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Abstract: Lung cancer is one of the most common causes of cancer deaths in the modern world.
Screening of lung nodules is essential for early recognition to facilitate treatment that improves
the rate of patient rehabilitation. An increase in accuracy during lung cancer detection is vital for
sustaining the rate of patient persistence, even though several research works have been conducted
in this research domain. Moreover, the classical system fails to segment cancer cells of different sizes
accurately and with excellent reliability. This paper proposes a sooty tern optimization algorithm-
based deep learning (DL) model for diagnosing non-small cell lung cancer (NSCLC) tumours with
increased accuracy. We discuss various algorithms for diagnosing models that adopt the Otsu
segmentation method to perfectly isolate the lung nodules. Then, the sooty tern optimization
algorithm (SHOA) is adopted for partitioning the cancer nodules by defining the best characteristics,
which aids in improving diagnostic accuracy. It further utilizes a local binary pattern (LBP) for
determining appropriate feature retrieval from the lung nodules. In addition, it adopts CNN and
GRU-based classifiers for identifying whether the lung nodules are malignant or non-malignant
depending on the features retrieved during the diagnosing process. The experimental results of this
SHOA-optimized DNN model achieved an accuracy of 98.32%, better than the baseline schemes used
for comparison.

Keywords: lung cancer; deep learning model; sooty tern optimization algorithm (STOA); non-small
cell lung cancer (NSCLC)

1. Introduction

Early lung cancer is generally present statistically in the form of a solitary pulmonary
nodule. This solitary pulmonary nodule is highly complex and crucial for performing the
segmentation process over a sequence of lung parenchyma images at a faster rate without
compromising accuracy [1]. Thus, the segmentation method is essential for subsequent
achievement of lung cancer nodule segmentation and diagnosis in order to differentiate
benign and malignant features from the input CT images [2]. Specifically, lung parenchyma
segmentation represents partitioning the lung parenchyma into a finite number of regions
of interest with particular potential properties. In this context, computer-aided diagnosis
(CAD) of pulmonary diseases opened wide the way to identifying suspected pulmonary
nodules from an image-processing perspective [3]. In lung cancer, pulmonary nodules
exist in the shape of an abnormal spheroidal tissue present in the complex juxtapleural
structure derived from CT lung images [4]. However, the surrounding tissue of the lungs,
such as blood vessels and chest walls, have the maximized probability of hindering the
process of detection or segmentation during the staging and diagnosis process [5]. In terms
of statistics, solitary pulmonary nodules are considered to constitute approximately 6% to
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17% of juxtapleural nodules. Most segmentation methods that contributed to the literature
initially concentrated on the grey-level thresholding mechanism, since these nodules, as
mentioned above, are attached to the pleura, with their associated greyness and density
being very similar to those of the pleura [6]. Thus, a potential automated segmentation
method is essential during the segmentation of juxtapleural nodules, which often occurs
in the region of depression in the lung parenchyma, generally named the juxtapleural
nodular depression [7]. This automated segmentation method must be developed to handle
complete types of pulmonary nodules, focusing on achieving indispensable segmentation
results with a potential impact on accuracy under image analysis, auxiliary, and other
post-processing functions [8].

Further, the automated segmentation process is necessary to prevent the limitations of
under-segmentation and edge leakage during its employment against lung parenchyma
complex structures [9]. As a result, segmentation is responsible for the potential derivation
of the necessitated area of interest through detainment of the lungs’ outline details and good
edges. It is also essential to segment juxtapleural and juxtavascular nodules that contribute
to the effectiveness of ancillary diagnosis with repaired depressed areas [10]. The automatic
segmentation approach hugely reduces an expert’s image analysing time (per patient, a CT
scan contains 100s of image slices), minimizes the false-positive rate, improves segmentation
accuracy, aids in achieving precise classification results, and improves 3D visualization
quality. Deep learning (DL) focuses not only on the depth of the learning model but also
on the prominence of feature-learning facilitated over the network model [11]. It has
established its stand in the research of NSCLC detection. DL has become predominant
in NSCLC detection with its heavy computational requirements. This becomes possible
with the powerful graphics processing units (GPUs) available [12]. Though there are
conventional methods for NSCLC detection, the methods based on DL rely less on pre-
processing methods and feature-based models. This is made possible by ‘end-to-end’
learning from the input images [13]. DL is an innovation in computer vision that can be
potentially applied to recognize cancerous tumours from the organs of humans such as the
lungs, cervix, and breast. Initially, the regions of the organs susceptible to infection through
cancer are considered input images, and the deep network is applied to identify the accurate
location under consideration. Among several DL-based models, convolutional neural
network (CNN) is the best and is extensively used, as it facilitates independent learning. It
is used in diverse fields, including object recognition, face and emotion recognition, and
cancer detection. Feature maps (FMs) are formed by passing images taken as input through
filters found in the convolution layer [14]. They form a fully connected network. Based
on the output of the Softmax function, an NSCLC tumour was detected with its type and
stage. There are diverse DL neural networks (DLNNs) involved in the NSCLC tumour
detection process. Some of the predominant deep-learning algorithms are widely applied
in computer vision to determine features and classify and recognize the region of interest
(RoI) in the classification process [15].

