sourced data approaches like citizen science, development of
algorithms to extract data from social media, and other online sources), and

4. Development of computationally less intensive, fast processing algorithms to analyze
big data.

Further, these developments will have tremendous potential to drive transforma-
tional changes in the way we manage our forests, biodiversity, and design appropriate
conservation measures.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/su14127154/s1. Table S1: Summary of AI and machine learning application
research in biodiversity conservation and forest sector; Table S2: AI start-up companies and non-profits
in biodiversity conservation and forest sector.
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endocrine NARX neural network. Eur. J. Wood Wood Prod. 2018, 76, 687–697. [CrossRef]

78. Anandhi, V.; Chezian, R.M.; Parthiban, K.T. Forecast of demand and supply of pulpwood using artificial neural network. Int. J.
Comput. Sci. Telecommun. 2012, 3, 35–38.

79. Amatya, D.M.; Douglas-Mankin, K.R.; Williams, T.M.; Skaggs, R.W.; Nettles, J.E. Advances in forest hydrology: Challenges and
opportunities. Trans. ASABE 2011, 54, 2049–2056. [CrossRef]

80. Guswa, A.J.; Tetzlaff, D.; Selker, J.S.; Carlyle-Moses, D.E.; Boyer, E.W.; Bruen, M.; Cayuela, C.; Creed, I.F.; van de Giesen, N.;
Grasso, D.; et al. Advancing ecohydrology in the 21st century: A convergence of opportunities. Ecohydrology 2020, 13, e2208.
[CrossRef]

81. Dube, T.; Mutanga, O.; Sibanda, M.; Shoko, C.; Chemura, A. Evaluating the influence of the Red Edge band from RapidEye sensor
in quantifying leaf area index for hydrological applications specifically focussing on plant canopy interception. Phys. Chem. Earth
Parts A/B/C 2017, 100, 73–80. [CrossRef]

82. Stravs, L.; Brilly, M.; Sraj, M. Precipitation interception modelling using machine learning methods—The Dragonja River basin
case study. In Practical Hydroinformatics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 347–358.

83. Trombetti, M.; Riaño, D.; Rubio, M.A.; Cheng, Y.B.; Ustin, S.L. Multi-temporal vegetation canopy water content retrieval and
interpretation using artificial neural networks for the continental USA. Remote Sens. Environ. 2008, 112, 203–215. [CrossRef]

84. Zhang, F.; Wu, S.; Liu, J.; Wang, C.; Guo, Z.; Xu, A.; Pan, K.; Pan, X. Predicting soil moisture content over partially vegetation
covered surfaces from hyperspectral data with deep learning. Soil Sci. Soc. Am. J. 2021, 85, 989–1001. [CrossRef]

85. Lee, C.S.; Sohn, E.; Park, J.D.; Jang, J.D. Estimation of soil moisture using deep learning based on satellite data: A case study of
South Korea. GISci. Remote Sens. 2019, 56, 43–67. [CrossRef]

86. de Oliveira, V.A.; Rodrigues, A.F.; Morais, M.A.V.; Terra, M.D.C.N.S.; Guo, L.; de Mello, C.R. Spatiotemporal modelling of soil
moisture in an Atlantic forest through machine learning algorithms. Eur. J. Soil Sci. 2021, 72, 1969–1987. [CrossRef]

87. Pan, S.; Pan, N.; Tian, H.; Friedlingstein, P.; Sitch, S.; Shi, H.; Arora, V.K.; Haverd, V.; Jain, A.K.; Kato, E.; et al. Evaluation of global
terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling.
Hydrol. Earth Syst. Sci. 2020, 24, 1485–1509. [CrossRef]

88. Panda, S.; Amatya, D.M.; Jackson, R.; Sun, G.; Noormets, A. Automated geospatial models of varying complexities for pine forest
evapotranspiration estimation with advanced data mining. Water 2018, 10, 1687. [CrossRef]

89. Lu, X.; Zhuang, Q. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United
States using MODIS and AmeriFlux data. Remote Sens. Environ. 2010, 114, 1924–1939. [CrossRef]

