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Abstract: Effective scheduling algorithms are needed in the cloud paradigm to leverage services to
customers seamlessly while minimizing the makespan, energy consumption and SLA violations. The
ineffective scheduling of resources while not considering the suitability of tasks will affect the quality
of service of the cloud provider, and much more energy will be consumed in the running of tasks
by the inefficient provisioning of resources, thereby taking an enormous amount of time to process
tasks, which affects the makespan. Minimizing SLA violations is an important aspect that needs
to be addressed as it impacts the makespans, energy consumption, and also the quality of service
in a cloud environment. Many existing studies have solved task-scheduling problems, and those
algorithms gave near-optimal solutions from their perspective. In this manuscript, we developed a
novel task-scheduling algorithm that considers the task priorities coming onto the cloud platform,
calculates their task VM priorities, and feeds them to the scheduler. Then, the scheduler will choose
appropriate tasks for the VMs based on the calculated priorities. To model this scheduling algorithm,
we used the cat swarm optimization algorithm, which was inspired by the behavior of cats. It was
implemented on the Cloudsim tool and OpenStack cloud platform. Extensive experimentation was
carried out using real-time workloads. When compared to the baseline PSO, ACO and RATS-HM
approaches and from the results, it is evident that our proposed approach outperforms all of the
baseline algorithms in view of the above-mentioned parameters.

Keywords: cloud computing; task scheduling; makespan; energy consumption; SLA violation; OpenStack

1. Introduction

Cloud computing is a distributed computing model that renders on-demand comput-
ing and storage services (among other services) to their customers based on their needs.
According to NIST [1], cloud computing can be defined as, “on demand, network access
to a shared pool of configurable computational resources”, which gives services to cloud
users. This paradigm consists of different deployment models, i.e., public, private and
hybrid clouds.

Figure 1 represents various deployment models in the cloud paradigm, where the
public cloud model leverages services to all cloud users around the globe. The private cloud
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model leverages services to users where its application resides in a particular organization,
and the hybrid cloud model provides services to users, in which some of the services
are provided publicly and some services are provided privately. To effectively provision
resources to users, the cloud provider needs to employ an effective task scheduler for seam-
less provisioning and deprovisioning of resources. Users of cloud computing are vast and
diversified, and it is a challenging task to map the diversified and heterogeneous requests
from various users onto virtual resources. An ineffective task scheduler will reduce the
quality of service of the cloud service, and increase the makespan and energy consumption,
which also leads to SLA violation, affecting both cloud providers and consumers. Many
authors have solved task scheduling problems in cloud computing using metaheuristic
algorithms, e.g., PSO [2], GA [3], and ACO [4]. All these are metaheuristic approaches,
and among these approaches, some of them work based on swarm updating, pheromone
updating, and chromosome updating techniques. Previous authors have used these mecha-
nisms to solve task scheduling in this paradigm, but there is still a chance to improve the
scheduling pattern in this paradigm because it is an NP-hard problem. Therefore, we can
still improve the effectiveness of the scheduler by taking the priorities of the tasks dispersed
on the cloud interface and calculating the priorities for the VM based on electricity price
unit cost. Based on these priorities, the scheduler needs to take decisions by the mapping
of tasks onto appropriate VMs. In this paper, we used cat swarm optimization [5] to tackle
task scheduling in the cloud paradigm.
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Motivation and Contributions

The main motivation to carry out this research work is to effectively schedule virtual
resources for various heterogeneous cloud users with a good quality of service while
minimizing energy consumption in datacenters and SLA violations between cloud users
and the provider. Scheduling is a highly challenging scenario in the cloud paradigm as
there are a variable number of customers requesting resources, and the cloud provider
needs to provide services by employing an effective scheduling algorithm according to
their needs. However, in real time it is a huge challenge for a cloud provider to provision
resources based on the types of task that require cloud services. Therefore, in our research
we have carefully identified the suitability of tasks by calculating priorities and then fed
those priorities to the scheduler, generating scheduling decisions accordingly.

The contributions of this paper are presented below:

1. A prioritized task-scheduling algorithm is developed using cat swarm optimization [5];
2. The assignment of tasks to VMs in a scheduling model by calculating the priorities of

the tasks;
3. A synthetic workload is given as input to the algorithm to conduct simulations;
4. SLA violation, makespans, and energy consumption parameters are addressed in this

approach using real-time workloads.
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The remaining manuscript is organized as follows: Literature Survey is represented
in Section 2, the problem statement and Proposed System Architecture are represented in
Section 3, Proposed Methodology is represented in Section 4, Simulations and Results are
presented in Section 5, and Conclusion and Future Work is presented in Section 6.

2. Literature Survey

In [6], the authors proposed a task-scheduling approach that addresses parameters, i.e.,
resource utilization, energy, SLA violation. It was modelled by using the CSSA mechanism.
It was evaluated using GA-PSO, SSA, PSO-BAT approaches. The results have shown that
the abovementioned parameters were greatly minimized for proposed approach. In [7], the
CSA algorithm proposed by the authors maps tasks to the VM by minimizing the makespan.
Crow Search algorithm used for solving scheduling. It was evaluated against the existing
Min-Min and ACO algorithms. The proposed CSA outperforms existing approaches for
the specified metrics for diversified workloads.

