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Abstract: Microarray data examination is a relatively new technology that intends to determine the
proper treatment for various diseases and a precise medical diagnosis by analyzing a massive number
of genes in various experimental conditions. The conventional data classification techniques suffer
from overfitting and the high dimensionality of gene expression data. Therefore, the feature (gene)
selection approach plays a vital role in handling a high dimensionality of data. Data science concepts
can be widely employed in several data classification problems, and they identify different class
labels. In this aspect, we developed a novel red fox optimizer with deep-learning-enabled microarray
gene expression classification (RFODL-MGEC) model. The presented RFODL-MGEC model aims to
improve classification performance by selecting appropriate features. The RFODL-MGEC model uses
a novel red fox optimizer (RFO)-based feature selection approach for deriving an optimal subset of
features. Moreover, the RFODL-MGEC model involves a bidirectional cascaded deep neural network
(BCDNN) for data classification. The parameters involved in the BCDNN technique were tuned using
the chaos game optimization (CGO) algorithm. Comprehensive experiments on benchmark datasets
indicated that the RFODL-MGEC model accomplished superior results for subtype classifications.
Therefore, the RFODL-MGEC model was found to be effective for the identification of various classes
for high-dimensional and small-scale microarray data.

Keywords: microarray data classification; data science; chaos game optimization; feature selection;
deep learning; red fox optimizer

1. Introduction

The technology of DNA microarray assists in making it simpler to monitor a huge
number of genes simultaneously [1]. Earlier works indicated that the technology of DNA
microarray could be useful in the classification of cancer disease [2]. To classify microarray
gene expression, several techniques and methods were introduced that have satisfactory
outcomes [3]. For the microarray dataset, the gene expression value is organized through
the matrix, where samples are rows and genes or features are columns. The value of gene
expression is a real number, and it defines the expression level of a gene following certain
criteria [4]. Due to the limited number of samples with an enormous number of features
from the gene expression data, the systematic machine learning (ML) technique does not
work well for cancer classifiers [5].

A microarray experiment produces many gene expression data in an individual sample.
The ratio of the number of genes (features) to the number of patients (samples) is skewed,
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leading to the popular curse-of-dimensionality problem [6]. Furthermore, it enforces
self-inflicting limitations on the presenting of methods: (i) processing all the information
may not be possible, and (ii) processing a set of data might lead to overfitting, local
maxima, and loss of information. These two problems affect the reliability and accuracy
of machine learning techniques. Several studies have been conducted to identify an
effective feature set [7]. Statistical and evolutionary approaches were introduced for these
purposes. Feature subset selection (FSS) methods such as joint mutual information (JMI),
joint mutual information maximization (JMIM), and minimum redundancy maximum
relevance (mRMR) are among the main statistical methods [8].

Literature reviews showed that recent innovative technologies such as genetic algo-
rithm (GA), mining techniques, transfer learning, deep neural network (DNN), particle
swarm optimization (PSO), and so on, generate precise results [9]. The classification of
microarray data is generally performed in two different ways. Feature selection (FS) fo-
cuses on choosing the most important characteristics from a large dataset to decrease
computation overheads, overfitting, and noise. The classifier training process constructs a
technique in the selected feature to accurately categorize a microarray sample. Innovative
technologies such as convolutional neural network (CNN), image processing, ant miner,
transfer learning, and experimental methods were introduced in a previous study [10].
Even though the innovative technologies for FS and classifier training can produce higher
accuracy, they should be tuned based on the fundamental data set in a controlled setup to
accomplish better outcomes.

We developed a novel red fox optimizer with deep-learning-enabled microarray gene
expression classification (RFODL-MGEC) model. The presented RFODL-MGEC model
uses a novel RFO-based feature selection (FS) approach to derive an optimum subset of
features. Moreover, the proposed RFODL-MGEC model involves a bidirectional cascaded
deep neural network (BCDNN) for data classification. The parameters involved in the
BCDNN method were optimally tuned using a chaos game optimization (CGO) algorithm.