90. Luo, X.R.; Li, S.D.; Liu, L.; Yang, W.N.; Zhang, Y.H.; Chen, G.; Qiu, S.Y.; Tang, Q.L.; Tang, X.L. Quantifying aboveground
vegetation water storage combining Landsat 8 OLI and Sentinel-1 imageries. Geocarto Int. 2020, 12, 1–22. [CrossRef]

http://doi.org/10.1126/science.aax0848
http://doi.org/10.1016/j.scitotenv.2018.07.123
http://doi.org/10.1016/j.envsoft.2021.105136
http://doi.org/10.1016/j.agrformet.2018.12.015
http://doi.org/10.1080/19475705.2015.1084541
http://doi.org/10.1007/s13753-019-00233-1
http://doi.org/10.1016/j.inpa.2018.05.002
http://doi.org/10.3389/fpls.2019.01327
http://doi.org/10.3389/fpls.2019.01550
http://doi.org/10.1016/j.trd.2020.102502
http://doi.org/10.1890/0012-9658(1998)079[2852:EOTDII]2.0.CO;2
http://doi.org/10.1111/1749-4877.12453
http://www.ncbi.nlm.nih.gov/pubmed/32329957
http://doi.org/10.1007/s00107-017-1223-6
http://doi.org/10.13031/2013.40672
http://doi.org/10.1002/eco.2208
http://doi.org/10.1016/j.pce.2017.02.016
http://doi.org/10.1016/j.rse.2007.04.013
http://doi.org/10.1002/saj2.20193
http://doi.org/10.1080/15481603.2018.1489943
http://doi.org/10.1111/ejss.13123
http://doi.org/10.5194/hess-24-1485-2020
http://doi.org/10.3390/w10111687
http://doi.org/10.1016/j.rse.2010.04.001
http://doi.org/10.1080/10106049.2020.1861662


Sustainability 2022, 14, 7154 17 of 20

91. Irrgang, C.; Saynisch-Wagner, J.; Dill, R.; Boergens, E.; Thomas, M. Self-Validating Deep Learning for Recovering Terrestrial Water
Storage From Gravity and Altimetry Measurements. Geophys. Res. Lett. 2020, 47, e2020GL089258. [CrossRef]

92. Bhanja, S.N.; Malakar, P.; Mukherjee, A.; Rodell, M.; Mitra, P.; Sarkar, S. Using satellitebased vegetation cover as indicator of
groundwater storage in natural vegetation areas. Geophys. Res. Lett. 2019, 46, 8082–8092. [CrossRef]

93. Kamarudin, M.H.; Ismail, Z.H.; Saidi, N.B. Deep learning sensor fusion in plant water stress assessment: A comprehensive review.
Appl. Sci. 2021, 11, 1403. [CrossRef]

94. Pal, S.; Sharma, P. A review of machine learning applications in land surface modeling. Earth 2021, 2, 174–190. [CrossRef]
95. Dikshit, A.; Pradhan, B.; Alamri, A.M. Pathways and challenges of the application of artificial intelligence to geohazards

modelling. Gondwana Res. 2020, 100, 290–301. [CrossRef]
96. Levia, D.F.; Carlyle-Moses, D.E.; Iida, S.; Michalzik, B.; Nanko, K.; Tischer, A. Forest-Water Interactions; Ecological Studies Series,

No. 240; Springer: Cham, Switzerland, 2020; p. 628.
97. Mao, J.; Wang, Y.; Ricciuto, D.; Mahajan, S.; Hoffman, F.; Shi, X.; Prakash, G. AI-Based Integrated Modeling and Observational

Framework for Improving Seasonal to Decadal Prediction of Terrestrial Ecohydrological Extremes (No. AI4ESP-1089); Artificial Intelligence
for Earth System Predictability (AI4ESP) Collaboration (United States): Washington, DC, USA, 2021. [CrossRef]

98. Chang, N.B.; Mohiuddin, G.; Crawford, A.J.; Bai, K.; Jin, K.R. Diagnosis of the artificial intelligence-based predictions of flow
regime in a constructed wetland for stormwater pollution control. Ecol. Inform. 2018, 28, 42–60. [CrossRef]

99. Fathian, F.; Mehdizadeh, S.; Sales, A.K.; Safari, M.J.S. Hybrid models to improve the monthly river flow prediction. Integrating
artificial intelligence and non-linear time series models. J. Hydrol. 2019, 575, 1200–1213. [CrossRef]

100. Mohiuddin, G. Remote Sensing with Computational Intelligence Modelling for Monitoring the Ecosystem State and Hydraulic
Pattern in a Constructed Wetland. Master’s Thesis, University of Central Florida, Orlando, FL, USA, 2015.

101. Pereira, G.C.; Ebecken, N.F. Combining in situ flow cytometry and artificial neural networks for aquatic systems monitoring.
Expert Syst. Appl. 2011, 38, 9626–9632. [CrossRef]

102. Yaseen, Z.M.; Kisi, O.; Demir, V. Enhancing long-term streamflow forecasting and predicting using periodicity data component:
Application of artificial intelligence. Water Resour. Manag. 2016, 30, 4125–4151. [CrossRef]

103. Toro, C.H.F.; Meire, S.G.; Gálvez, J.F.; Fdez-Riverola, F. A hybrid artificial intelligence model for river flow forecasting. Appl. Soft.
Comput. 2013, 13, 3449–3458. [CrossRef]

104. Barzegar, R.; Adamowski, J.; Moghaddam, A.A. Application of wavelet-artificial intelligence hybrid models for water quality
prediction: A case study in Aji-Chay River, Iran. Stoch. Env. Res. Risk A 2016, 30, 1797–1819. [CrossRef]

105. Ceccaroni, L.; Velickovski, F.; Blaas, M.; Wernand, M.R.; Blauw, A.; Subirats, L. Artificial intelligence and earth observation to
explore water quality in the Wadden Sea. Earth Obs. Open Sci. Innov. 2018, 15, 311–320.