The authors in [8] developed a resource allocation mechanism intended to allow
vehicular cloud architecture to offload requests while on boarding vehicles and avoiding
latency for processing of requests. HAPSO was used as methodology for solving resource
allocation in cloud paradigm. Vehicular network implementation using SUMO simulator
and cloud simulation was achieved on Matlab. It was compared against existing PSO, self-
adaptive PSO and HAPSO, showing a significant reduction in the makespan and energy
consumption. In [9], the authors proposed a hybridized approach, LJFP-MCT combined
with PSO to schedule tasks to appropriate VMs. It was compared to PSO, variations of PSO
and MCT approaches. LJFP-MCT outperforms existing algorithms for the minimization of
makespans and degrees of imbalance.

HIGA is a hybridized task-scheduling algorithm proposed by the authors in [10],
which addresses makespan, energy consumption and execution overhead in cloud datacen-
ters. The methodology used in this approach is a combination of harmony-inspired and
GA algorithms. It was compared to various existing approaches. From the results, it domi-
nated benchmark algorithms for specified parameters. An energy-based task-scheduling
algorithm was proposed by the authors in [11] for the minimization of makespans and
energy consumption in cloud datacenters. BWF and TOPSIS algorithms were hybridized
to address scheduling problem in cloud computing. Initially TOPSIS was used to identify
prioritized group of tasks for its execution, and later, BWF used as scheduling criteria. It
was evaluated against BWF, TOPSIS and PSO approaches. Simulation results showed that
it performed better than existing mechanisms for different parameters.

The authors of [12] proposed a scheduling algorithm, which addresses makespans and
energy consumption. The methodology used in this approach is combination of GA and
BFA. It was assessed in comparison to GA, PSO and BFA. From a simulation, it was shown
to have a greater impact compared to existing mechanisms for the abovementioned pa-
rameters. A task-scheduling algorithm using the inverted ACO mechanism was proposed
by [13]. Simulations were conducted on Cloudsim. It was evaluated against different PSO
variations. Inverted ACO dominates existing algorithms in terms of energy consumption,
response time and SLA violations.

In [14], a task-scheduling mechanism was proposed that uses a combination of MVO
and PSO algorithms. The aim of this approach is to address makespans and the utilization
of resources. It showed a greater impact compared to the baseline mechanism for specified
metrics. A task-scheduling and load-balancing algorithm was proposed in [15], which
focuses on makespans and load balance during task distribution. CSSA methodology was
used to tackle task scheduling. It was evaluated against PSO and ABC approaches. From
the results, it outperforms existing algorithms in the minimization of makespans and load
balance during task distribution.

PCGWO, a task-scheduling algorithm proposed to tackle makespans, cost, and dead-
lines, was proposed in [16]. It was modelled based on improvement made to the GWO
algorithm. It was assessed in relation to existing FCFS and GWO approaches. The results
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shows a greater impact than baseline mechanisms for specified parameters. A hybridized
approach, i.e., MSDE proposed in [17], was intended to minimize makespans. The method-
ology used in this approach was a combination of a Moth search with a DE parameter. It
was implemented using Matlab tool 2022a. Random and synthetic workloads were given
as the input to the proposed approach to evaluate the parameter, i.e., makespans. It was
compared baseline mechanisms, with the results showing a superior impact for specified
parameters. The MVO-GA task-scheduling mechanism is a hybrid approach proposed
in [18]. It is a combination of MVO and GA algorithms. The parameters addressed by
the proposed approach are service availability and scalability. It was implemented using
MATLAB tool by simulating a cloud environment. It was evaluated against the baseline
approaches, i.e., MVO, GA and PSO. From the simulation, MVO-GA showed its dominance
over the baseline algorithms. In [19], a hybrid task-scheduling framework was proposed
based on ACO-Fuzzy approaches. It was used to effectively distribute, compute and
network resources to end users. ACO was used to explore the local search mechanism
based on pheromone updating, while fuzzy controller makes a scheduling decision based
on the workload approach [20]. It was assessed by comparing it to existing ACO and
PSO scheduling approaches. The results showed that the ACO-Fuzzy mechanism [21–23]
outperforms existing algorithms, minimizing end user costs. SLA violation and power con-
sumption are to be considered as important parameters in cloud paradigms and need to be
optimized by using an effective task-scheduling model. The authors of [24] addressed the
abovementioned parameters by using the crowding entropy mechanism, which hybridizes
it with PSO. It was implemented on MATLAB and compared to GA and ACO algorithms.
The results revealed that VMPMOPSO showed dominance over existing the mechanisms.
In [25], SLNO was proposed by authors as a task-scheduling mechanism consisting of
both exploration and exploitation capabilities. It aims at minimize task completion, energy
consumption and overall cost. Sea lion optimization methodology was used to model the
scheduling mechanism. It was assessed in relation to WOA, GWO and RR mechanisms
using an extensive set of workloads. The results proved that SLNO outperformed the
existing algorithms. The authors of [26] proposed a multi objective scheduling model
focused on makespans and degrees of imbalance. VWOA was evaluated against [27] WOA,
RR approaches and it dominated the abovementioned approaches for said parameters.
In [28], the authors proposed a distributed optimization scheduler for heterogeneous cloud
resources using different functions, i.e., linear, sigmoid and deadline. This approach was
implemented on a test bed running on Google cluster with a deep reinforcement learning
approach and was finally compared to existing baseline approaches. The proposed DO4A
outperforms existing algorithms in the minimization of job processing capacity and trans-
mission delay. In [29], the authors proposed a microservice resource allocation framework
that adapts to the respective workflows to optimize response time. This approach uses a
reinforcement learning approach to identify the type of workflow, and based on that, it will
manage resources effectively, minimizing response time.