2. Related Works

In [11], a novel bacterial colony optimization with multidimensional population was
named the BCO-MDP technique and was projected for FS to resolve classifier issues.
Addressing the combinational problem connected with FS, the population with several
dimensionalities was demonstrated as subsets of distinct feature sizes. Zeebaree et al. [12]
examined a deep learning (DL) method dependent upon CNN for the classification of
microarray data. In contrast to some approaches like vector machine recursive feature
elimination and improved random forest (mSVM-RFE-iRF and varSeIRF), CNN revealed
that not every datum has higher efficiency. In [13], a two-stage sparse logistic regression
(LR) was presented to attain an effectual subset of genes with higher classifier abilities by
integrating the screening method as a filtering model and adaptive lasso with novel weight
as an embedding process. During the primary phase, the independence screening approach
utilized as a screening method recollected individuals’ genes and demonstrated maximum
individual correlation with cancer class level. During the secondary phase, the adaptive
lasso with novel weight was executed to address higher correlations amongst the screened
genes from the primary step.

Shukla et al. [14] progressed a novel hybrid framework named CMIMAGA by integrat-
ing conditional mutual information maximization (CMIM) and adaptive genetic algorithm
(AGA), and it is utilized for determining important biomarkers in gene expression data.
CMIM was executed as a filter to extract out one of the meaningless genes. A wrapper
approach such as AGA was utilized for choosing the extremely discriminating genes.

In [15], elephant search algorithm (ESA)-based optimization was presented for select-
ing optimum gene expression in a huge volume of microarray data. The firefly search (FFS)
was utilized to understand the ESA’s efficiency in the FS procedure. The stochastic gradient
descent (SGD)-based DNN as DL with the Softmax activation function was utilized on the
decreased feature (genes) of the optimum classifier at various instances based on its gene
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expression level. Sayed et al. [16] examine an ensemble FS approach dependent upon a
t-test and GA. After preprocessing the data utilizing a t-test, a nested GA called Nested-GA
was utilized to obtain the optimum subset of features using two distinct datasets. The
nested GA had two nested GAs (outer and inner), which ran on two different types of
datasets. Li et al. [17] established a more effective execution of linear SVMs, enhancing
the recursive feature elimination approach and combining selected informative genes. In
addition, they presented an easy resampling approach for preprocessing the dataset that
creates the data distribution of distinct types of samples that is balanced and improves the
classification performance.

3. The Proposed Model

This study proposes a novel RFODL-MGEC model for microarray gene expression
classification. The presented RFODL-MGEC model primarily employed an RFO-FS ap-
proach for deriving the optimum subset of features. Next, the BCDNN model was utilized
for data classification, and the parameters involving the BCDNN technique were optimally
tuned using a CGO algorithm. Figure 1 demonstrates the overall block diagram of our
proposed RFODL-MGEC technique.
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3.1. Data Preprocessing

The z-score normalization approach was derived at the initial phase, which computed
the standard deviation and arithmetic mean of provided gene data. It was evident that
the normalization approach performed effectively with earlier knowledge regarding the
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average score and score variation of the matcher. The normalization scores were obtained
using the following:

s′k =
sk − µ

σ
(1)

where σ implies standard deviation and µ indicates arithmetic mean of provided data. In
this study, the normalization of the smoothed data was carried out via z-score normalization.

3.2. Design of RFO-Based Feature Selection Approach

During the process of feature selection, the RFO-FS model was executed and the
optimum set of features was chosen. A new metaheuristic approach was determined,
which was named the RFO approach, and was based on the hunting processes of red
foxes. Initially, the red foxes seek food in territories [18]. This can be modelled as an
exploration term for global search. Next, they move over the territory to get close to their
prey before attacking. This stage can be modelled as an exploitation term for local search.
The process was initiated by a constant value of random candidates; each one determines a
point, where x = (x0, x1, . . . , xn−1) and n defines a coordinate. For discriminating every
fox xi in iteration t, where i indicates the fox number in the population, we introduce

the notation
(

xi
j

)t
, in which i describes the coordinate as the solution space dimension.