106. Chau, K.W. A review on integration of artificial intelligence into water quality modelling. Mar. Pollut. Bull. 2006, 52, 726–733.
[CrossRef]

107. Elkiran, G.; Nourani, V.; Abba, S.I. Multi-step ahead modelling of river water quality parameters using ensemble artificial
intelligence-based approach. J. Hydrol. 2019, 577, 123962. [CrossRef]

108. Fijani, E.; Barzegar, R.; Deo, R.; Tziritis, E.; Skordas, K. Design and implementation of a hybrid model based on two-layer
decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality
parameters. Sci. Total Environ. 2019, 648, 839–853. [CrossRef]

109. Gharibi, H.; Mahvi, A.H.; Nabizadeh, R.; Arabalibeik, H.; Yunesian, M.; Sowlat, M.H. A novel approach in water quality
assessment based on fuzzy logic. J. Environ. Manag. 2012, 112, 87–95. [CrossRef]

110. Gunda, N.S.K.; Gautam, S.H.; Mitra, S.K. Artificial intelligence based mobile application for water quality monitoring.
J. Electrochem. Soc. 2019, 166, B3031. [CrossRef]

111. Hameed, M.; Sharqi, S.S.; Yaseen, Z.M.; Afan, H.A.; Hussain, A.; Elshafie, A. Application of artificial intelligence (AI) techniques
in water quality index prediction: A case study in tropical region, Malaysia. Neural Comput. Appl. 2017, 28, 893–905. [CrossRef]

112. Hatzikos, E.V.; Bassiliades, N.; Asmanis, L.; Vlahavas, I. Monitoring water quality through a telematic sensor network and a
fuzzy expert system. Expert Syst. 2007, 24, 143–161. [CrossRef]

113. Hatzikos, E.V.; Tsoumakas, G.; Tzanis, G.; Bassiliades, N.; Vlahavas, I. An empirical study on sea water quality prediction.
Knowl.-Based Syst. 2008, 21, 471–478. [CrossRef]

114. Khaki, M.; Yusoff, I.; Islami, N. Application of the Artificial Neural Network and Neuro-fuzzy System for Assessment of
Groundwater Quality. CLEAN–Soil Air Water 2015, 43, 551–560. [CrossRef]

115. Li, R.; Zou, Z.; An, Y. Water quality assessment in Qu River based on fuzzy water pollution index method. J. Environ. Sci. 2016,
50, 87–92. [CrossRef]

116. Najah, A.; Elshafie, A.; Karim, O.A.; Jaffar, O. Prediction of Johor River water quality parameters using artificial neural networks.
Eur. J. Sci. Res. 2009, 28, 422–435.

117. Najah, A.; El-Shafie, A.; Karim, O.A.; Jaafar, O.; El-Shafie, A.H. An application of different artificial intelligences techniques for
water quality prediction. Int. J. Phys. Sci. 2011, 6, 5298–5308.

118. Rajaee, T.; Khani, S.; Ravansalar, M. Artificial intelligence-based single and hybrid models for prediction of water quality in rivers:
A review. Chemometr. Intell. Lab. 2020, 200, 103978. [CrossRef]

119. Sakizadeh, M. Artificial intelligence for the prediction of water quality index in groundwater systems. Modeling Earth Syst.
Environ. 2016, 2, 8. [CrossRef]

http://doi.org/10.1029/2020GL089258
http://doi.org/10.1029/2019GL083015
http://doi.org/10.3390/app11041403
http://doi.org/10.3390/earth2010011
http://doi.org/10.1016/j.gr.2020.08.007
http://doi.org/10.2172/1769666
http://doi.org/10.1016/j.ecoinf.2015.05.001
http://doi.org/10.1016/j.jhydrol.2019.06.025
http://doi.org/10.1016/j.eswa.2011.01.140
http://doi.org/10.1007/s11269-016-1408-5
http://doi.org/10.1016/j.asoc.2013.04.014
http://doi.org/10.1007/s00477-016-1213-y
http://doi.org/10.1016/j.marpolbul.2006.04.003
http://doi.org/10.1016/j.jhydrol.2019.123962
http://doi.org/10.1016/j.scitotenv.2018.08.221
http://doi.org/10.1016/j.jenvman.2012.07.007
http://doi.org/10.1149/2.0081909jes
http://doi.org/10.1007/s00521-016-2404-7
http://doi.org/10.1111/j.1468-0394.2007.00426.x
http://doi.org/10.1016/j.knosys.2008.03.005
http://doi.org/10.1002/clen.201400267
http://doi.org/10.1016/j.jes.2016.03.030
http://doi.org/10.1016/j.chemolab.2020.103978
http://doi.org/10.1007/s40808-015-0063-9