Table 1 shows many of the existing task scheduling algorithms that use various nature
inspired algorithms and many of the authors used parameters such as makespan, execution
time, energy consumption, and SLA violations but failed due to addressing parameter
combinations of makespan, energy consumption and SLA violations as ineffective at
provisioning resources to users, as a scheduler affects makespan and energy consumption
directly, and SLA violations indirectly. Therefore, there is a relationship between makespan,
energy consumption and SLA violation. Our proposed approach addresses all these metrics
while considering the priorities of tasks, VMs and schedule resources accordingly.
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Table 1. Task-scheduling algorithms using various metaheuristic approaches.

References Methodology Objectives Addressed by Existing Algorithms

[6] CSSA Resource utilization, Energy consumption, cost,
SLA violation.

[7] CSA Makespan.
[8] HAPSO Makespan, energy consumption.
[9] MCT-PSO, LJFP-PSO Makespan, degree of imbalance.

[10] HIGA Makespan, energy consumption, execution
overhead.

[11] BWF-TOPSIS Makespan, energy consumption.
[12] MHBFA Makespan, energy consumption.

[13] IACO Energy consumption, response time, SLA
violation.

[14] EMVO Execution time, resource utilization.
[15] CSSA Makespan, load balance during task distribution.
[16] PCGWO Makespan, cost, deadline.
[17] MSDE Makespan.
[18] MVO-GA Service availability, scalability.
[19] ACO-Fuzzy User costs, effective distribution of tasks to VMs.
[20] ACO-Fuzzy Quality of Service metrics
[24] VMPMOPSO SLA violation, power consumption.

[25] SLNO Makespan, cost, energy consumption, degree of
imbalance.

[26] VWOA Makespan, degree of imbalance.

[27] Crowd Sourcing platform Cloud monitoring, real-time network
monitoring.

[28] DO4A Job processing, transmission delay.
[29] Adaptive resource allocation Resource allocation, response time.

[30] REMIX Latency optimization in finding images in edge
devices.

[31] RATS-HM Makespan, energy consumption, response time.
[32] EDA-GA Task completion time, load balancing.
[33] Openstack Quality of Service
[34] HS Utilization of resources, completion time.
[35] HESGA Makespan, cost, utilization of resources.
[36] MRQFLDA Task processing time, turnaround time.
[37] GA-EC Energy consumption, time delay0
[38] HGA-ACO Quality of service.
[39] Adaptive load balancing Makespan, SLA violation.
[40] MGGS Response time, total completion time.
[41] EPETS Energy consumption.
[42] TSGA Execution cost, resource utilization.
[43] Agile scheduling model Throughput.
[44] Firefly-GA Energy consumption.
[45] Energy conscious GA Energy consumption.
[46] MFTGA Reliability, latency, failure rate.
[47] FHCS Energy consumption, resource utilization.
[48] HGSWC Makespan.
[49] IPSO Makespan.
[50] Integer PSO Makespan, Cost

3. Proposed System Architecture

This section precisely discusses the proposed system architecture in a detailed man-
ner. Assume we took n tasks, indicated as tn = {t1, t2, . . . .tn}, k VMs indicated as
vk = {v1, v2, v3 . . . . . . . . . vk}, j hosts indicated as hj =

{
h1, h2, . . . .hj

}
, i datacenters, i.e.,

di = {d1, d2, d3 . . . .di}. The problem is defined here as n tasks are carefully mapped on to
k VMs residing in j hosts and in i datacenters while minimizing SLA violations, energy
consumption and makespans. Table 2 below indicates notations used in the proposed
system architecture for mathematical modeling.
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Table 2. Notations used in proposed System Architecture.

Notation of Entity Meaning of Entity

tn No. of tasks
vk No. of VMs
hj No. of hosts
di No. of Datacenters

lvm Load on VMs
lh Load on hosts

prvm vm processing capacity
tpr Task priorities

vmpr Priorities of vms based on unit cost of electricity.
msn Makespan of tasks
econ Energy consumption

Figure 2 shows the proposed system architecture. In Figure 2, various cloud users first
submit requests to the cloud console. The cloud broker will take those requests and submit
them to the task manager. The task manager has to check whether the requests made by the
users are valid or not based on SLA. After verifying the users’ requests, the task manager
feeds all requests to the scheduler in the generalized architecture. In the proposed system
architecture, after the users’ request submissions from cloud users are escalated to the task
manager level, priorities of tasks calculated initially based on length, runtime processing
capacities of tasks. After calculating the tasks, VM priorities are calculated based on the
electricity cost at the datacenter’s location. Upon capturing of these priorities, ranking
are given for all tasks and fed to the scheduler to assign tasks effectively on suitable VMs.
Therefore, in order to map tasks appropriately on to VMs, we need to minimize makespans,
energy consumption and SLA violations.
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To calculate task priority, we initially calculate the current load of the VMs. The overall
load of the VMs is calculated using Equation (1).

lvm = ∑ lk (1)

where lvm indicates current load of k VMs.
After calculating the load of the VMs, we evaluate the load on the hosts, which is

calculated using Equation (2).
lh = lvm/∑ hj (2)

where lh indicates overall load on physical hosts.
After calculating the loads of the VMs and physical hosts but before defining priority

of tasks, we need to check the processing capacity of the VMs as it is very important in
our scheduling criteria to map suitable tasks to the appropriate VMs. Therefore, the VM
processing capacity is calculated using Equation (3).

prvm = prno × prmips (3)

where prvm indicates the VM processing capacity, prno indicates the number of processing
elements, and prmips indicates the computational speed of a VM.