Based on f ∈ Rn, the criterion function of the n variable depends on the dimension of the
searching space, and the notation (x)(i) = [(x0)

(i), (x1)
(i),

(
xn−1)

(i)
]

indicates the point in

the space [a, b]n in which a, b ∈ R. Then, (x)(i) is the optimum solution when the value
of function f (

(
x)(i)

)
represents a global optimal on [a, b]. The outcomes of the estimated

function by the candidate are sorted initially according to fitness condition, and for (xbest)
t
,

the square of Euclidean distance is estimated for the candidate in the following:

D(((x)(i))
t
, (
(

x)best)t
)
=

√
‖((x)(i))

t
− ((x)best)

t
‖ (2)

and the candidate moves towards the optimal population as:

((x)(i))
t
= ((x)(i))

t
+ α× sgn((((x)best)

t
−
(

x)(i))t
)

(3)

where α defines an arbitrary number in which ∈ (0, D((x)best)
c
, (
(

x)best)t
)

.
In the RFO approach, movements and observations delude prey when hunting in a

local searching phase. For simulating the probability of a fox approaching the prey, an
arbitrary number γ ∈ [0, 1] set in the iteration for each candidate can be used.{

move doser i f γ > 3/4
stay and hile i f γ ≤ 3/4

(4)

Figure 2 depicts the steps involved in RFO.
The radius comprises a as an arbitrary number within 0 and 0.2, and ϕ0 denotes an

arbitrary number within 0 and 2π which defines the fox observation angle:

r =
{

a× sin (ϕ0)/ϕ0 i f ϕ0 6= 0
β i f ϕ0 = 0

(5)

β represents an arbitrary number within 0 and 1. The approaching method of the fox was
modelled as follows:
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χNew
0 = a× r× cos(ϕ1) + Xactual

0
xNew

1 = a× r× sin(ϕ1) + a× r× cos(ϕ2) + xactual
1

xNew
1 = a× r× sin(ϕ1) + a× r× sin(ϕ2) + a× r× cos(ϕ3) + xactual

2
...

xNew
n−1 = a× r×

n−2
∑

k=1
sin(ϕ1) + a×Y× cos(ϕn−1) + Xactual

n−2

xNeω
n−1 = a× r× sin(ϕ1) + a× r× sin(ϕ2) + · · ·+ a× r× sin(ϕn−1) + a× r× sin(ϕn−1) + Xactual

n−a

(6)
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Five percent of the worst-case candidates were detached and replaced with upgraded
candidates. In the same way, two of the optimal individuals were accomplished as (X(1))t

and (X(2))t as an alpha couple in iteration t. This can be mathematically expressed in
the following:

Ht
c =

1
2
(X(1))t − (X(2))t (7)

Moreover, the diameter of habitat using Euclidean distance can be accomplished by
Equation (8):

Ht
d = (‖(X(1))t − (X(2))t‖)

1
2 (8)

An arbitrary number, θ, was considered in the following:{
New nomadic candidate i f θ > 0.45
Reproduction o f the alpha couple i f θ ≤ 0.45

(9)

In this case, θ ∈ [0, 1]. In addition, the new candidate was accomplished by the alpha
couple in the following:

(Xrep)t =
θ

2
(X(1))t − (X(2))t (10)
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3.3. Process Involved in BCDNN-Based Classification

The BCDNN model was developed for microarray gene expression classification [19].
The DNN is separated into decoder, encoder, translator, and simulator. Let T represent
the amplitude response and phase inspired from the finite-difference time-domain (FDTD)
methodology and T′ represent the forecast from the simulator. When the module is trained,
the simulator predicts T′ as an input image with a rapidly moving meta-atom structure
compared to its arithmetical matching part. For backward calculations, T with dimensions
of 82× 1 is converted to an image with dimensions of 40× 40, which indicates a lower input
parameter than the output parameter for regression processes. The enormous divergence
makes it problematic for a system to generalize and converge well, particularly once
the input spectra have stronger variation near the resonant frequency. The authors of
the aforementioned study attempted to avoid this problem by including a generative
adversarial network or bilinear tensor layer. Initially, it characterizes every meta-atom
with a lower dimension eigen vector with dimensions of 82 × 1 through a pretrained
autoencoder. The size of each tensor all over the network is noticeable below all the blocks.
Dissimilar layers of the CNN are interconnected with convolution operations. The kernel
multiplies the value of the tensor in the kernel region and later sums it with a novel value
in tensor. In CNN, we attached two FC layers (dimensions are given below) to estimate a
spectral tensor. A leaky ReLU of α = 0.2 was employed for all the convolution layers, and
tan h was employed for all the FC layers. The convolution layer maps the input tensor xk
with the output tensor xk+1:

xk+1 = leaky ReLU
[
CONVk1(xk)