Sustainability 2022, 14, 7154 18 of 20

120. Sengorur, B.; Koklu, R.; Ates, A. Water quality assessment using artificial intelligence techniques: SOM and ANN—A case study
of Melen River Turkey. Water Qual. Expos. Health 2015, 7, 469–490. [CrossRef]

121. Sharaf El Din, E.; Zhang, Y.; Suliman, A. Mapping concentrations of surface water quality parameters using a novel remote
sensing and artificial intelligence framework. Int. J. Remote Sens. 2017, 38, 1023–1042. [CrossRef]

122. Strobl, R.O.; Robillard, P.D. Artificial intelligence technologies in surface water quality monitoring. Water Int. 2006, 31, 198–209.
[CrossRef]

123. Tsai, W.P.; Huang, S.P.; Cheng, S.T.; Shao, K.T.; Chang, F.J. A data-mining framework for exploring the multi-relation between fish
species and water quality through self-organizing map. Sci. Total Environ. 2017, 579, 474–483. [CrossRef]

124. Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol.
2020, 585, 124670.

125. Zhu, X.; Li, D.; He, D.; Wang, J.; Ma, D.; Li, F. A remote wireless system for water quality online monitoring in intensive fish
culture. Comput. Electron. Agric. 2010, 71, S3–S9. [CrossRef]

126. Awad, M. Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network. Ecol. Inform.
2014, 24, 60–68. [CrossRef]

127. Coad, P.; Cathers, B.; Ball, J.E.; Kadluczka, R. Proactive management of estuarine algal blooms using an automated monitoring
buoy coupled with an artificial neural network. Environ. Model. Softw. 2014, 61, 393–409. [CrossRef]

128. Franceschini, S.; Mattei, F.; D’Andrea, L.; Di Nardi, A.; Fiorentino, F.; Garofalo, G.; Scardi, M.; Cataudella, S.; Russo, T. Rummaging
through the bin: Modelling marine litter distribution using Artificial Neural Networks. Mar. Pollut. Bull. 2019, 149, 110580.
[CrossRef]

129. Sengar, N.; Dutta, M.K.; Sarkar, B. Computer vision based technique for identification of fish quality after pesticide exposure. Int.
J. Food Prop. 2017, 20, 2192–2206. [CrossRef]

130. Singh, K.P.; Gupta, S.; Rai, P. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence
approaches. Ecotoxicol. Environ. Saf. 2013, 95, 221–233. [CrossRef] [PubMed]

131. Wang, P.; Yao, J.; Wang, G.; Hao, F.; Shrestha, S.; Xue, B.; Xie, G.; Peng, Y. Exploring the application of artificial intelligence
technology for identification of water pollution characteristics and tracing the source of water quality pollutants. Sci. Total Environ.
2019, 693, 133440. [CrossRef] [PubMed]

132. Xia, C.; Fu, L.; Liu, Z.; Liu, H.; Chen, L.; Liu, Y. Aquatic toxic analysis by monitoring fish behavior using computer vision: A
recent progress. J. Toxicol. 2018, 2018, 2591924. [CrossRef] [PubMed]

133. Brey, T. A multi-parameter artificial neural network model to estimate macrobenthic invertebrate productivity and production.
Limnol. Oceanogr.-Methods 2012, 10, 581–589. [CrossRef]

134. Brosse, S.; Lek, S.; Townsend, C.R. Abundance, diversity, and structure of freshwater invertebrates and fish communities: An
artificial neural network approach. N. Zeal. J. Mar. Freshw. 2001, 35, 135–145. [CrossRef]

135. Cheng, L.; Lek, S.; Lek-Ang, S.; Li, Z. Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin.
Limnologica 2012, 42, 127–136. [CrossRef]

136. Cheung, W.W.; Pitcher, T.J.; Pauly, D. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes
to fishing. Biol. Conserv. 2005, 124, 97–111. [CrossRef]

137. Kroodsma, D.A.; Mayorga, J.; Hochberg, T.; Miller, N.A.; Boerder, K.; Ferretti, F.; Wilson, A.; Bergman, B.; White, T.D.;
Block, B.A.; et al. Tracking the global footprint of fisheries. Science 2018, 359, 904–908. [CrossRef]