The VM processing capacity is calculated by using Equation (4).

totvm
pr = ∑ prvm (4)

After calculating the VM processing capacity, we now need to calculate size of task,
which is evaluated using Equation (5).

tsize
n = tmips × tp (5)

Now, we can calculate the priority of tasks using Equation (6) below.

tpr = tsize
n /prvm (6)

In our research, we are not only calculating the priority of tasks, but we are also
identifying the priorities of the VMs based on the unit electricity cost at datacenter’s
location. The higher unit electricity cost of a datacenter gives less priority to schedule
tasks onto high-prioritized VMs, which has lower electricity unit cost through which we
minimize makespans, energy consumption and SLA violations.

vmpr =
highunit elect cost

dunit elect cost
i

(7)

where highunit elect cost indicates the highest unit cost of electricity price considered in all data-
centers and dunit elect cost

i indicates the unit cost of electricity price at a particular datacenter.
After evaluating both the task and VM priorities, our main research objective is now

minimizing makespans, SLA violations and energy consumption.
Makespan is the execution time of a task when run on a VM. It is calculated using

Equation (8) below.
msn = availk + en (8)

where msn indicates the makespan of n tasks, en indicates the execution time of n tasks and
availk indicates the availability of k VMs.

Our next parameter to model for this scheduler is energy consumption, which is
an important parameter from the perspectives of both the cloud provider and consumer.
Energy consumption in cloud paradigms consists of two parts: one part indicates the
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consumption of energy during computation and the other part indicates the consumption
of energy when idling. It is identified using Equation (9) below.

econ

(
vmk

)
=
∫ k

0
ecom

con

(
vmkt

)
+ eidle

con

(
vmkt

)
dt (9)

After calculating the energy consumption of the VMs during computation and when
idling, we can now calculate the overall energy consumption of all VMs, which is calculated
using Equation (10) below.

econ = ∑ econ

(
vmk

)
(10)

After calculating the makespan and energy consumption, we have to calculate SLA
violations, which is an important metric for both the cloud consumer and provider because
if SLA is violated at a particular instance of time by not completing a task with in its
deadline, it will lead to performance degradation. Now, to calculate SLA violations, we first
calculate the active time of the physical host and performance degradation. It is calculated
using Equations (11) and (12), respectively.

ACT =
1
r ∑r

m=1

violation timeh j
ACTh j (11)

Perdg =
1
k ∑k

b=1

Perr
dg

totvm
r

(12)

From Equations (11) and (12) above, we have calculated the active time of the physical
hosts and performance degradation. From both Equations (11) and (12), we can calculate
SLA violations using Equation (13) below.

slaviolation = ACT ∗ Perdg (13)

Now, we have identified the metrics and calculated them using Equations (8), (10) and (13).
We now need to define a fitness function to optimize our parameters using cat swarm optimiza-
tion. Fitness function calculated using below Equation (14).

f (x) = min∑ msn(x), econ(x), slaviolation(x) (14)

In Section 3, we clearly presented the mathematical modeling and proposed system
architecture, and in next section, we present the methodology used to model our proposed
prioritized scheduler in a detailed manner.

4. Methodology and Proposed Prioritized Task Scheduler Using Cat Swarm Optimization
4.1. Cat Swarm Optimization

This section presents a brief overview of the cat swarm optimization algorithm pre-
sented in [5]. It’s nature inspired the algorithm used as the methodology in our research.
This algorithm works based on the behavior of cats in nature. Cats have two modes:
seeking and active. The seeking mode refers to when a cat is at rest but is still ready and
alert for any kind of task given to that cat, whereas active mode refers to the chasing of
prey. In this algorithm, cats in active mode chase for a particular prey for certain amount
of time. This process continuously happens until iterations are completed. For this to
happen, cats are first initialized randomly by evolving swarm, and before that, all cats are
divided into two groups, i.e., they are separated by seeking and active modes. For every cat,
which is in active mode, a fitness value needs to be calculated for every iteration. After the
initialization of the cats, the velocity for all cats are calculated using Equation (15) below.

veq
d(t + 1) = s ∗ veq

d(t) + b ∗ u ∗
(

xd
best − xd

q

)
(15)
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where veq
d(t) is the velocity of the qth cat at tth iteration, xd

best is best solution for that
iteration, u is a random number that lies in 0 and 1, and b is a constant.

Updating of the cat’s position in the solution space is calculated using Equation (16).

xd
q(t + 1) = xd

q + veq
d(t + 1) (16)

The calculation of velocity and updating of the cat’s positions are to be calculated until
all iterations have been completed.

4.2. Proposed Prioritized Task Scheduling Algorithm Using Cat Swarm Optimization

The below section presents the proposed task scheduling approach in Algorithm 1.

Algorithm 1 Prioritized Task Scheduling Algorithm Using Cat Swarm Optimization

Input: tn = {t1, t2, . . . .tn}, vk = {v1, v2, v3 . . . . . . . . . vk}, hj =
{

h1, h2, . . . .hj

}
,

di = {d1, d2, d3 . . . .di}.
Output: Generation of schedules by considering priorities with optimization of
msn, econ and slaviolation

1. Start

2. Initialize tn = {t1, t2, . . . .tn}, vk = {v1, v2, v3 . . . . . . . . . vk}, hj =
{

h1, h2, . . . .hj

}
,

di = {d1, d2, d3 . . . .di}. // tasks, VMs, physical hosts, data centers values initialized //
3. Initialize cat opulation generation
4. For each tn, vk
5. Calculate incoming task priorities using Equation (6).
6. Calculate VM priorities using Equation (7).
7. Calculate fitness function by Equation (14).
8. Calculate velocity of cats population using Equation (15)
9. Update its global fitness value.
10. Calculate parameters using Equations (8), (10) and (13).
11. Check best fitness value appeared or not using Equation (15)
12. Check parameter values for minimization
13. Otherwise update cats position using Equation (16) and continue the process from Equation (4)
14. Repeat this process till all iterations completed
15. Stop

4.3. Time Complexity of Prioritized CSO

For Algorithm 1 above, we initially generated a random cat population and needed
to generate N tasks and D VMs as resources, so time complexity is O(N*D). The time
complexity of calculating VM priorities is O(n), where n is number of VMs. The time
complexity for calculating the fitness function is O(m), where m is the complexity of fitness
function. The time complexity of updating and minimizing values in the fitness function
is O(1). For one iteration, time complexity is O(N*D) + O(n + m + 1), but O(N*D) is much
larger than O(n + m + 1). We can approximate it to O(N*D). Therefore, the total time
complexity for T iterations is O(N*D*T).