]
, (11)

Leaky ReLU (·) represents the rectified linear unit action, and CONV denotes the
convolutional operators (include bias terms). The k1 subscript signifies the number of
networks. In the simulator, k1 = 32, 32, 64, 64, 128, 128. Strides of two are employed in two,
four, and six convolutions for replacing the max-pooling layer. A dropout layer by means
of 0.1 drops behindhand all the FC layers except the output layer is applied to prevent
overfitting networks. Mean absolute error (MAE) was adapted for calculating the weight
and gradient. MAE was determined by:

MAE =
∑i

∣∣∣Tpredicted − Tsimulated

∣∣∣
N

, (12)

Now, N indicates the amount of the entrances of Tpredicted. For cost functions, MAE
is insensitive to outliers; however, it is unconducive to the convergence. To guarantee the
module stability, the learning rate declines with the number of iterations.

3.4. Parameter Optimization Using CGO Algorithm

In order to optimally tune the parameters involved in the BCDNN method, the
CGO approach was employed [20]. The CGO approach was projected depending on the
presented principles of the chaos model. Important methods of fractals and chaos games
were utilized to formulate a mathematical model for the CGO approach. The CGO approach
considered the count of solution candidates (S) in this determination, which represents
some appropriate seed inside the Sierpinski triangle. The mathematical process of this
feature is as follows:

S =
S1
:

Sn

=


S1

1
S1

2

S1
i

S1
n

S2
1

S2
2
...

S2
i

S2
n

Sj
1

Sj
2

Sj
i

Sj
n

· · ·

. . .
· · ·

Sd
1

...
Sd

n

 (13)
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i = 1, 2 . . . n. J = 1, 2 . . . . d. In this case, n signifies the count of eligible seeds (candi-
date solutions) inside the Sierpinski triangle (searching space), and d defines the dimension
of this seed. The primary place of these eligible seeds is demonstrated arbitrarily from the
searching space as:

Sj
1 (0) = Sj

1,min + R
(

Sj
1, min − Sj

1, max

)
(14)

where R implies an arbitrary number in the interval of zero and one. The process for the
primary seed is represented under:

Seed1
i = Si + xi ∗ (yi ∗ Global best− zi ∗Mean Value) (15)

xi, yi, and zi define an arbitrary integer of zero or one for representing the possibility
of rolling a die. Then, the schematic presentation of the described process for the second
seed is defined as:

Seed2
i = Global best + xi ∗ (yi ∗ Si − zi ∗Mean Value) (16)

The schematic representations of the third and fourth seeds are described as:

Seed3
i = Mean Value + xi ∗ (yi ∗ Si − zi ∗ Global best) (17)

Seed4
i = Si

(
Sk

i = Sk
i + Rand

)
(18)

in which k signifies an arbitrary integer in the interval of zero and one. During the
CGO approach, different constructions are presented for xi, which controls the effort to
restrict seeds.

xi =


2 ∗ rand

(Ψ ∗ rand) + 1
(Ω ∗ rand)+ ∼ Ω

(19)

In this case, rand implies a uniformly distributed random number in the interval of
zero and one. Ψ and Ω are arbitrary integers in the interval of zero and one. For selecting
better parameters in the BCDNN technique, the CGO method is offered as a main function,
representing a positive combination to achieve higher performance. During this process,
error rate is controlled as the fitness function, and the solution with lower error is observed
as the optimum one. It can be defined as:

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples ∗ 100

(20)

4. Experimental Validation

The performance validation of the RFODL-MGEC model was tested using three
benchmark datasets [21], namely, prostate cancer, colon tumor, and ovarian cancer datasets.
The details related to the datasets are provided in Table 1. The proposed model selected a set
of 6145, 984, and 8424 features for prostate, colon, and ovarian cancer datasets, respectively.

Table 1. Dataset details.