138. Lachkar, Z.; Gruber, N. A comparative study of biological production in eastern boundary upwelling systems using an artificial
neural network. Biogeosciences 2012, 9, 293–308. [CrossRef]

139. Yoo, J.W.; Lee, Y.W.; Lee, C.G.; Kim, C.S. Effective prediction of biodiversity in tidal flat habitats using an artificial neural network.
Mar. Environ. Res. 2013, 83, 1–9. [CrossRef]

140. Schletterer, M.; Füreder, L.; Kuzovlev, V.V.; Beketov, M.A. Testing the coherence of several macroinvertebrate indices and
environmental factors in a large lowland river system (Volga River, Russia). Ecol. Indic. 2010, 10, 1083–1092. [CrossRef]

141. Feio, M.J.; Poquet, J.M. Predictive models for freshwater biological assessment: Statistical approaches, biological elements and the
Iberian Peninsula experience: A review. Int. Rev. Hydrobiol. 2011, 96, 321–346. [CrossRef]

142. Hu, J.H.; Tsai, W.P.; Cheng, S.T.; Chang, F.J. Explore the relationship between fish community and environmental factors by
machine learning techniques. Environ. Res. 2020, 184, 109262. [CrossRef]

143. Goethals, P.L.; Dedecker, A.P.; Gabriels, W.; Lek, S.; De Pauw, N. Applications of artificial neural networks predicting macroinver-
tebrates in freshwaters. Aquat. Ecol. 2007, 41, 491–508. [CrossRef]

144. Olaya-Marín, E.J.; Martínez-Capel, F.; Vezza, P. A comparison of artificial neural networks and random forests to predict native
fish species richness in Mediterranean rivers. Knowl. Manag. Aquat. Ecosyst. 2013, 409, 7. [CrossRef]

145. Park, Y.S.; Céréghino, R.; Compin, A.; Lek, S. Applications of artificial neural networks for patterning and predicting aquatic
insect species richness in running waters. Ecol. Modelling 2003, 160, 265–280. [CrossRef]

146. Penczak, T.; Kruk, A.; Galicka, W. Implementation of a self-organizing map for investigation of impoundment impact on fish
assemblages in a large, lowland river: Long-term study. Ecol. Modelling 2012, 227, 64–71. [CrossRef]

147. Recknagel, F. ANNA–Artificial Neural Network model for predicting species abundance and succession of blue-green algae.
Hydrobiologia 1997, 349, 47–57. [CrossRef]

http://doi.org/10.1007/s12403-015-0163-9
http://doi.org/10.1080/01431161.2016.1275056
http://doi.org/10.1080/02508060.2006.9709670
http://doi.org/10.1016/j.scitotenv.2016.11.071
http://doi.org/10.1016/j.compag.2009.10.004
http://doi.org/10.1016/j.ecoinf.2014.07.004
http://doi.org/10.1016/j.envsoft.2014.07.011
http://doi.org/10.1016/j.marpolbul.2019.110580
http://doi.org/10.1080/10942912.2017.1368553
http://doi.org/10.1016/j.ecoenv.2013.05.017
http://www.ncbi.nlm.nih.gov/pubmed/23764236
http://doi.org/10.1016/j.scitotenv.2019.07.246
http://www.ncbi.nlm.nih.gov/pubmed/31374492
http://doi.org/10.1155/2018/2591924
http://www.ncbi.nlm.nih.gov/pubmed/29849612
http://doi.org/10.4319/lom.2012.10.581
http://doi.org/10.1080/00288330.2001.9516983
http://doi.org/10.1016/j.limno.2011.09.007
http://doi.org/10.1016/j.biocon.2005.01.017
http://doi.org/10.1126/science.aao5646
http://doi.org/10.5194/bg-9-293-2012
http://doi.org/10.1016/j.marenvres.2012.10.001
http://doi.org/10.1016/j.ecolind.2010.03.004
http://doi.org/10.1002/iroh.201111376
http://doi.org/10.1016/j.envres.2020.109262
http://doi.org/10.1007/s10452-007-9093-3
http://doi.org/10.1051/kmae/2013052
http://doi.org/10.1016/S0304-3800(02)00258-2
http://doi.org/10.1016/j.ecolmodel.2011.12.006
http://doi.org/10.1023/A:1003041427672


Sustainability 2022, 14, 7154 19 of 20

148. Russo, T.; Franceschini, S.; D’Andrea, L.; Scardi, M.; Parisi, A.; Cataudella, S. Predicting fishing footprint of trawlers from
environmental and fleet data: An application of artificial neural networks. Front. Mar. Sci. 2019, 6, 670. [CrossRef]