This paper proposes a sooty tern optimization algorithm-based DL model for diag-
nosing NSCLC tumours with increased accuracy. This diagnosing model perfectly isolates
the lung nodules by adopting the Otsu segmentation method. Then, the sooty tern opti-
mization algorithm (SHOA) is adopted for partitioning the cancer nodules by defining
the best characteristics, which aids in improving diagnostic accuracy. It further utilizes
a local binary pattern (LBP) for determining the relevant feature retrieval from the lung
nodules. In addition, it adopts CNN- and GRU-based classifiers for identifying whether
the lung nodules are malignant or non-malignant depending on the features retrieved
during the diagnosing process. Experimental validation of the proposed SHOA-DNN
model is achieved using accuracy, precision, recall, and the F-score under different classes
of CT images.

The remaining sections of the paper are structured as shown below. Section 2 gives
a comprehensive view of existing optimized DL models that have contributed to the lit-
erature for diagnosing lung cancer, with merits and limitations. Section 3 highlights the
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detailed view of the proposed SHOA-DNN model with suitable diagrams. Section 4 demon-
strates the experimental validation of the proposed SHOA-DNN model with benchmarked
schemes used for comparison. Section 5 gives the conclusion, with significant contributions
and future possibilities for improvement.

2. Related Works

This section presents some important classification mechanisms propounded over
recent years for diagnosing cancerous lung cancer nodules, with merits and limitations.

An end-to-end convolutional neural network (CNN)-based classification scheme was
proposed by Masud et al. [16] for automatic lung nodule detection with minimized false-
positives. This CNN architecture-based classification scheme was adopted with four
different convolutional layers. Therefore, it is considered to facilitate a better classification
process. The CNN architecture’s layers comprise a pooling block, non-linear activation
functions after every block, a connector convolutional block, and two consecutive convolu-
tional blocks. The experimental investigation of this CNN-based classification approach
was carried out through the LIDC database that included 1279 sample images, of which
278 were benign, 568 were non-cancerous, and the remaining were malignant. It achieved
an accuracy of 97.9% compared to other existing CNN-based lung nodule classification
approaches. Jiang et al. [17] proposed a multigroup, patches cut-based lung nodule clas-
sification scheme to improve the accuracy of cancer diagnosis. This classification process
was contributed with the merits of the Frangi filter that aided in preventing strictness
in performance for the standards of the database. It specifically included four-channel
CNN to attain knowledge about four levels of lung nodules through the integration of
two groups of images. This computer-aided system confirms a sensitivity of 99.4% with
a 15.6 false-positive rate per scan and a sensitivity of 80.06% with a 4.7 false-positive rate
per scan.

A deep model-learning information (fuse-texture, shape, and deep model (TSD))-based
lung nodule classification approach was proposed by Xie et al. [18] for incorporating texture
and shape features at the decision level. It utilized deep CNN to automatically learn feature
representations associated with lung nodules, determined in a slice-by-slice manner. It
employed the Fourier shape descriptor and grey-level co-occurrence matrix (GLCM)-based
texture descriptor for determining the characterization of the lung nodules’ heterogeneity.
It also used individual feature types and integrated the decisions facilitated by the included
classifiers toward differentiating normal and cancerous lung nodes based on AdaBoost
backpropagation neural network (BPNN) training. The experimental validation of this
deep-CNN model was conducted using the LIDC-IDRI dataset and considered only the lung
nodes with a malignancy rate greater than 3 mm during the classification process. This Fuse-
TSD algorithm was identified to achieve an AUC of 0.96, on par with the AUC attained using
existing classification approaches. Then, the SVM and wavelet feature descriptor-based
classification scheme was proposed by Madero Orozco et al. [19] for supervised region-of-
interest extraction that prevents the differences among features derived from CT images. It
utilized the benefits of Daubechies db1, db2, and db4 wavelet transforms for computing
primary and secondary decomposition levels. If further computed that 19 features are
associated with each wavelet sub-band once the decomposition process is completed. It
also performed attribute and sub-band selection to identify and integrate 11 features that
need to be given as input to SVM for differentiating between normal and cancerous lung
nodules. The experimental validation of this SVM classification approach was conducted
using ELCAP and LIDC datasets that comprised 105 CT images. Altogether, 61 CT images,
which included 36 and 25 cancerous and normal lung nodules, respectively, were used
during the training stage. The testing was performed using 45 CT scans composed of
23 cancerous and 22 typical lung nodules.