Dataset Prostate Cancer Colon Tumor Ovarian Cancer

No. of Genes 12,600 2000 15,155

No. of Samples 102 62 253

Class 1 52 22 162

Class 2 50 40 91
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4.1. Resulting Analysis of RFODL-MGEC Technique on Prostate Cancer Dataset

Figure 3 illustrates a set of confusion matrices generated by the RFODL-MGEC model
on the test prostate cancer dataset. For the entire dataset, the RFODL-MGEC model
categorized 47 images as tumor and 49 images as normal. Similarly, for 70% of the training
dataset, the RFODL-MGEC model categorized 32 images as tumor and 34 images as normal.
In addition, for 30% of the testing dataset, the RFODL-MGEC model categorized 15 images
as tumor and 15 images as normal.
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Table 2 shows a brief classification performance report for the RFODL-MGEC model
on the prostate cancer dataset. The experimental results indicated that the RFODL-MGEC
model demonstrated effective results on the test dataset. For instance, with the entire
dataset, the RFODL-MGEC model obtained an average accuy, precn, recal , and Fscore of
94.12%, 94.33%, 94.19%, and 94.12%, respectively. Moreover, with 70% of the training
dataset, the RFODL-MGEC technique obtained an average accuy, precn, recal , and Fscore
of 92.96%, 93.22%, 93.02%, and 92.95%, respectively. With 30% of the testing dataset, the
RFODL-MGEC system obtained an average accuy, precn, recal , and Fscore of 96.77%, 96.88%,
96.88%, and 96.77%, respectively.
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Table 2. Resulting analysis of RFODL-MGEC technique with various measures on prostate
cancer dataset.

Prostate Cancer Dataset

Class Labels Accuracy Precision Recall F-Score

Entire Dataset

Tumor 94.12 97.92 90.38 94.00

Normal 94.12 90.74 98.00 94.23

Average 94.12 94.33 94.19 94.12

Training (70%)

Tumor 92.96 96.97 88.89 92.75

Normal 92.96 89.47 97.14 93.15

Average 92.96 93.22 93.02 92.95

Testing (30%)

Tumor 96.77 100.00 93.75 96.77

Normal 96.77 93.75 100.00 96.77

Average 96.77 96.88 96.88 96.77

Figure 4 illustrates the training and validation accuracy inspection of the RFODL-
MGEC model with the prostate cancer dataset. Figure 4 conveys that the RFODL-MGEC
model offered maximum training/validation accuracy for the classification process.
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Figure 5 exemplifies the training and validation loss inspection of the RFODL-MGEC
model with the prostate cancer dataset. Figure 5 shows that the RFODL-MGEC model
offered reduced training/accuracy loss for the classification process of the test data.
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4.2. Resulting Analysis of RFODL-MGEC Technique on Colon Tumor Dataset

Figure 6 demonstrates a set of confusion matrices generated by the RFODL-MGEC
model for the test colon tumor dataset. For the entire dataset, the RFODL-MGEC technique
categorized 38 images as negative and 21 images as positive. Likewise, for 70% of the
training dataset, the RFODL-MGEC approach categorized 27 images as negative and
14 images as positive. Furthermore, with 30% of the testing dataset, the RFODL-MGEC
model categorized 11 images as negative and 7 images as positive.

Table 3 demonstrates a brief classification performance report on the RFODL-MGEC
model with the colon tumor dataset. The experimental results indicated that the RFODL-
MGEC model demonstrated effective results with the test dataset. For instance, with the
entire dataset, the RFODL-MGEC model obtained an average accuy, precn, recal , and Fscore
of 95.16%, 94.37%, 95.23%, and 94.77%, respectively. With 70% of the training dataset,
the RFODL-MGEC method attained an average accuy, precn, recal , and Fscore of 95.35%,
93.75%, 96.55%, and 94.88%, respectively. Additionally, with 30% of the testing dataset,
the RFODL-MGEC algorithm obtained an average accuy, precn, recal , and Fscore of 94.74%,
95.83%, 93.75%, and 94.49%, respectively.
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Table 3. Resulting analysis of RFODL-MGEC technique with various measures on colon tu-
mor dataset.