149. Volf, G.; Atanasova, N.; Kompare, B.; Precali, R.; Oani, N. Descriptive and prediction models of phytoplankton in the northern
adriatic. Ecol. Modelling 2011, 222, 2502–2511. [CrossRef]

150. Zarkami, R.; Sadeghi, R.; Goethals, P. Use of fish distribution modelling for river management. Ecol. Modelling 2012, 230, 44–49.
[CrossRef]

151. Berberoglu, S.; Yilmaz, K.T.; Özkan, C. Mapping and monitoring of coastal wetlands of Cukurova Delta in the Eastern Mediter-
ranean region. Biodivers. Conserv. 2004, 13, 615–633. [CrossRef]

152. Flombaum, P.; Gallegos, J.L.; Gordillo, R.A.; Rincón, J.; Zabala, L.L.; Jiao, N.; Karl, D.M.; Li, W.K.; Lomas, M.W.; Veneziano, D.; et al.
Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci.
USA 2013, 110, 9824–9829. [CrossRef]

153. Gillard, M.; Thiébaut, G.; Deleu, C.; Leroy, B. Present and future distribution of three aquatic plants taxa across the world:
Decrease in native and increase in invasive ranges. Biol. Invasions 2017, 19, 2159–2170. [CrossRef]

154. Guénard, G.; Morin, J.; Matte, P.; Secretan, Y.; Valiquette, E.; Mingelbier, M. Deep learning habitat modeling for moving organisms
in rapidly changing estuarine environments: A case of two fishes. Estuar. Coast. Shelf Sci. 2020, 238, 106713. [CrossRef]

155. Knudby, A.; Brenning, A.; LeDrew, E. New approaches to modelling fish–habitat relationships. Ecol. Modelling 2010, 221, 503–511.
[CrossRef]

156. Kocev, D.; Naumoski, A.; Mitreski, K.; Krstic, S.; Dzeroski, S. Learning habitat models for the diatom community in lake Prespa.
Ecol. Modelling 2010, 221, 330–337. [CrossRef]

157. Muñoz-Mas, R.; Martinez-Capel, F.; Alcaraz-Hernández, J.D.; Mouton, A.M. Can multilayer perceptron ensembles model the
ecological niche of freshwater fish species? Ecol. Modelling 2015, 309, 72–81. [CrossRef]

158. Nunes, J.A.C.; Cruz, I.C.; Nunes, A.; Pinheiro, H.T. Speeding up coral reef conservation with AI-aided automated image analysis.
Nat. Mach. Intell. 2020, 2, 292. [CrossRef]

159. Olden, J.D.; Jackson, D.A. Fish–habitat relationships in lakes: Gaining predictive and explanatory insight by using artificial neural
networks. Trans. Am. Fish. Soc. 2001, 130, 878–897. [CrossRef]

160. Palaniswami, M.; Rao, A.S.; Bainbridge, S. Real-time monitoring of the great barrier reef using internet of things with big data
analytics. ITU J. ICT Discov. 2017, 1, 1–10.

161. Palialexis, A.; Georgakarakos, S.; Karakassis, I.; Lika, K.; Valavanis, V.D. Prediction of marine species distribution from presence–
absence acoustic data: Comparing the fitting efficiency and the predictive capacity of conventional and novel distribution models.
Hydrobiologia 2011, 670, 241. [CrossRef]

162. Park, Y.S.; Tison, J.; Lek, S.; Giraudel, J.L.; Coste, M.; Delmas, F. Application of a self-organizing map to select representative
species in multivariate analysis: A case study determining diatom distribution patterns across France. Ecol. Inform. 2006,
1, 247–257. [CrossRef]

163. Pittman, S.J.; Brown, K.A. Multi-scale approach for predicting fish species distributions across coral reef seascapes. PLoS ONE
2011, 6, e20583. [CrossRef] [PubMed]

164. Watts, M.J.; Li, Y.; Russell, B.D.; Mellin, C.; Connell, S.D.; Fordham, D.A. A novel method for mapping reefs and subtidal rocky
habitats using artificial neural networks. Ecol. Modelling 2011, 222, 2606–2614. [CrossRef]

165. Allken, V.; Handegard, N.O.; Rosen, S.; Schreyeck, T.; Mahiout, T.; Malde, K. Fish species identification using a convolutional
neural network trained on synthetic data. ICES J. Mar. Sci. 2019, 76, 342–349. [CrossRef]

166. Álvarez-Ellacuría, A.; Palmer, M.; Catalán, I.A.; Lisani, J.L. Image-based, unsupervised estimation of fish size from commercial
landings using deep learning. ICES J. Mar. Sci. 2020, 77, 1330–1339. [CrossRef]

167. Bedoya, C.; Isaza, C.; Daza, J.M.; López, J.D. Automatic recognition of anuran species based on syllable identification. Ecol. Inform.
2014, 24, 200–209. [CrossRef]

168. Bevan, E.; Wibbels, T.; Najera, B.M.; Martinez, M.A.; Martinez, L.A.; Martinez, F.I.; Cuevas, J.M.; Anderson, T.; Bonka, A.;
Hernandez, M.H.; et al. Unmanned aerial vehicles (UAVs) for monitoring sea turtles in near-shore waters. Mar. Turt. Newsl. 2015,
145, 19–22.