A multi-crop convolutional neural network (MCCNN)-based lung cancer nodule
classification scheme was proposed by Shen et al. [20] by exploring and handling the issue
of lung nodule malignancy suspiciousness that could be feasibly derived from CT images.
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It was proposed to specifically concentrate on handling time-consuming feature extraction
and cautious nodule segmentation. It utilized MCCNN and a significant multi-crop pooling
strategy to attain the automatic extraction of potent nodule information that plays an
anchor role in cropping potential areas from convolutional FMs. It further implemented
a max-pooling operation several times to handle the challenge inherent in the process of
modelling raw nodule patches. It furthermore constructed end-to-end machine learning
(L) frameworks that aid in categorizing lung nodules based on the factor of malignancy
suspiciousness. The results of this MCCNN model also confirmed better sensitivity and
precision of 98.21% and 98.56%, respectively, compared to the existing literature. A two-
deep, three-dimensional (3D), customized, mixed-link network (CMixNet)-based DL model
was proposed by Nasrullah et al. [21] for precise detection and classification of malignant
lung nodules. It facilitated nodule detection using faster R-CNN and potentially-learned
features based on the encoder–decoder architecture of CMixNet and U-Net. It specifically
attained lung nodule classification based on the inclusion of a gradient-boosting machine
(GBM) that has the probability of learning automatic features from the utilized 3D CMixNet
structure. The evaluation of the CMixNet-based DL model conducted using LIDC-IDRI
datasets confirmed better sensitivity and specificity of 94% and 91%, respectively, on par
with the existing lung cancer diagnosis DL models.

Kirienko et al. [22] proposed a CNN-based classification scheme that categorizes
T1-T2 or T3-T4 stages of lung cancer lesions that could possibly be identified from CT
or fluorodeoxyglucose positron emission tomography (FDG-PET) images. This method
used the seventh edition of the TNM system as a reference to perform the classification
process of lung nodules. It enforced pre-processing with the objective of adequately
generating the dataset. This CNN model considered the bounding box, cropped PET, and
CT images as input for classification. It classified the lung nodules into concordant and
discordant, depending on the deviation between the reference and prediction strategy.
The feature extractor and classifier-adopted model of CNN was determined to achieve an
AUC, specificity, recall, and accuracy of 0.68, 67%, 47%, and 90%, respectively, during the
validation process. Xie et al. [23] proposed a multi-view, knowledge-based, collaborative
(MV-KBC) deep model-based analysis of lung cancerous nodules for facilitating reliable
classification between malignant and benign nodules using restricted chest CT data. This
MV-KBC deep model was contributed with the characteristics of 3D lung nodules to classify
them into nine potential views. It constructed a knowledge-based collaborative (KBC) sub-
model to fine-tune the features based on the merits of ResNet-50 networks that segregated
malignant from benign nodules. It used ResNet-50 networks for characterizing shape
heterogeneity, voxel, and the overall appearance of the lung nodules toward the detection
of lung cancer. It also included nine sub-models of KBC during error backpropagation
and classified lung nodules based on the added advantages of adaptive weighting-scheme
learning. It utilized the function of penalty loss to minimize the false negative rate, which
introduced minimal impact on the complete performance of the KBC model. The results of
this MV-KBC deep model proved its predominance, with an AUC and accuracy of 0.957
and 91.60%, respectively, during the lung classification process.

Lakshmanaprabu et al. [24] proposed a linear discriminate analysis (LDA) and optimal
deep neural network (ODNN)-based lung nodule classification of lung images from CT
images. This ODNN model extracted deep-level features from CT lung images and utilized
LDA to reduce the features’ dimensionality. It was proposed for classifying malignant and
benign lung nodules from CT images. It included a modified gravitational search algorithm
(MGSA) for optimizing the features that the ODNN model learns to identify in the cancerous
lung nodules during classification. The outcomes confirm 94.56% accuracy, 94.2% specificity,
and 96.2% sensitivity compared to baseline cancer-detection models. A DCNN-integrated
NoduleX-based lung nodule malignancy detection mechanism was proposed by Causey
et al. [25] to predict the malignancy of lung nodules from CT data. This NoduleX-based
lung nodule malignancy detection scheme explored more than 1000 lung nodules derived
from images taken from the LIDC/IDRI cohort during training and validation. It was
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proposed with significant feature extraction and optimization, which aided in attaining
maximized accuracy during nodule malignancy classification. This NoduleX scheme was
a practical framework to accurately predict malignancy depending on the model trained
using a large patient population. Astaraki et al. [26] proposed a dual pathway model to
capture contextual information and intra-nodule heterogeneities associated with pulmonary
nodules. This DPM-DNN model was proposed with the merits of both unsupervised and
supervised learning strategies for gaining maximized accuracy during the classification
process [27]. It adopted a random forest model as the second entity over the top of the
networks with the objective of generating better classification results. This model included
different powers of discrimination during the classification process and confirmed superior
ROC during its investigation, conducted using 1297 manually segmented lung nodules.
It also integrated target and context-supervised DL features, which aided in attaining a
discrimination power of 0.936 based on existing works in the literature.

3. Proposed Methods

The proposed SHOA-DNN model implemented for diagnosing lung cancer comprises
four essential steps: (i) segmentation using automatic lung parenchyma mining and border
restoration (ALPM & BR), (ii) optimization of features using SHOA, (iii) LBP-based opti-
mized feature extraction, and (iv) a CNN-GRU-based classification process. The working
of the proposed model is given in Figure 1.
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Figure 1. Block diagram of the proposed model.

