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a b s t r a c t

This paper is concerned with the global stability of semilinear stochastic differential
equations (SDEs) with multiplicative white noise, which is a continuation of our recent
work published in SIAM Journal on Control and Optimization, 2018. Under an explicit
condition that the Lipschitz constant of nonlinear term is smaller than the top Lyapunov
exponent of the linear random dynamical system (RDS), we prove that the zero solution
is globally stable.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction and main results

Stochastic differential equations (SDEs) have been extensively and intensively studied in many branches, in order
o explain the comprehensive effects of interior interactions and noise perturbations, see Arnold (1974), Da Prato and
abczyk (2014), Friedman (1975), Ikeda and Watanabe (1989), Mao (1997), Øksendal (1998), Prévôt and Röckner (2007).
ne of the key issues in the study of SDEs is to consider the stability of SDEs, including the almost sure stability, the pth

moment stability and so on. During the past several decades, there have been many efforts to develop the stability theory
of stochastic ordinary differential equations (Arnold, 1974; Arnold and Schmalfuss, 2001; Kha’sminskii, 1980; Kozin, 1972;
Kushner, 1967; Mao, 1999, 1994) and stochastic evolution equations (Haussmann, 1978; Ichikawa, 1982, 1984; Leha et al.,
1999; Liu, 1997, 2019; Liu and Mao, 1998; Liu and Mandrekar, 1997; Taniguchi, 1995).

In the finite-dimensional case, Kozin (1972) considered the linear stochastic system and provided a solid foundation
for later developments. Also, Kushner (1967) developed the Lyapunov function theory to study strong Markov processes
and some control problems. In the meantime, Kha’sminskii (1980) completed a comprehensive work on the stochastic
stability theory for the solutions of Itô stochastic ordinary differential equations. For the subsequent research, the reader
is referred to Arnold (1974), Arnold and Schmalfuss (2001), Mao (1999, 1994) and others. In the infinite-dimensional
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ase, the pioneer work was done by Haussmann (1978) for the linear stochastic system and Ichikawa (1982, 1984) for the
emilinear stochastic system, which leads to many subsequent studies, such as Chow (1982), Liu and Mandrekar (1997),
eha et al. (1999), Liu (1997, 2019), Liu and Mao (1998) and Taniguchi (1995). The main tool used here is the Lyapunov
unctional method, where a major difficulty is to construct suitable Lyapunov functions.

Besides the Lyapunov functional method, another important way of investigating the stochastic stability is to consider
he Lyapunov exponent, which has been applied in various stochastic systems, such as Arnold (1998), Arnold et al. (1983),
hueshov (2002), (Furstenberg, 1963a,b), Kha’sminskii (1980) and Mohammed and Scheutzow (1996, 1997). Recently,
ased on this method and the theory of RDSs, we have showed that the stochastic flow generated by SDEs possesses a
lobally attracting random equilibrium, which produces the globally stable stationary solution, see Jiang and Lv (2018).
he main contribution in Jiang and Lv (2018) is that we established a criteria to guarantee the existence and global stability
f nontrivial stationary solutions. In addition, following the same argument and Remark 3 in Jiang and Lv (2018), we can
lso obtain the global stability of the zero solution. However, to see our main results in Jiang and Lv (2018), we need
o assume that the nonlinear function in the drift term is bounded and monotone (or anti-monotone), which cannot be
eakened.
In this paper, we shall develop the method of Lyapunov exponents and present a program to deal with the stochastic

tability of SDEs. The main purpose of this paper is to consider the global stability of semilinear SDEs with multiplicative
hite noise, without using the boundedness and monotonicity (or anti-monotonicity). To be specific, we will study the

ollowing n-dimensional SDEs

dx(t) = [Ax(t) + g(x(t))]dt +

m∑
k=1

σkx(t)dBk(t) (1.1)

where B(t) = (B1(t), . . . , Bm(t))T is an m-dimensional two-sided Brownian motion on the standard Wiener space
(Ω,F ,P). Here, F is the Borel σ -algebra of Ω = C0(R,Rm) = {ω(t) is continuous, ω(0) = 0, t ∈ R}. In addition,
A = (Aij)n×n is an n × n-dimensional matrix, g : Rn