5. Simulations and Results

This section presents the overall simulation and results in a detailed manner. The entire
simulation was carried out on a discrete event simulator named Cloudsim, which creates a
cloud environment based on the Java programming language. For efficient evaluation of
the parameters, we have given HPC2N [21] and NASA [22] parallel work logs as input to
our algorithm. After evaluating our proposed prioritized CSO in a simulated environment,
we created a real-time test bed in an OpenStack cloud environment to check the efficacy of
our approach. Initially we used nova compute service to launch our VM. VM initialization
was executed using Glance service, so we used a basic Linux VM, to which we gave a
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random generated workload and the input from both the HPC2N and NASA workloads,
then identified the efficacy for the abovementioned parameters.

5.1. Simulation Settings

This entire simulation runs on a system with a configuration comprising an i5 proces-
sor, 32 GB RAM and 1024 GB hard disk capacity. We used a Linux operating system to run
this simulation and installed the Cloudsim tool. Below, Table 3 represents settings used in
our simulation.

Table 3. Settings for simulation.

Entity Name Quantity

Tasks 1000
Task length 700,000
Ram of host 32 GB

Host storage capacity 1024 GB
Network bandwidth 500 Mbps

No. of VMs 15
RAM of VM 500 MB

Bandwidth of VM 10 Mbps
VMM used Xen

OS Linux
No. of datacenters 10

5.2. Makespan Evaluation

Initially, as per our discussion in mathematical modeling, we calculated makespan
in this research. It was evaluated against HPC2N and NASA workloads and compared to
baseline algorithms, such as PSO and ACO. From the results, our proposed prioritized cat
scheduler shows significant impact on SOTA approaches by minimizing the makespan.

Table 4 below shows the makespan calculation for PSO, ACO, RATS-HM and pri-
oritized CSO for 100, 500 and 1000 tasks using the HPC2N workload. The makespans
generated for PSO for various 100, 500 and 1000 tasks are 1358.9, 1756.9 and 2067.2, respec-
tively. The makespans generated for ACO for various 100, 500 and 1000 tasks are 1364.8,
1784.9 and 2245.9, respectively. The makespans generated for RATS-HM for various 100,
500 and 1000 tasks are 1486.32, 1856.18 and 2563.9, respectively. The makespans generated
for prioritized CSO for various 100, 500 and 1000 tasks are 1276.9, 1356.5 and 1856.8, respec-
tively. From results displayed in Table 4 and Figure 3 below, it is evident that the prioritized
CSO scheduler better minimized makespans when compared to PSO, ACO and RATS-HM

Table 4. Calculation of makespan using HPC2N in simulation.

Tasks PSO ACO RATS-HM Prioritized CSO

100 1358.9 1364.8 1486.32 1276.9
500 1756.9 1784.9 1856.18 1356.5

1000 2067.2 2245.9 2563.9 1856.8

Table 5 below shows the makespan calculation for PSO, ACO, RATS-HM and priori-
tized CSO for 100, 500 and 1000 tasks using the HPC2N workload in an OpenStack cloud.
The makespans generated for PSO for various 100, 500 and 1000 tasks are 1467.7, 1768.5 and
2156.8, respectively. The makespans generated for ACO for various 100, 500 and 1000 tasks
are 1387.23, 1894.36 and 2256.72, respectively. The makespans generated for RATS-HM
for various 100, 500 and 1000 tasks are 1567.12, 1923.98 and 2734.26, respectively. The
makespans generated for prioritized CSO for various 100, 500 and 1000 tasks are 1345.35,
1467.12 and 1756.21, respectively. From results displayed in Table 5 and Figure 4 below, it is
evident that the prioritized CSO scheduler better minimized makespans when compared
to PSO, ACO and RATS-HM.
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Table 5. Calculation of makespan using HPC2N in OpenStack cloud.

Tasks PSO ACO RATS-HM Prioritized CSO

100 1467.7 1387.23 1567.12 1345.35
500 1768.5 1894.36 1923.98 1467.12

1000 2156.8 2256.72 2734.26 1756.21
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Figure 4. Evaluation of makespan HPC2N in OpenStack.

Table 6 below shows the makespan calculation for PSO, ACO and prioritized CSO
for various 100, 500 and 1000 tasks using the NASA workload. The makespans gener-
ated for PSO for various 100, 500 and 1000 tasks are 659.2, 1287.5 and 1356.8, respec-
tively. The makespans generated for ACO for various 100, 500 and 1000 tasks are 785.6,
856.9 and 1187.92, respectively. The makespans generated for RATS-HM for various 100,
500 and 1000 tasks are 843.98, 756.18 and 1098.2, respectively. The makespans generated
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for prioritized CSO for various 100, 500 and 1000 tasks are 523.67, 659.45 and 878.23, re-
spectively. From the results displayed in Table 6 and Figure 5 below, it is evident that the
prioritized CSO scheduler better minimized the makespan when compared to PSO, ACO
and RATS-HM.