169. dos Santos, A.A.; Gonçalves, W.N. Improving Pantanal fish species recognition through taxonomic ranks in convolutional neural
networks. Ecol. Inform. 2019, 53, 100977. [CrossRef]

170. Gray, P.C.; Fleishman, A.B.; Klein, D.J.; McKown, M.W.; Bézy, V.S.; Lohmann, K.J.; Johnston, D.W. A convolutional neural network
for detecting sea turtles in drone imagery. Methods Ecol. Evol. 2019, 10, 345–355. [CrossRef]

171. Hodgson, A.; Kelly, N.; Peel, D. Unmanned aerial vehicles (UAVs) for surveying marine fauna: A dugong case study. PLoS ONE
2013, 8, e79556. [CrossRef]

172. Labao, A.B.; Naval, P.C., Jr. Cascaded deep network systems with linked ensemble components for underwater fish detection in
the wild. Ecol. Inform. 2019, 52, 103–121. [CrossRef]

173. Mandal, R.; Connolly, R.M.; Schlacher, T.A.; Stantic, B. Assessing fish abundance from underwater video using deep neural
networks. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil,
8–13 July 2018; pp. 1–6.

174. Marini, S.; Corgnati, L.; Mantovani, C.; Bastianini, M.; Ottaviani, E.; Fanelli, E.; Aguzzi, J.; Griffa, A.; Poulain, P.M. Automated
estimate of fish abundance through the autonomous imaging device GUARD1. Measurement 2018, 126, 72–75. [CrossRef]

http://doi.org/10.3389/fmars.2019.00670
http://doi.org/10.1016/j.ecolmodel.2011.02.013
http://doi.org/10.1016/j.ecolmodel.2012.01.011
http://doi.org/10.1023/B:BIOC.0000009493.34669.ec
http://doi.org/10.1073/pnas.1307701110
http://doi.org/10.1007/s10530-017-1428-y
http://doi.org/10.1016/j.ecss.2020.106713
http://doi.org/10.1016/j.ecolmodel.2009.11.008
http://doi.org/10.1016/j.ecolmodel.2009.09.002
http://doi.org/10.1016/j.ecolmodel.2015.04.025
http://doi.org/10.1038/s42256-020-0192-3
http://doi.org/10.1577/1548-8659(2001)130&lt;0878:FHRILG&gt;2.0.CO;2
http://doi.org/10.1007/s10750-011-0673-9
http://doi.org/10.1016/j.ecoinf.2006.03.005
http://doi.org/10.1371/journal.pone.0020583
http://www.ncbi.nlm.nih.gov/pubmed/21637787
http://doi.org/10.1016/j.ecolmodel.2011.04.024
http://doi.org/10.1093/icesjms/fsy147
http://doi.org/10.1093/icesjms/fsz216
http://doi.org/10.1016/j.ecoinf.2014.08.009
http://doi.org/10.1016/j.ecoinf.2019.100977
http://doi.org/10.1111/2041-210X.13132
http://doi.org/10.1371/journal.pone.0079556
http://doi.org/10.1016/j.ecoinf.2019.05.004
http://doi.org/10.1016/j.measurement.2018.05.035


Sustainability 2022, 14, 7154 20 of 20

175. Mastrorillo, S.; Lek, S.; Dauba, F.; Belaud, A. The use of artificial neural networks to predict the presence of small-bodied fish in a
river. Freshw. Biol. 1997, 38, 237–246. [CrossRef]

176. Moitinho-Silva, L.; Steinert, G.; Nielsen, S.; Hardoim, C.C.; Wu, Y.C.; McCormack, G.P.; López-Legentil, S.; Marchant, R.; Webster,
N.; Thomas, T.; et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front. Microbiol. 2017, 8, 752.
[CrossRef]

177. Mosleh, M.A.; Manssor, H.; Malek, S.; Milow, P.; Salleh, A. A preliminary study on automated freshwater algae recognition and
classification system. BMC Bioinform. 2012, 13, S17–S25. [CrossRef] [PubMed]

178. Salman, A.; Siddiqui, S.A.; Shafait, F.; Mian, A.; Shortis, M.R.; Khurshid, K.; Ulges, A.; Schwanecke, U. Automatic fish detection
in underwater videos by a deep neural network-based hybrid motion learning system. ICES J. Mar. Sci. 2020, 77, 1295–1307.
[CrossRef]

179. Siddiqui, S.A.; Salman, A.; Malik, M.I.; Shafait, F.; Mian, A.; Shortis, M.R.; Harvey, E.S. Automatic fish species classification in
underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci.
2018, 75, 374–389. [CrossRef]

180. Song, H.; Xu, F.; Zheng, B.; Xiang, Y.; Yang, J.; An, X. An artificial intelligence recognition algorithm for Yangtze finless porpoise.
In Proceedings of the OCEANS 2015—MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–6.