Colon Tumor Dataset

Class Labels Accuracy Precision Recall F-Score

Entire Dataset

Tumor 95.16 97.44 95.00 96.20

Normal 95.16 91.30 95.45 93.33

Average 95.16 94.37 95.23 94.77

Training (70%)

Tumor 95.35 100.00 93.10 96.43

Normal 95.35 87.50 100.00 93.33

Average 95.35 93.75 96.55 94.88

Testing (30%)

Tumor 94.74 91.67 100.00 95.65

Normal 94.74 100.00 87.50 93.33

Average 94.74 95.83 93.75 94.49

Figure 7 demonstrates the training and validation accuracy inspection of the RFODL-
MGEC model on the colon tumor dataset. The figure conveys that the RFODL-MGEC
technique offered maximal training/validation accuracy for the classification process.
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Figure 8 illustrates the training and validation loss inspection of the RFODL-MGEC
model on the colon tumor dataset. The figure shows that the RFODL-MGEC approach
offered lower training/accuracy loss for the classification process of the test data.
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4.3. Resulting Analysis of RFODL-MGEC Technique on Ovarian Cancer Dataset

Figure 9 illustrates a set of confusion matrices generated by the RFODL-MGEC algo-
rithm on the test ovarian cancer dataset. For the entire dataset, the RFODL-MGEC technique
categorized 159 images as ovarian and 87 images as normal. With 70% of the training
dataset, the RFODL-MGEC algorithm categorized 102 images as ovarian and 69 images as
normal. For 30% of the testing dataset, the RFODL-MGEC technique categorized 57 images
as ovarian and 18 images as normal.

Table 4 shows a brief classification performance report on the RFODL-MGEC technique
with the ovarian cancer dataset. The experimental results indicated that the RFODL-MGEC
technique demonstrated effective results on the test dataset. For instance, with the entire
dataset, the RFODL-MGEC system obtained an average accuy, precn, recal , and Fscore of
97.23%, 97.11%, 96.88%, and 96.99%, respectively. With 70% of the training dataset, the
RFODL-MGEC algorithm obtained an average accuy, precn, recal , and Fscore of 96.61%,
96.49%, 96.49%, and 96.49%, respectively. Eventually, with 30% of the testing dataset, the
RFODL-MGEC algorithm obtained an average accuy, precn, recal , and Fscore of 98.68%,
99.14%, 97.37%, and 98.21%, respectively.
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Table 4. Resulting analysis of RFODL-MGEC technique with various measures on ovarian
cancer dataset.

Ovarian Cancer Dataset

Class Labels Accuracy Precision Recall F-Score

Entire Dataset

Tumor 97.23 97.55 98.15 97.85

Normal 97.23 96.67 95.6 96.13

Average 97.23 97.11 96.88 96.99

Training (70%)

Tumor 96.61 97.14 97.14 97.14

Normal 96.61 95.83 95.83 95.83

Average 96.61 96.49 96.49 96.49

Testing (30%)

Tumor 98.68 98.28 100.00 99.13

Normal 98.68 100.00 94.74 97.30

Average 98.68 99.14 97.37 98.21

Figure 10 illustrates the training and validation accuracy inspection of the
RFODL-MGEC algorithm with the ovarian cancer dataset. The figure conveys that the
RFODL-MGEC technique offered maximum training/validation accuracy for the
classification process.
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Figure 11 exemplifies the training and validation loss inspection of the RFODL-MGEC
technique on the ovarian cancer dataset. The figure shows that the RFODL-MGEC system
offered reduced training/accuracy loss for the classification process of the test data.
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4.4. Discussion

A detailed comparative examination of the RFODL-MGEC model with recent ap-
proaches [15] for prostate cancer is provided in Table 5 and Figure 12. The experimental
outcomes indicated that the FFSDL and ESADL models reached lower classification out-
comes than other approaches. At the same time, the SVM and RF models accomplished
slightly enhanced classification outcomes compared with the FFSDL and ESADL models.
Along with that, the ABC-SVM and PSO-SVM models accomplished closer classification
performances, with an accuy of 96.06% and 93.71%, respectively.

Table 5. Comparative analysis of RFODL-MGEC technique with recent algorithms for prostate
cancer dataset.

Prostate Cancer

Methods Accuracy Precision Recall

SVM Model 83.82 83.26 83.05

RF Model 87.26 86.31 87.61

FFSDL 78.16 78.01 77.16

ESADL 79.51 80.72 79.51

ABC-SVM Model 96.06 95.27 96.15

PSO-SVM Model 93.71 93.23 92.79

RFODL-MGEC 96.77 96.88 96.88
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Figure 12. Comparative analysis of RFODL-MGEC technique with prostate cancer dataset.

The proposed RFODL-MGEC model resulted in maximum classification efficiency,
with an accuy, precn, and recal of 96.77%, 96.88%, and 96.88% respectively.