Table 6. Calculation of makespan using NASA in simulation.

Tasks PSO ACO RATS-HM Prioritized CSO

100 659.2 785.56 843.98 523.67
500 1287.5 856.9 756.18 659.45

1000 1356.8 1187.92 1098.2 878.23
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Figure 5. Evaluation of makespan NASA in simulation.

Table 7 below shows the makespan calculation for PSO, ACO and prioritized CSO for
various 100, 500 and 1000 tasks using the NASA workload in an OpenStack cloud. The
makespans generated for PSO for various 100, 500 and 1000 tasks are 876.32, 1478.12 and
1875.11, respectively. The makespans generated for ACO for various 100, 500 and 1000
tasks are 923.45, 1075.32 and 1256.8, respectively. The makespans generated for RATS-HM
for various 100, 500 and 1000 tasks are 1078.57, 1245.32 and 1467.21, respectively. The
makespans generated for prioritized CSO for various 100, 500 and 1000 tasks are 756.21,
619.17 and 945.67, respectively. From results displayed in Table 7 and Figure 6 below, it is
evident that the prioritized CSO scheduler better minimized the makespan when compared
to PSO, ACO, RATS-HM.

Table 7. Calculation of makespan using NASA in OpenStack cloud.

Tasks PSO ACO RATS-HM Prioritized CSO

100 876.32 923.45 1078.57 756.21
500 1478.12 1075.32 1245.32 619.17

1000 1875.11 1256.88 1467.21 945.67



Sensors 2023, 23, 6155 13 of 21
Sensors 2023, 23, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 6. Evaluation of makespan NASA in OpenStack. 

5.3. Energy Consumption Evaluation 
After calculating makespan, we calculated energy consumption in this research. It 

was evaluated against HPC2N and NASA workloads, and compared to baseline algo-
rithms, such as PSO and ACO. From the results, our proposed prioritized cat scheduler 
showed greater impact when compared to existing approaches regarding minimizing en-
ergy consumption.  Table 8 below shows the energy consumption calculation for PSO, 
ACO and prioritized CSO for various 100, 500 and 1000 tasks using the HPC2N [22] work-
load. The energy consumptions generated for PSO for various 100, 500 and 1000 tasks are 
47.87, 98.65 and 145.98, respectively. The energy consumptions generated for ACO for 
various 100, 500 and 1000 tasks are 38.98, 87.56 and 123.98, respectively. The energy con-
sumptions generated for RATS-HM for various 100, 500 and 1000 tasks are 42.78, 
67.36,133.97, respectively. The energy consumptions generated for prioritized CSO for 
various 100, 500 and 1000 tasks are 28.78, 43.99 and 108.99, respectively. From the results 
displayed in Table 8 and Figure 7 below, it is evident that the prioritized CSO scheduler 
better minimized energy consumption when compared to PSO, ACO and RATS-HM. 

Table 8. Calculation of energy consumption using HPC2N in simulation. 

Tasks PSO ACO RATS-HM Prioritized CSO 
100 47.87 38.98 42.78 28.78 
500 98.65 87.56 67.36 43.99 

1000 145.98 123.89 133.97 108.99 

Figure 6. Evaluation of makespan NASA in OpenStack.

5.3. Energy Consumption Evaluation

After calculating makespan, we calculated energy consumption in this research. It was
evaluated against HPC2N and NASA workloads, and compared to baseline algorithms, such
as PSO and ACO. From the results, our proposed prioritized cat scheduler showed greater
impact when compared to existing approaches regarding minimizing energy consumption.
Table 8 below shows the energy consumption calculation for PSO, ACO and prioritized
CSO for various 100, 500 and 1000 tasks using the HPC2N [22] workload. The energy
consumptions generated for PSO for various 100, 500 and 1000 tasks are 47.87, 98.65 and
145.98, respectively. The energy consumptions generated for ACO for various 100, 500 and
1000 tasks are 38.98, 87.56 and 123.98, respectively. The energy consumptions generated for
RATS-HM for various 100, 500 and 1000 tasks are 42.78, 67.36,133.97, respectively. The energy
consumptions generated for prioritized CSO for various 100, 500 and 1000 tasks are 28.78,
43.99 and 108.99, respectively. From the results displayed in Table 8 and Figure 7 below, it
is evident that the prioritized CSO scheduler better minimized energy consumption when
compared to PSO, ACO and RATS-HM.

Table 8. Calculation of energy consumption using HPC2N in simulation.

Tasks PSO ACO RATS-HM Prioritized CSO

100 47.87 38.98 42.78 28.78
500 98.65 87.56 67.36 43.99

1000 145.98 123.89 133.97 108.99
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Table 9 below shows the energy consumption calculation for PSO, ACO and prioritized
CSO for various 100, 500 and 1000 tasks using the HPC2N workload in an OpenStack cloud.
The energy consumptions generated for PSO for various 100, 500 and 1000 tasks are 56.15,
104.32, 157.12, respectively. The energy consumptions generated for ACO for various 100,
500 and 1000 tasks are 42.15, 88.23 and 135.67, respectively. The energy consumptions
generated for RATS-HM for various 100, 500 and 1000 tasks are 56.18, 72.18 and 142.78,
respectively. The energy consumptions generated for prioritized CSO for various 100, 500
and 1000 tasks are 31.67, 45.19 and 98.45, respectively. From the results displayed in Table 9
and Figure 8 below, it is evident that the prioritized CSO scheduler better minimized energy
consumption when compared to PSO, ACO and RATS-HM.