181. Tang, M.; Jiao, Y.; Jones, J.W. A hierarchical Bayesian approach for estimating freshwater mussel growth based on tag-recapture
data. Fish. Res. 2014, 149, 24–32. [CrossRef]

182. Villon, S.; Mouillot, D.; Chaumont, M.; Darling, E.S.; Subsol, G.; Claverie, T.; Villéger, S. A deep learning method for accurate and
fast identification of coral reef fishes in underwater images. Ecol. Inform. 2018, 48, 238–244. [CrossRef]

183. Xu, L.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F. Deep learning for marine species recognition. In Handbook of Deep Learning
Applications; Springer: Cham, Switzerland, 2019; pp. 129–145. [CrossRef]

184. Sharma, V.; Chaudhry, S. An overview of Indian forestry sector with REDD. Int. Sch. Res. Not. 2013, 2013, 298735. [CrossRef]
185. India State of Forest Report 2019. Available online: https://fsi.nic.in/forest-report (accessed on 15 June 2021).
186. Pisupati, B. Safeguarding India’s Biological Diversity: The Biological Diversity Act; Farmer’s Forum; India’s Agriculture Magazine:

Mumbai, India, 2011.
187. Sinha, B.; Kala, C.P.; Katiyar, A.S. Enhancing Livelihoods of Forest Dependent Communities through Synergizing FDA Activities with

Other Development Programs; RCNAEB Sponsored Project; Indian Institute of Forest Management (IIFM): Bhopal, India, 2010.
188. Ravindranath, N.H.; Somshekhar, B.S.; Gadgil, M. Carbon flows in Indian forests. Clim. Change 1997, 35, 297–320. [CrossRef]
189. Gan, J.; Cerutti, P.O.; Masiero, M.; Pettenella, D.; Andrighetto, N.; Dawson, T. Quantifying illegal logging and related timber

trade. IUFRO World Ser. 2016, 35, 37–59.
190. Joppa, L.N. The case for technology investments in the environment. Nature 2017, 552, 325. [CrossRef]
191. Kehoe, B.; Patil, S.; Abbeel, P.; Goldberg, K. A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng.

2015, 12, 398–409. [CrossRef]

http://doi.org/10.1046/j.1365-2427.1997.00209.x
http://doi.org/10.3389/fmicb.2017.00752
http://doi.org/10.1186/1471-2105-13-S17-S25
http://www.ncbi.nlm.nih.gov/pubmed/23282059
http://doi.org/10.1093/icesjms/fsz025
http://doi.org/10.1093/icesjms/fsx109
http://doi.org/10.1016/j.fishres.2013.09.005
http://doi.org/10.1016/j.ecoinf.2018.09.007
http://doi.org/10.1007/978-3-030-11479-4_7
http://doi.org/10.1155/2013/298735
https://fsi.nic.in/forest-report
http://doi.org/10.1023/A:1005303405404
http://doi.org/10.1038/d41586-017-08675-7
http://doi.org/10.1109/TASE.2014.2376492

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Global Overview of AI Research and Application in Biodiversity Conservation and the Forest Sector 
	The Growth of AI-Based Start-Ups and Non-Profits in Biodiversity Conservation and the Forest Sector 
	AI and ML Application in Managing Forests and Their Resources, and Biodiversity Conservation 
	Addressing Challenges of Deforestation and Illegal Felling 
	Forest Inventory, Mapping, Carbon, and Biomass Estimation 
	Automated Reforestation and Afforestation 
	Hazard Assessment and Prediction 
	Tracking Illegal Wood Trafficking 
	Monitoring Ecosystem Health and Biodiversity Conservation 
	Solving Supply and Demand Problem 
	Forest Hydrology 
	Aquatic and Marine Biodiversity and Water Resource Conservation 

	Status of Indian Forests and Need of AI Technology 
	Barriers to Adoption of AI-Based Systems for India’s Forests and Biodiversity Conservation 
	Inadequate Awareness 
	Lack of Ethical Standards and Safeguards 
	Limited Suitability to Harsh Field Conditions 
	Limited Commercial Scalability 

	Uncertainties Associated with AI 

	Conclusions 
	References