3.1. Automatic Lung Parenchyma Mining and Border Restoration (ALPM & BR)

Segmentation of the lung is a predominant step in automatically investigating chest
CT images. Segmentation includes isolating lungs by eliminating the tissue outside the
parenchyma and faultlessly finding the edges. Nodules are seen within the LP at diverse
positions, such as main and lobar bronchus, pleura, mediastinum, etc. In the identification
process, if segmentation does not correctly mine the boundaries of the wall, then the nodules
invaded to the edges may not be considered and may be partly or entirely missed. Thus,
an automatic and precise segmentation mechanism is necessary. The detailed segmentation
algorithm is shown below.
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3.1.1. Automatic Single-Seeded Region Growth (ASSRG) Algorithm

The lobes are occupied with air, and therefore the region shows less disparity and
similar contrast to the adjacent region. The region-growing segmentation (RGS) scheme
divides the lobe areas using the propounded single-seed selection procedure. Based on the
intensity, shape, and location, a single seed choice is propounded, and region mining is
performed as detailed in Algorithm 1. Figure 2 provides the information for Algorithm 1.

Algorithm 1: ASSRG

Input: ‘IL’— Either right or left lung region
Output: Lobe that is segmented

1. Choose the single seed pixel location and image intensity.

a. Give ‘IL’ as input.
b. Determine the central pixel.
c. Determine whether the region with an intensity threshold less than 40 repre-sents air

in the lung.
d. Find whether the high number of neighbours are dark regions.
e. In maximum cases of dark regions, take that pixel as the seed location and intensity.
f. Otherwise, develop the middle pixel iteratively in all directions.
g. Redo steps (c), (d), and (e).

2. Determine adjacent pixels based on the difference found between the adjoining pixels and
the seed intensity if it is less than the threshold. Add that adjacent position to ex-tract the
region of interest (lung lobe).

3. Develop seed areas by incorporating neighbouring pixels that fulfil the comparison rule.
4. Redo step 2 intended for every fresh pixel; halt if no neighbouring pixels are involved with

the region of interest.
5. Output the segmented lung lobe (right or left) region.

The algorithm divides the lobe with a precise edge for remote nodules. For juxtavas-cular or
juxtapleural nodules, it produces a lobe edge with concavity.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 19 
 

 

process, if segmentation does not correctly mine the boundaries of the wall, then the nod-
ules invaded to the edges may not be considered and may be partly or entirely missed. 
Thus, an automatic and precise segmentation mechanism is necessary. The detailed seg-
mentation algorithm is shown below. 

3.1.1. Automatic Single-Seeded Region Growth (ASSRG) Algorithm 
The lobes are occupied with air, and therefore the region shows less disparity and 

similar contrast to the adjacent region. The region-growing segmentation (RGS) scheme 
divides the lobe areas using the propounded single-seed selection procedure. Based on 
the intensity, shape, and location, a single seed choice is propounded, and region mining 
is performed as detailed in Algorithm 1. Figure 2 provides the information for Algorithm 
1. 
Algorithm 1: ASSRG 

Input: ‘IL’— Either right or left lung region 
Output: Lobe that is segmented 

1. Choose the single seed pixel location and image intensity. 
a. Give ‘IL’ as input. 
b. Determine the central pixel. 
c. Determine whether the region with an intensity threshold less than 40 repre-

sents air in the lung. 
d. Find whether the high number of neighbours are dark regions. 
e. In maximum cases of dark regions, take that pixel as the seed location and in-

tensity. 
f. Otherwise, develop the middle pixel iteratively in all directions. 
g. Redo steps (c), (d), and (e). 

2. Determine adjacent pixels based on the difference found between the adjoining pix-
els and the seed intensity if it is less than the threshold. Add that adjacent position 
to ex-tract the region of interest (lung lobe). 

3. Develop seed areas by incorporating neighbouring pixels that fulfil the comparison 
rule. 

4. Redo step 2 intended for every fresh pixel; halt if no neighbouring pixels are in-
volved with the region of interest. 

5. Output the segmented lung lobe (right or left) region. 
The algorithm divides the lobe with a precise edge for remote nodules. For juxtavas-cu-

lar or juxtapleural nodules, it produces a lobe edge with concavity. 

 
Figure 2. Flow chart of ASSRG algorithm.  Figure 2. Flow chart of ASSRG algorithm.

3.1.2. Novel Hybrid Border Concavity Closing (NHBCC) Algorithm

ASSRG is a lobe area that may include concavity on the edge due to surrounding
organs and anatomic structures and the presence of juxtavascular and juxtapleural nodules.
Eliminating boundary concavity may lead to extracting the perfect lung lobe, which helps
to isolate nodules invaded by lung walls. Hence, the NHBCC scheme is propounded
as detailed in Algorithm 2. The propounded scheme uses the morphological function,
related component investigation, and logical rules to mine lobe areas depending on the
area. Hybrid boundary identification and a convex hull algorithm are applied to gather



Sensors 2023, 23, 2147 7 of 19

boundary indices by eliminating minor and major deep-concave indices using a clockwise
line linking the gathered edge indices with the width of the line (n ≥ 4), which generates a
thick line edge deprived of concavity. The canny edge (CE) identification is used to identify
dense-edge lines’ internal and external edges. To circumvent highly-segmented lung walls,
the internal boundary of a thick line is mined by computing the area that encircles the
whole lung lobe area. The propounded scheme guarantees the complete separation of
juxtavascular and juxtapleural nodules from the outside wall or mediastinum area. Figure 3
provides the overview of the NHBCC algorithm.