→ Rn and σk = (σ k
ij )n×n are n × n-dimensional matrices for all

k ∈ {1, . . . ,m}.
In what follows, we set the Euclidean norm |x| := (

∑n
i=1 |xi|2)

1
2 and ∥A∥ := (

∑n
i=1

∑n
j=1 |Aij|

2)
1
2 , where x ∈ Rn

and A ∈ Rn×n. For convenience, we first need to introduce some notations. Let θ denote the Wiener shift operator
defined by θtω(·) = ω(t + ·) − ω(t) for all t ∈ R, which is an ergodic metric dynamical system. Furthermore, define
Ψ (t, ω) = (Ψij(t, ω))n×n for all ω ∈ Ω to be the fundamental matrix of the following linear SDEs

dx(t) = Ax(t)dt +

m∑
k=1

σkx(t)dBk(t). (1.2)

It is easily seen that the stochastic flow (θ,Ψ ) is a linear RDS generated by (1.2), see Arnold (1998), Chueshov (2002). To
prove our main results, we will make the following assumptions on A, g and σk, k = 1, . . . ,m:

(A1) The top Lyapunov exponent of (θ,Ψ ) is a negative real number. That is, there exists a constant λ > 0 such that

∥Ψ (t, ω)∥ :=

⎛⎝ n∑
i=1

n∑
j=1

|Ψij(t, ω)|2

⎞⎠ 1
2

≤ R(ω)e−λt (1.3)

for all t ≥ 0 and ω ∈ Ω . Here, R ∈ L1(Ω,F ,P;R+) and

∥R∥L1 = ER =

∫
Ω

R(ω)P(dω).

(A2) g(0) = 0 and g is globally Lipschitz continuous, i.e.,

|g(x) − g(y)| ≤ L|x − y| (1.4)

for all x, y ∈ Rn, where L > 0 is the Lipschitz constant satisfying
L∥R∥L1
λ

< 1.

Motivated by Jiang and Lv (2018), this paper is concerned with the global stability of the zero solution for (1.1). Define
ψ(t, ω, x) = x(t, ω, x) to be the unique solution of (1.1) with the initial value x(0) = x ∈ Rn, we can formulate our main
results.

Theorem 1.1. Assume that (A1) and (A2) hold, it follows that

lim
t→∞

ψ(t, ω, x) = 0 (1.5)

for all x ∈ Rn and ω ∈ Ω .
2
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orollary 1.1. Assume that (A1) and (A2) hold, it follows that

(P) − lim
t→∞

ψ(t, ω, x) = 0 (1.6)

nd

(P) − lim
t→∞

ψ(t, θ−tω, x) = 0, (1.7)

here the symbol (P) − lim stands for the limit in probability.

emark 1.1. In Theorem 1.1, we do not assume that the matrix A is cooperative and g is bounded, monotone (or anti-
onotone), which cannot be removed in Jiang and Lv (2018). Moreover, the method used in the proof of Theorem 1.1 is
ompletely different from that in Jiang and Lv (2018).

emark 1.2. By Theorem 1.1, for the global stability of (1.1), we do not need to construct Lyapunov functions and our
onditions (A1) and (A2) are explicit.

. Proofs of Theorem 1.1 and Corollary 1.1

roof of Theorem 1.1. Since (θ,Ψ ) is a linear RDS, using the variation of constants formula (Mao, 1997, Theorem 3.1),
t follows easily that for all t ≥ 0,

ψ(t, ω, x) = Ψ (t, ω)x + Ψ (t, ω)
∫ t

0
Ψ −1(s, ω)g

(
ψ(s, ω, x)

)
ds

= Ψ (t, ω)x +

∫ t

0
Ψ (t − s, θsω)g

(
ψ(s, ω, x)

)
ds. (2.1)

ote that |Mx| ≤ ∥M∥ · |x| for all x ∈ Rn and M ∈ Rn×n. Therefore, combining (2.1), (A1) and (A2), we have

|ψ(t, ω, x)| ≤ |Ψ (t, ω)x| +

⏐⏐⏐⏐∫ t

0
Ψ (t − s, θsω)g

(
ψ(s, ω, x)