Table 9. Calculation of energy consumption using HPC2N in OpenStack cloud.

Tasks PSO ACO RATS-HM Prioritized CSO

100 56.15 42.15 56.18 31.67
500 104.32 88.23 72.18 45.19

1000 157.12 135.67 142.78 98.45
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Table 10 below shows the energy consumption calculation for PSO, ACO and pri-
oritized CSO for various 100, 500 and 1000 tasks using the NASA [23] workload. The
energy consumptions generated for PSO for various 100, 500 and 1000 tasks are 49.56, 85.79,
112.79, respectively. The energy consumptions generated for ACO for various 100, 500 and
1000 tasks are 38.78, 61.56 and 124.89, respectively. The energy consumptions generated for
RATS-HM for various 100, 500 and 1000 tasks are 56.12, 64.37 and 135.88, respectively. The
energy consumption generated for prioritized CSO for various 100, 500 and 1000 tasks are
22.98, 32.32 and 99.56, respectively. From the results displayed in Table 10 and Figure 9 be-
low, it is evident that the prioritized CSO scheduler better minimized energy consumption
when compared to PSO, ACO and RATS-HM.

Table 10. Calculation of energy consumption using NASA in simulation.

Tasks PSO ACO RATS-HM Prioritized CSO

100 49.56 38.78 56.12 22.98
500 85.79 61.56 64.37 32.32

1000 112.79 124.89 135.88 99.56
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Table 11 below shows the energy consumption calculation for PSO, ACO and priori-
tized CSO for various 100, 500 and 1000 tasks using the NASA workload in an OpenStack
cloud. The energy consumptions generated for PSO for various 100, 500 and 1000 tasks
are 52.44, 89.67 and 118.43, respectively. The energy consumptions generated for ACO for
various 100, 500 and 1000 tasks are 49.56, 72.19 and 132.18, respectively. The energy con-
sumption generated for RATS-HM for various 100, 500 and 1000 tasks are 59.15, 71.25 and
156.28, respectively. The energy consumptions generated for prioritized CSO for various
100, 500 and 1000 tasks are 26.74, 30.16,87.34, respectively. From the results displayed in
Table 11 and Figure 10 below, it is evident that the prioritized CSO scheduler minimized
energy consumption when compared to PSO, ACO and RATS-HM.

Table 11. Calculation of energy consumption using NASA in OpenStack cloud.

Tasks PSO ACO RATS-HM Prioritized CSO

100 52.44 49.56 59.15 26.74
500 89.67 72.19 71.25 30.16

1000 118.43 132.18 156.28 87.34
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5.4. SLA Violation Evaluation

After calculating makespan and energy consumption, we calculated SLA violations
in this research. It was evaluated against HPC2N and NASA workloads and compared
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to baseline algorithms, such as PSO and ACO. From the results, our proposed prioritized
cat scheduler shows greater impact when compared to existing approaches regarding
minimizing SLA violations.

Table 12 below shows the SLA violation calculation for PSO, ACO and prioritized
CSO for various 100, 500 and 1000 tasks using the HPC2N workload. The SLA violations
generated for PSO for 100, 500 and 1000 tasks are 15, 21 and 31, respectively. The SLA viola-
tions generated for ACO for various 100, 500 and 1000 tasks are 17, 20 and 35, respectively.
The SLA violations generated for RATS-HM for various 100, 500 and 1000 tasks are 18, 23
and 21, respectively. The SLA violation generated for prioritized CSO for various 100, 500
and 1000 tasks are 7, 11 and 12, respectively. From the results displayed in Table 12 and
Figure 11 below, it is evident that the prioritized CSO scheduler better minimized SLA
violations when compared to PSO, ACO and RATS-HM.

Table 12. Calculation of SLA violation using HPC2N in simulation.

Tasks PSO ACO RATS-HM Prioritized CSO

100 15 17 18 7
500 21 20 23 11

1000 31 35 21 12
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Table 13 below shows the SLA violation calculation for PSO, ACO and prioritized
CSO for various 100, 500 and 1000 tasks using the HPC2N workload for an OpenStack
cloud. The SLA violations generated for PSO for 100, 500 and 1000 tasks are 18, 27 and 38,
respectively. The SLA violations generated for ACO for various 100, 500 and 1000 tasks
are 21, 36 and 39, respectively. The SLA violations generated for RATS-HM for various
100, 500 and 1000 tasks are 31, 26 and 25, respectively. The SLA violation generated for
prioritized CSO for various 100, 500 and 1000 tasks are 9, 14 and 11, respectively. From
the results displayed in Table 13 and Figure 12 below, it is evident that prioritized CSO
scheduler better minimized SLA violations when compared to PSO, ACO and RATS-HM.
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Table 13. Calculation of SLA violations using HPC2N in OpenStack cloud.

Tasks PSO ACO RATS-HM Prioritized CSO

100 18 21 31 9
500 27 36 26 14

1000 38 39 25 11
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Table 15 below shows the SLA violation calculation for PSO, ACO and prioritized
CSO for various 100, 500 and 1000 tasks using the NASA workload in an OpenStack cloud.
The SLA violations generated for PSO for various 100, 500 and 1000 tasks are 15, 21 and 29,
respectively. The SLA violations generated for ACO for various 100, 500 and 1000 tasks
are 21, 18 and 16, respectively. The SLA violations generated for RATS-HM for various
100, 500 and 1000 tasks are 19,18 and 25, respectively. The SLA violations generated for
prioritized CSO for various 100, 500 and 1000 tasks are 6, 10 and 14, respectively. From the
results displayed in Table 15 and Figure 14 below, it is evident that the prioritized CSO
scheduler better minimized SLA violations when compared to PSO, ACO and RATS-HM.