Algorithm 2: NHBCC Algorithm

Input: ASSRG segmented lobe (right or left) (J), the width of the line (n)
Output: Border-corrected lung lobe (Ibcl)

1. Add ‘n’ columns of zeros to the ‘J’ at the left and right sides to enhance the efficacy of
boundary identification.

2. Apply a morphological opening function to eliminate unsolicited objects from the image.
3. Morphologically rebuild based on the flood-fill function to fill the holes in the images.
4. Normalize the shape of the image using MF.
5. Implement associated component analysis.
6. Determine the number of linked regions (N).
7. for j = 1:N Compute the area (j) of every associated region end
8. Mine the associated region (Iar) that has the supreme area % of lobe area.
9. Determine the indices of ‘Iar’ that are genuinely intense and save them as ϕ=(x(i), y(i)),

where ‘i’ is the number of locations with true intensity.
10. Implement the revealing boundary algorithm with ‘ϕ’ indexes set, which produces a

collection of edge indices (χ). % negates minor deep concave indices.
11. Implement a convex hull algorithm with ‘ϕ’ indexes set that produce a collection of edge

indices (£). % negates massive deep concave indices.
12. Generate new index set ‘s’ by linking ‘χ’ and ‘£’ indices (if identical indices, preserve a

duplicate).
13. Link indices (s) with line width ‘n’ that wholly includes a lobe deprived of concavities.
14. Apply CE to the outcome of step 10 and detect boundaries.
15. Redo steps 5 to 7.
16. Mine the linked area that has the smallest area (I_min). % (Inner lobe boundary deprived of

highly segmented external soft wall)
17. The internal area of ‘I_min’ is made intense. Eliminate the intentionally added columns of

zeros in step 1.
18. Return the border-corrected lobe region (Ibcl).
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3.2. Optimization of Features Using the SHOA Algorithm

The process of feature optimization achieved using inspiration derived from the
sooty tern optimization algorithm (SHOA) is detailed below [28]. It is mainly adopted
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for partitioning the nodules of cancer by defining the best characteristics, which aids in
improving diagnostic accuracy. The implementation of SHOA towards feature optimization
is achieved using the phases of migration and attack, representing exploration and exploita-
tion, respectively. Algorithm 3 provides the working of SHOA for feature optimization,
and Figure 4 provides the flow chart of STOA algorithm.
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3.2.1. Migration (Exploration)

While migrating, an ST should fulfil the ensuing conditions.

• Collision evasion: ‘MSA’ gives the new position of a search agent (SA) that deals with
avoiding collisions amid the adjacent SAs (STs).

→
C

L

ST = MSA ×
→
P

L

ST (1)

where
→
C

L

ST—Location of SA that does not affect that of other SAs;
→
P

L

ST—Present location of SA;
MSA—Movement of SA in assumed search space.

MSA = Cfac −
(

i× Cfac
MaxIter

)
(2)

where

i —Present iteration, i = 0, 1, 2, . . . . MaxIter;
Cfac—Controlling factor (set to 2), which modifies ‘MSA’ linearly decreased to 0.

• Converge in the direction of the best neighbour: once a collision is overcome, SAs
converge in the track of the best neighbour.

→
M

L

ST = CBest ×
(→

P
L

BST(i)−
→
P

L

ST(i)
)

(3)

where
→
M

L

ST—Diverse locations of SA
(→

P
L

ST

)
towards the best, fittest SA

(→
P

L

BST

)
;

CBest—Random variable employed for improved exploration.

CBest = 0.5× Ran (4)

where

Ran —Random number that is in the range [0, 1].

• Updation conforming best SA: lastly, SA or ST modifies its location based on the
best SA.
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→
G

L

ST =
→
C

L

ST +
→
M

L

ST (5)

where
→
G

L

ST—Gap amid the SA and fittest SA.

3.2.2. Attacking (Exploitation)

While migrating, STs modify their velocity along with the attacking angle. Wings are
employed to raise their altitude [29]. They fly in spirals when attacking their prey.

X′ = Rad × Sin(a) (6)

Y′ = Rad ×Cos(a) (7)

Z′ = Rad × a (8)

r = u × ekv (9)

where

Rad—Radius of every spiral turn;
A—Range of [0 ≤ k ≤ 2π];
u, v—Constants representing spiral, assumed to be ‘1′;
e—Natural algorithm’s base.

The modified location of SA is obtained using Equations (8)–(10).