)
ds

⏐⏐⏐⏐
≤ R(ω)e−λt

|x| + L
∫ t

0
e−λ(t−s)R(θsω)|ψ(s, ω, x)|ds

= R(ω)e−λt
|x| + Le−λt

∫ t

0
R(θsω)eλs|ψ(s, ω, x)|ds (2.2)

for all t ≥ 0 and ω ∈ Ω . That is,

eλt |ψ(t, ω, x)| ≤ R(ω)|x| + L
∫ t

0
R(θsω)eλs|ψ(s, ω, x)|ds. (2.3)

Let ϕ(t, ω, x) := eλt |ψ(t, ω, x)|, we see at once that

ϕ(t, ω, x) ≤ R(ω)|x| + L
∫ t

0
R(θsω)ϕ(s, ω, x)ds,

which together with the Gronwall inequality implies that

ϕ(t, ω, x) ≤ R(ω)|x| exp
(
L
∫ t

0
R(θsω)ds

)
. (2.4)

This yields that

|ψ(t, ω, x)| ≤ R(ω)|x| exp
(

−λt + L
∫ t

0
R(θsω)ds

)
(2.5)

for all t ≥ 0 and ω ∈ Ω . In addition, using (A1) and the property that θ is an ergodic metric dynamical system, it follows
from the Birkhoff–Khinchin ergodic theorem (see (Arnold, 1998, Appendix)) that

lim
t→∞

1
t

∫ t

0
R(θsω)ds = ER = ∥R∥L1 (2.6)

or all ω ∈ Ω̃ , where Ω̃ is a θ-invariant set of full measure. Without loss of generality, we will still use the symbol Ω
to denote Ω̃ , see Chueshov (2002, p. 13). By (2.6) and (A2), given any 0 < ε < λ

L − ∥R∥L1 and ω ∈ Ω , there exists
= T (ω) > 0 such that for all t ≥ T , we get∫ t

R(θsω)ds ≤ (∥R∥L1 + ε)t,

0

3
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hich together with (2.5) shows that

|ψ(t, ω, x)| ≤ R(ω)|x| exp
[
(L(∥R∥L1 + ε) − λ)t

]
= R(ω)|x| exp(−αt), (2.7)

here α = λ− L(∥R∥L1 + ε) > 0. This gives that for all ω ∈ Ω , |ψ(t, ω, x)| → 0 as t → ∞. The proof is complete. □

emark 2.1. The method in the proof of Theorem 1.1 can also be used to prove the global stability of nonlinear stochastic
unctional differential equations, stochastic evolution equations and so on.

roof of Corollary 1.1. Using Theorem 1.1, it is evident that (1.6) holds, due to the fact that the convergence almost
urely implies the convergence in probability. In addition, since the metric dynamical system θ is a measure preserving
low (see Chueshov (2002, p. 10)), we conclude that (1.7) holds. □

. An example

xample 3.1. In order to show the validity of our assumptions (A1) and (A2), we will present an example to illustrate
ur result. Let us consider the following three-dimensional stochastic feedback system⎧⎨⎩ dx1 = [−5x1 +

1
10 sin x3]dt +

1
2x1dB

1
t ,

dx2 = [x1 − 6x2 +
1
10 arctan x1]dt +

1
3x2dB

2
t ,

dx3 = [−x2 − 7x3 +
1
10 tanh x2]dt +

1
4x3dB

3
t .

(3.1)

irect computation shows that the fundamental matrix Ψ (t, ω) of (3.1) is defined by

Ψ (t, ω) =

[
Ψ11(t, ω) 0 0
Ψ21(t, ω) Ψ22(t, ω) 0
Ψ31(t, ω) Ψ32(t, ω) Ψ33(t, ω)

]
(3.2)

or all t ≥ 0 and ω ∈ Ω , where

Ψ11(t, ω) = e(−5− 1
8 )t+

1
2 B

1
t (ω),

Ψ22(t, ω) = e(−6− 1
18 )t+

1
3 B

2
t (ω),

Ψ33(t, ω) = e(−7− 1
32 )t+

1
4 B

3
t (ω)

and

Ψ21(t, ω) =

∫ t

0
e(−6− 1

18 )(t−s)+ 1
3

(
B2t (ω)−B2s (ω)