A brief comparative examination of the RFODL-MGEC approach with recent ap-
proaches for colon tumors is given in Table 6 and Figure 13. The experimental outcomes
indicated that the FFSDL and ESADL approaches reached lower classification outcomes
than the other approaches. Likewise, the SVM and RF approaches accomplished somewhat
enhanced classification outcomes compared with the FFSDL and ESADL approaches.

Table 6. Comparative analysis of RFODL-MGEC technique with recent algorithms for colon
tumor dataset.

Colon Tumor

Methods Accuracy Precision Recall

SVM Model 83.81 84.39 83.77

RF Model 88.26 89.41 87.36

FFSDL 88.26 89.48 87.99

ESADL 88.97 88.77 89.11

ABC-SVM Model 93.94 94.29 92.31

PSO-SVM Model 93.80 94.90 93.37

RFODL-MGEC 94.74 95.83 93.75
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Figure 13. Comparative analysis of RFODL-MGEC technique with colon tumor dataset.

Along with that, the ABC-SVM and PSO-SVM models accomplished closer classi-
fication performances, with an accuy of 93.94% and 93.80%, respectively. Finally, the
RFODL-MGEC model resulted in higher classification efficiency with an accuy, precn, and
recal of 94.74%, 95.83%, and 93.75% respectively.

A detailed comparative examination of the RFODL-MGEC algorithm with recent
approaches for ovarian cancer is given in Table 7 and Figure 14. The experimental outcomes
indicated that the FFSDL and ESADL methods reached lower classification outcomes than
the other approaches.

Table 7. Comparative analysis of RFODL-MGEC technique with recent algorithms for ovarian
cancer dataset.

Ovarian Cancer

Methods Accuracy Precision Recall

SVM Model 84.71 83.92 85.98

RF Model 86.79 87.86 86.36

FFSDL 86.56 87.82 85.58

ESADL 89.23 89.84 88.74

ABC-SVM Model 95.42 95.56 95.86

PSO-SVM Model 95.81 96.01 96.49

RFODL-MGEC 98.68 99.14 97.37
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The SVM and RF models accomplished some enhanced classification outcomes com-
pared with the FFSDL and ESADL models. This was followed by the ABC-SVM and
PSO-SVM techniques, which accomplished closer classification performances with an accuy
of 95.42% and 95.81%, respectively. Finally, the RFODL-MGEC methodology resulted in
maximum classification efficiency, with an accuy, precn, and recal of 98.68%, 99.11%, and
97.37%, respectively.

Finally, a computation time (CT) examination of the RFODL-MGEC technique with
recent models for the three distinct datasets is provided in Table 8. The experimental results
indicated that the RFODL-MGEC technique showed a lower CT compared with the other
methods. The proposed RFODL-MGEC technique required a lower CT of 1.231, 0.432, and
1.542 s with the test prostate cancer, colon tumor, and ovarian cancer datasets, respectively.

Table 8. Comparative CT analysis of RFODL-MGEC technique with recent algorithms.

Computation Time (per s)

Methods Prostate Cancer Colon Tumor Ovarian Cancer

SVM Model 1.903 1.648 1.546

RF Model 1.847 1.640 1.990

FFSDL 1.546 1.462 1.903

ESADL 1.703 0.894 1.094

ABC-SVM Model 1.543 0.452 1.701

PSO-SVM Model 1.656 0.469 1.987

RFODL-MGEC 1.231 0.432 1.542
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After examining the aforementioned tables and figures, we noted that the RFODL-
MGEC model was able to maximize classification performance compared with the
other methods.

5. Conclusions

In this study, a novel RFODL-MGEC model was established for microarray gene
expression classification. The presented RFODL-MGEC model primarily employed an
RFO-FS technique for deriving an optimal subset of features. Next, the BCDNN model
was utilized for data classification, and the parameters involved in the BCDNN technique
were optimally tuned by utilizing a CGO algorithm. Comprehensive experiments on
benchmark datasets showed that the RFODL-MGEC model accomplished superior results
for subtype classifications. Therefore, the RFODL-MGEC model was found to be effective
for the identification of different classes for high-dimensional and small-scale microarray
data. Future directions involve the use of data clustering and feature reduction approaches
to enhance classification performance. The proposed model should be tested on large-
scale datasets.
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