→
P

L

ST(i) =
(→

G
L

ST ×
(

X′ + Y′ + Z′
))
×
→
P

L

BST(i) (10)

where
→
P

L

ST(i)—Modifies locations of other SAs and keeps the best ideal solution.

Algorithm 3: STOA

Input: Population
(→

P
L

ST(i)
)

Output: Best SA
(→

P
L

BST(i)
)

Initialize ‘MSA
′ and ‘CB’

Determine the fitness of every SA
while (i < MaxIter ) do

for every SA, do
Modify the locations of SAs using Equation (10)

end //for
Update ‘SA

′ and ‘CBest’
Find the fitness of every SA

Modify ‘
→
P

L

BST(i)’ in case there is an improved solution compared to a former ideal solution
i = i + 1

return
(→

P
L

BST(i)
)

End

3.2.3. Improved LBP-Based Optimized Feature Extraction

In the proposed SHOA-DNN model, an improved LBP-based feature extraction
method is adopted using the merits of an adaptive threshold and representation of di-
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rectional local image features. It is adopted explicitly to realize the process of image
retrieval. This process of local integration comprises two parts that include (i) determining
the standard deviation between the grey value of all the pixels in the CT image’s local
neighbourhood and the grey value of the pixel present in the centre used for encoding, and
(ii) determining the local neighbourhood pixels’ grayscale changes concerning different
binary encoding, discrimination, and direction. Finally, the optimized features are con-
sidered for image retrieval by combining local features inherent to the image. It aided in
the detection of automatic seed-point identification, region growing-based mining, and
new border concavity closing methods to attain impeccable mining that aids in isolating
lungs by excluding the surrounding area. The nodules are mined using a CCA and TBMN
improvement process that efficiently eradicates irrelevant areas such as soft tissues, bone,
vessels, fat, etc.

3.3. CNN and GRU-Based Lung Nodule Classification

Classification of lung nodules determined from CT images as benign or malignant is
achieved using the DL model of CNN and GRU.

3.3.1. Convolutional Neural Networks (CNN)

CNNs are involved in detecting image patterns. They have numerous front layers
with which the network identifies lines and corners. The patterns can be transferred
through a neural network (NN), and typical features can be identified by moving deep
into the network (Khuriwal and Mishra 2018) [27]. This model is exceptionally effective
for extracting image features. CNN is composed of 3 layers, which include pooling (P),
convolutional (CL), and fully connected (FC) layers, as shown in Figure 5. CLs aid in
determining neuron outcomes linked to local points. The dot product is determined for
weights and regions. In input images, typical filters include pixels in small areas. These
filters scan images by sliding a window on the image and controlling the recurring patterns
which appear on the image area while scanning. Stride represents the distance amid filters
in chains. Convolution can be extended to incorporate windows that overlap if the stride
collection of parameters is not more than any filter dimensions.
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3.3.2. Gated Recurrent Unit Network (GRU)

The GRU network model is applied in a recurrent neural network (RNN) for handling
the vanishing gradient issue. It is efficient compared to LSTM as it includes three main
gates without the internal cell state. Information is concealed for safety in GRU, as shown



Sensors 2023, 23, 2147 11 of 19

in Figure 6. Forward and backward data is given to ‘Update gate (U)’. Moreover, details of
former information are kept in ‘Reset gate (R)’.
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The present memory gate uses ‘R’ for storing and maintaining the indispensable
information present in the former state of the system. It is promising to include non-
linearity in input by employing the ‘Input Modulation gate’ when concurrently offering
features of zero mean. This is performed in a 2-fold way. Basic GRU gates are represented
mathematically, as shown below.

Lt = σ
(
Ut· KXR + Rt−1WhR + CR

)
(11)

Mt = σ
(
Ut· KXU + Rt−1WhU + CU

)
(12)

where

KXR and KXU —Weight factors with values of ‘CR’ and ‘CU’ biased.

3.3.3. CNN-GRU

The CNN-GRU model includes 4 CLs, 3 max-pooling (MP), and 3 FC layers. Rectified
linear units (ReLUs) are used to implement the activation function because neurons are
not instantly activated, enabling the model to function better and enabling quick learning.
Firstly, size images (50, 50, and 3) are given to CLs. The heights and widths of images
are taken as 50 pixels with 3 channels each. This model demands features for performing
feature extraction by moving through CLs1.

FM output is considered as 128 in this instance. Furthermore, the stride is set to
1 with a kernel size (3 × 3) in CLs1. ReLUs are used along with CLs1 to reduce the
dimension of non-linearity. After primary CLs1, the output shape is 128 FMs, which is
the size of (50, 50). Moreover, the MP layer reduces training parameters to (48, 48). The
training parameter (48, 48, 128) is moved from the dropout layer following the MP layer
to overcome overfitting-based issues. Primarily, the dropout of CL is set to 0.3. An added
dropout of 0.9 is applied in the initial 2 FC layers to deal with overfitting. After every max
pooling and CL, training factors intensely drop, succeeded by ReLUs and dropout. Once
training is over, data is combined into a 1-D array and taken as input for implementing the
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FC layer. FM (512) along with training factor (32, 32) size is created through flattening. Once
the complete process of 2D CLs is accomplished, dropout generates 256 FMs. The GRU
model uses an FC layer with 512 neurons to handle the vanishing gradient challenge, after
which 2 FLs are utilized. Figure 7 provides the CNN-GRU architecture used for diagnosing
lung cancer.
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The SHOA-DNN mentioned above is used to classify CT images into benign or malignant.