)
Ψ11(s, ω)ds,

Ψ31(t, ω) = −

∫ t

0
e(−7− 1

32 )(t−s)+ 1
4

(
B3t (ω)−B3s (ω)

)
Ψ21(s, ω)ds,

Ψ32(t, ω) = −

∫ t

0
e(−7− 1

32 )(t−s)+ 1
4

(
B3t (ω)−B3s (ω)

)
Ψ22(s, ω)ds.

Therefore, it is easily seen that

|Ψ11(t, ω)| ≤ e−3tT1(ω), |Ψ22(t, ω)| ≤ e−2tT2(ω) and |Ψ33(t, ω)| ≤ e−tT3(ω) (3.3)

for all t ≥ 0 and ω ∈ Ω , where

T1(ω) = sup
t≥0

exp
(
(−2 −

1
8
)t +

1
2
B1
t (ω)

)
,

T2(ω) = sup
t≥0

exp
(
(−4 −

1
18

)t +
1
3
B2
t (ω)

)
and

T3(ω) = sup exp
(
(−6 −

1
32

)t +
1
4
B3
t (ω)

)
.

t≥0

4
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his implies that

|Ψ21(t, ω)| =

∫ t

0
e(−6− 1

18 )(t−s)+ 1
3 B

2
t−s(θsω)|Ψ11(s, ω)|ds

≤ e−2tT1(ω)
∫ t

0
e−se(−4− 1

18 )(t−s)+ 1
3 B

2
t−s(θsω)ds

≤ e−2tT1(ω)
∫

∞

0
e−sT2(θsω)ds

= e−2tT1(ω)̃T2(ω),

|Ψ31(t, ω)| ≤ e−tT1(ω)̃T2(ω)
∫

∞

0
e−sT3(θsω)ds = e−tT1(ω)̃T2(ω)̃T3(ω)

and

|Ψ32(t, ω)| ≤ e−tT2(ω)
∫

∞

0
e−sT3(θsω)ds = e−tT2(ω)̃T3(ω).

To see conditions (A1) and (A2), we set λ = 1, L =
1
10 and

R(ω) =
√
6
[
T1(ω)

⋁
T2(ω)

⋁
T3(ω)

⋁
T1(ω)̃T2(ω)⋁

T1(ω)̃T2(ω)̃T3(ω)
⋁

T2(ω)̃T3(ω)
]

=
√
6
[
T3(ω)

⋁
T2(ω)̃T3(ω)

⋁
T1(ω)̃T2(ω)̃T3(ω)

]
,

where the last equality holds due to the fact that for all ω ∈ Ω , T̃i(ω) ≥ 1, i = 2, 3. Combining the fact that
an n-dimensional Brownian motion has n independent components and the property of geometric Brownian motion,
i.e., E supt≥0 exp

(
−(µ+

1
2σ

2)t + σBt (ω)
)

= 1 +
σ2

2µ , where µ > 0 and σ ∈ R, see Graversen and Peskir (1998, p. 585)
nd Peskir (1998, p. 1639), it is immediate that

ER ≤
√
6
(
ET3 + ET2 · ET̃3 + ET1 · ET̃2 · ET̃3

)
=

√
6 (ET3 + ET2 · ET3 + ET1 · ET2 · ET3) (θ is measure preserving)

=
√
6
(
193
192

+
73
72

·
193
192

+
17
16

·
73
72

·
193
192

)
< 7.6115.

Thus, we get that
L∥R∥L1

λ
≤

1
10

× 7.6115 < 1.

That is, (A1) and (A2) hold. Using Theorem 1.1, it follows that the zero solution is globally stable.

emark 3.1. Example 3.1 shows that the choice of λ and R is a key point in the proof of our result. In addition, the
estimate of

∥R∥L1
λ

in Example 3.1 may be too large. In fact, it is not easy to get the optimal upper bound of
∥R∥L1
λ

for
igh-dimensional stochastic control systems.
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