Table 15. Calculation of SLA violations using NASA in OpenStack.

Tasks PSO ACO RATS-HM Prioritized CSO

100 15 21 19 6
500 21 18 18 10

1000 29 16 25 14

Sensors 2023, 23, x FOR PEER REVIEW 20 of 23 
 

 

Table 15 below shows the SLA violation calculation for PSO, ACO and prioritized 
CSO for various 100, 500 and 1000 tasks using the NASA workload in an OpenStack 
cloud. The SLA violations generated for PSO for various 100, 500 and 1000 tasks are 
15, 21 and 29, respectively. The SLA violations generated for ACO for various 100, 
500 and 1000 tasks are 21, 18 and 16, respectively. The SLA violations generated for 
RATS-HM for various 100, 500 and 1000 tasks are 19,18 and 25, respectively. The SLA 
violations generated for prioritized CSO for various 100, 500 and 1000 tasks are 6, 10 
and 14, respectively. From the results displayed in Table 15 and Figure 14 below, it 
is evident that the prioritized CSO scheduler better minimized SLA violations when 
compared to PSO, ACO and RATS-HM. 

Table 15. Calculation of SLA violations using NASA in OpenStack. 

Tasks PSO ACO RATS-HM Prioritized CSO 
100 15 21 19 6 
500 21 18 18 10 

1000 29 16 25 14 

 
Figure 14. Evaluation of SLA violations NASA in OpenStack. 

5.5. Discussion of Results of Simulation and in OpenStack Cloud Environment 
After simulating  and implementing the results in an OpenStack cloud environment 

with different approaches, we evaluated the results and calculated the improvement of 
the results compared to those of existing approaches. For experimentation purposes, we 
used standard worklogs captured from HPC2N and NASA, and these workloads were 
fed to our scheduler, which ran for 100 times. Detailed analysis of results and improve-
ments in SLA violations, energy consumption, makespans are provided in Tables 16–21 
below. 

Table 16. Improvement of makespan over existing algorithms with various workloads in simulation. 

Type of Workload PSO ACO RATS-HM 
HPC2N [22] 13.09% 15.92% 23.97% 
NASA [23] 34.84% 27.47% 23.6% 

Figure 14. Evaluation of SLA violations NASA in OpenStack.

5.5. Discussion of Results of Simulation and in OpenStack Cloud Environment

After simulating and implementing the results in an OpenStack cloud environment
with different approaches, we evaluated the results and calculated the improvement of the
results compared to those of existing approaches. For experimentation purposes, we used
standard worklogs captured from HPC2N and NASA, and these workloads were fed to
our scheduler, which ran for 100 times. Detailed analysis of results and improvements in
SLA violations, energy consumption, makespans are provided in Tables 16–21 below.

Table 16. Improvement of makespan over existing algorithms with various workloads in simulation.

Type of Workload PSO ACO RATS-HM

HPC2N [22] 13.09% 15.92% 23.97%
NASA [23] 34.84% 27.47% 23.6%
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Table 17. Improvement of energy consumption over existing algorithms with various workloads
in simulation.

Type of Workload PSO ACO RATS-HM

HPC2N [22] 40.2% 29.31% 25.55%
NASA [23] 42.55% 36.17% 39.59%

Table 18. Improvement of SLA violations over existing algorithms with various workloads
in simulation.

Type of Workload PSO ACO RATS-HM

HPC2N [22] 54.07% 56.51% 51.59%
NASA [23] 53.74% 41.16% 46.96%

Table 19. Improvement of makespan over existing algorithms with various workloads in
OpenStack cloud.

Type of Workload PSO ACO RATS-HM

HPC2N [22] 37.6% 17.5% 26.61%
NASA [23] 45.12% 28.7% 38.77%

Table 20. Improvement of energy consumption over existing algorithms with various workloads in
OpenStack cloud.

Type of Workload PSO ACO RATS-HM

HPC2N [22] 44.8% 34.11% 35.35%
NASA [23] 44.6% 43.19% 49.68%

Table 21. Improvement of SLA violations over existing algorithms with various workloads in
OpenStack cloud.

Type of Workload PSO ACO RATS-HM

HPC2N [22] 59.03% 64.59% 58.54%
NASA [23] 53.83% 45.44% 51.59%

6. Conclusion and Future Work

Cloud computing is a distributed paradigm that leverages on-demand services to users
based on their application needs. For the effective provisioning of services to cloud users,
cloud providers need to employ an effective task scheduling mechanism, which should
map incoming tasks onto a cloud interface and to appropriate VMs in the cloud paradigm.
In this manuscript, we propose an approach, which considers the priorities of tasks and
priorities based on unit electricity cost at the datacenter locations. Existing authors used
various metaheuristic algorithms to solve scheduling problems in cloud paradigms but
these metaheuristic approaches only provide near-optimal solutions. Still, there is a chance
to improve scheduling process by evaluating priorities and feeding the workload to the
scheduler to generate scheduling decisions. We used cat swarm optimization to solve task
scheduling problems in this paradigm. Extensive simulations are carried out on Cloudsim.
Simulations were conducted by using HPC2N and NASA parallel work logs. They were
evaluated against existing PSO and ACO approaches. From the simulation results, it has
been proved that the proposed approach outperforms existing algorithms by minimizing
makespans, energy consumption, SLA violations. In the future, we will employ a machine
learning framework to predict the type of workloads coming onto cloud interface to provide
and generate effective schedules to various heterogeneous users.
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