4. Results and Discussion

The experimentation of the proposed SHOA-DNN model is conducted using the
python 3.6.5 tool with the additional packages of OpenCV-python, pillow, sklearn, mat-
plotlib, pickle, Numpy, Keras, and TensorFlow, which is GPU-CUDA enabled. This simula-
tion process is achieved over the PC with the system configuration of 1 TB HDD, 250 GB
SSD, 16 GB RAM, NVIDIA TITAN X, i5-8600k, and MSI Z370 A-Pro. The parameter setting
for implementing the DNN model comprises an activation function (rectified linear unit
(ReLU)), a drop rate of 0.25, a learning rate of 0.05, an epoch count of 15, and a batch size of
64, respectively. The experiment validation concerning the proposed SHOA-DNN model is
attained using the benchmarked lung database LIDC/IDRI [25], which consists of 1018 CT
images, and experienced thoracic radiologists reviewed these CT scans. The total number
of images is classified into three class labels of standard, benign, and malignant. We take
benign and malignant as positive cases, and the standard is negative.

Some of the sample images considered for experimentation are presented in Figure 8.
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4.1. Performance Evaluation Using Training and Testing Data with Distinct Classes

This performance evaluation of the proposed SHOA-DNN model was achieved with
the training and testing ratio of 70:30. Table 1 presents the experimental results of the
proposed SHOA-DNN model under the training and testing data ratio of 70:30. The results
proved that the MCC, specificity, accuracy, precision, recall, and F-score achieved using the
proposed SHOA-DNN model under the training and testing data ratio of 70:30 are 95.79%,
98.38%, 91.67%, 88.44%, 87.89%, and 87.93%, respectively [30,31].

Table 1. Results of SHOA-DNN model with training/testing-70:30.

Training/Testing-70:30

MCC Specificity Accuracy Precision Recall F-Score

Normal 92.34 100.00 90.28 96.18 98.16 85.45

Malignant 96.15 97.88 93.56 88.29 90.58 89.42

Benign 98.78 98.15 91.19 100.00 74.94 86.71

Average 95.79 98.38 91.67 88.44 87.89 87.93

Moreover, Figure 9 demonstrates the average value of the MCC, specificity, accuracy,
precision, recall, and F-score achieved using the SHOA-DNN model under the training
and testing ratio of 70:30. Independent of the training and testing data ratio, the proposed
SHOA-DNN model performed well, as it incorporated the SHOA algorithm for optimizing
the features that aid in a superior diagnosis model over the different classes of lung nodes
considered for investigation.
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Figure 9. Results of the proposed SHOA-DNN model using average values under the 70:30 ratios of
training and testing data.

4.2. Performance Assessment of Proposed SHOA-DNN Model and Compared
Benchmarked Schemes

The performance of proposed and benchmarked schemes is analysed in terms of
accuracy, precision, recall, specification, and F-score. Table 2 depicts the excellent perfor-
mance of the proposed model over baseline schemes in terms of accuracy, precision, recall,
specification, and F-score. From the outcomes, it is evident that the proposed SHOA-DNN
model confirms better accuracy of 99.13%, which is improved by 4.21% compared to the
benchmarked schemes for investigation. The proposed SHOA-DNN model facilitates
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this excellence in improved accuracy mainly due to two core reasons: (i) the adoption of
SHOA aided in determining only the relevant characteristics for determining the exact
features that contribute to better diagnosis; and (ii) the utilization of improved LBP during
optimized feature extraction played an anchor role in the better classification process.

Table 2. Comparative results of the SHOA-DNN model with benchmarked schemes.

Compared Schemes Accuracy Precision Recall Specificity F-Score

Proposed SHOA-DNN Model 99.13 98.84 98.64 99.32 98.72

Fuse-TDD [18] 89.53 - 84.19 92.02 89.00

MCCNN [20] 80.14 - 77.00 93.00 87.00

FDG-PET [22] 82.60 - 92.10 53.40 82.00

MV-KBC [23] 91.60 87.75 86.52 94.00 87.13

ODNN-LDA [24] 94.56 - 96.2 94.2 95.12

DPM-DNN [26] 93.60 - - - -

Figure 10 depicts the accuracy plots achieved using the proposed SHOA-DNN model
and benchmarked mechanisms. The outcomes confirm that the proposed SHOA-DNN
model, independent of the number of features, aided in a better classification process
which helped categorize the CT images into benign and malignant lung nodules. The
outcomes proved that the SHOA-DNN model improved accuracy by 21% better than the
benchmarked schemes used for comparative investigation.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 10. Comparative investigation of the proposed SHOA-DNN model using accuracy with the 
benchmarked schemes. 

Further, Figure 11 presents the plots of precision, recall, specificity, and F-score 
achieved using the proposed SHOA-DNN model and standard schemes. Specifically, the 
precision results of the proposed SHOA-DNN model, on average, are improved by 5.82% 
over the benchmarked mechanisms. On the other hand, the recall value attained using the 
proposed SHOA-DNN model, on average, is improved by 4.96% over standard schemes. 
In addition, the specificity value confirmed via the proposed SHOA-DNN model, on av-
erage, is improved by 6.14% over standard schemes. In addition, the SHOA-DNN model 
improved the F-score by an average of 7.32% over the baseline approaches used for com-
parative investigation. 

Figure 11. Results of the proposed SHOA-DNN model using average values under the 70:30 ratios 
of training and testing. 

  

99.13

89.53

80.14
82.6

91.6
94.56 93.6

70

75

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

40

50

60

70

80

90

100

Proposed
SHOA-DNN

Fuse-TDD MCCNN FDG-PET MV-KBC ODNN-LDA

A
ve

ra
ge

 V
al

ue
s (

%
)

Precision Recall Spcificity F-score

Figure 10. Comparative investigation of the proposed SHOA-DNN model using accuracy with the
benchmarked schemes.

Further, Figure 11 presents the plots of precision, recall, specificity, and F-score
achieved using the proposed SHOA-DNN model and standard schemes. Specifically,
the precision results of the proposed SHOA-DNN model, on average, are improved by
5.82% over the benchmarked mechanisms. On the other hand, the recall value attained
using the proposed SHOA-DNN model, on average, is improved by 4.96% over standard
schemes. In addition, the specificity value confirmed via the proposed SHOA-DNN model,
on average, is improved by 6.14% over standard schemes. In addition, the SHOA-DNN
model improved the F-score by an average of 7.32% over the baseline approaches used for
comparative investigation.
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Figure 11. Results of the proposed SHOA-DNN model using average values under the 70:30 ratios of
training and testing.

4.3. Performance Evaluation of the Proposed SHOA-DNN Using Training Time and
Running Time

This performance evaluation of the proposed SHOA-DNN model and benchmarked
approaches are conducted using training time and running time. Figures 11 and 12 present
the plots of training time and running time incurred using the proposed SHOA-DNN
model during the implementation process.
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Figure 12. Results of the proposed SHOA-DNN model using average values under the 70:30 ratios of
training and testing data.
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The results confirmed that the proposed SHOA-DNN model reduced the running
time, on average, by 6.79% from the benchmarked schemes. In addition, the training tome
of the proposed SHOA-DNN model is also minimized, on average, by 8.92% in contrast
with benchmarked schemes, as shown in Figure 13.
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Figure 13. Results of the proposed SHOA-DNN model using average values under the 70:30 ratios of
training and testing data.

4.4. Performance Evaluation of the Proposed SHOA-DNN Using Cross-Validation

To evaluate the performance of the proposed SHOA-DNN model, we have deployed
a cross-validation scheme (k-fold) to eliminate the factor of bias in the machine-learning
model. We have selected the value of k = 5 in our experiment. The performance of the
proposed model is assessed in terms of accuracy, recall, specificity, and MCC based on cross-
validation. The results can be depicted in Table 3. Furthermore, we have also employed
the receiver–operator characteristic curve (ROC) to validate the efficiency of the proposed
model [32]. Figure 14 provides the performance of the proposed model based on the area
under the curve (AUC) using cross-validation schemes.

Table 3. Results of Cross-validation analysis.

CV1 Accuracy (%) Recall (%) Specificity (%) MCC (%)

K = 1 0.93 95.82 90.10 0.91

K = 2 0.90 98.35 88.56 0.87

K = 3 0.96 97.01 92.14 0.94

K = 4 0.91 89.25 100.00 0.88

K = 5 0.93 91.55 96.33 0.92

Mean 0.92 94.39 93.42 0.91

CV1 = Cross-validation.
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5. Conclusions

The proposed SHOA-DNN model achieved increased accuracy during diagnosis of
cancer lung nodules depending on the optimization of SHOA and classification of CNN-
GRU. It adopts improved LBP and achieves potential image retrieval and determination
of an optimized feature extraction process. It also used SHOA and confirmed the process
of partitioning the nodules of cancer by defining the best characteristics, which aids in
improving diagnostic accuracy. It utilizes an LBP to determine the appropriate feature
retrieval from lung nodules. In addition, it adopts CNN and GRU-based classifiers for
identifying whether the lung nodules are malignant or non-malignant depending on the
features retrieved during the diagnosing process. The proposed work is compared with
various classification methods, and the outcomes confirm that the proposed SHOA-DNN
model reduced the running time, on average, by 6.79% over standard schemes. In addition,
the training tome of the proposed SHOA-DNN model is also minimized on average by
8.92% from benchmarked schemes. As part of the future scope, it is also decided to develop
an Orca predator optimization-based DNN model and compare its performance with the
SHOA-DNN model under diversified characteristics of features utilized for the lung nodule
cancer diagnosis process.
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