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Abstract: Over the past few decades, the food industry has undergone revolutionary changes due to
the impacts of globalization, technological advancements, and ever-evolving consumer demands.
Artificial intelligence (AI) and big data have become pivotal in strengthening food safety, production,
and marketing. With the continuous evolution of AI technology and big data analytics, the food
industry is poised to embrace further changes and developmental opportunities. An increasing
number of food enterprises will leverage AI and big data to enhance product quality, meet consumer
needs, and propel the industry toward a more intelligent and sustainable future. This review delves
into the applications of AI and big data in the food sector, examining their impacts on production,
quality, safety, risk management, and consumer insights. Furthermore, the advent of Industry 4.0
applied to the food industry has brought to the fore technologies such as smart agriculture, robotic
farming, drones, 3D printing, and digital twins; the food industry also faces challenges in smart
production and sustainable development going forward. This review articulates the current state of
AI and big data applications in the food industry, analyses the challenges encountered, and discusses
viable solutions. Lastly, it outlines the future development trends in the food industry.

Keywords: artificial intelligence; big data; food industry; emerging technologies; smart sensors

1. Introduction

Artificial intelligence (AI) is a set of technologies that simulate human intelligence,
which allows computers to imitate aspects of human thinking and behavior to achieve
autonomous learning, reasoning, planning, and decision-making. The core of artificial in-
telligence is machine learning (ML), deep learning, natural language processing, computer
vision, and other technologies, which can be applied to a variety of fields and industries.

The term ‘big data’ refers to the large and diverse collection of data [1] typically
generated by a plethora of sensors or mobile devices, scraped from the internet and
other sources, and includes structured and unstructured data, such as text, images, and
videos. These data collections are usually characterized by high speed, high density, and
high dimensionality, so they need to be stored, processed, and analyzed using bespoke
technologies, often now referred to as ‘big data technologies’. In the food industry, big data
analytics can help predict market demand, optimize the supply chain, improve food safety
and quality, and bring more opportunities and competitive advantages to businesses [2].
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Artificial intelligence and big data, as two important technologies that complement each
other, play a key role in the food industry and are making a significant impact on innovation
and development [3].

Currently, artificial intelligence is widely used in healthcare [4], finance, transportation,
manufacturing, and the gaming and processing industries [5,6]. The application of AI in
these industries can improve efficiency, reduce costs, and improve service quality.

Artificial intelligence technologies have also been widely used in the food sector.
Expert systems, fuzzy logic systems, ANFIS (adaptive neuro-fuzzy inference system) tech-
nology, big data, blockchain, and smart sensors are applied to food classification, production
development, marketing, supervision, food quality improvement, and supply chain man-
agement [7]. The technology has improved food safety and quality [8]. Now, AI technology
can also help food companies achieve intelligent production and management, which
includes food quality testing, food production control, and food safety monitoring [9].

In addition to artificial intelligence, big data is also an important support that cannot
be ignored in the food industry. Big data analytics technology enables companies to extract
valuable information from huge data sets and gain insight into key information such as
market trends and consumer preferences. Through big data analysis, food companies
can better grasp market demand, optimize supply chains, reduce waste, and improve
production efficiency. Big data technology can also be combined with other technologies,
such as blockchain technology. Blockchain can ensure the traceability of food provenance
and quality, transparency from farm to fork, and provide consumers with more reliable
product information.

With the continuous progress of technology and the expansion of application scenarios,
the application prospects of artificial intelligence and big data in the food industry will
be broader. They will become an important means for the transformation and upgrading
of the food industry and enhance its competitiveness, bringing more opportunities and
challenges to the food industry [10,11].

According to Bradford’s Law [12], selected core journals are regarded as important
sources of information and represent the latest scientific and technological advances. In
terms of the journal selection of review papers, this review searched the Web of Science
database and studied the relevant literature on the application of artificial intelligence (AI)
and big data (BD) in the field of food. We systematically refined the retrieved literature
with keyword selection (search expression: TS = (food (detection or processing)) and (big
data or (artificial intelligence and algorithms)) and year (last 5 years), extracted more than
900 articles, and finally selected more than 150 articles related to artificial intelligence,
big data, and food or agriculture to ensure access to the latest research results. Then,
by drawing a word cloud (as shown in Figure 1 below), we conducted keyword cluster
analysis on relevant articles in the Web of Science database. In Figure 1, high-frequency
words are visually highlighted to help readers quickly perceive important information.

The paper is organized as follows. In Section 1, we begin with an introduction to the
basic conceptual topics of artificial intelligence and big data, giving an overview of the
current state of the food industry. In Section 2, we delve into the application of big data
analytics in the food sector, highlighting the potential uses of blockchain technology in
terms of security and supply and demand. In Section 3, we discuss the various applications
of AI in the food industry and explore its future developments and challenges.

1.1. The Early Situation in the Food Industry

In the early stages of the development of the food industry [13], there was a focus
on developing more efficient hardware, equipment, and new processing techniques to
improve the efficiency of food production and processing. These technological innovations
were essential to meet the growing demand for food and to ensure food quality.
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During the nascent stages of the food industry, improvements in agricultural tools and
techniques were major initiatives to increase the yield and quality of crops. As agricultural
production evolved, machinery and equipment such as stone mills and presses were
gradually introduced to make processing more efficient and to maintain the freshness and
quality of food. At the same time, food processing techniques were improved, and methods
such as curing, drying, and smoking were developed to extend the shelf life of food and
facilitate storage and transport.

In addition to the development of hardware and processing technology, the effective
connection of the entire food chain was also an important concern for the early food industry.
The lack of close collaboration and information sharing between raw material producers,
processors, and retailers led to inefficiencies in supply chain management, generating
excessive inventory and food waste. In order to solve this problem, the food industry
has started to establish a more comprehensive supply chain management system [14].
Through the application of information technology, data exchange and information sharing
between different segments have been improved, enabling more efficient logistics and
inventory management. Meanwhile, through measures such as standardization and quality
certification, cooperation and trust between different links in the food industry chain have
been enhanced to ensure that the origin and quality of food can be traced.

In summary, the food industry has significantly improved the efficiency of food
production and processing from its early stages through the development of more efficient
hardware, equipment, and new processing technologies to meet the growing demand for
food. At the same time, through the establishment of a more comprehensive supply chain
management system, the entire food industry chain has realized effective connection and
collaboration, from the production of raw materials to end-users, laying a solid foundation
for the development and prosperity of the food industry.



Foods 2023, 12, 4511 4 of 29

1.2. The Current State of the Food Industry

The food industry currently covers a wide range of areas, including food service, food
processing, and food retailing [3] and related industries, including agriculture, fisheries,
and livestock. It is a large global industry that involves the entire food value chain from
production to consumption. Food provides consumers with increasingly diverse choices
and demands for safe, secure food. Among them, some new technologies are widely used
in the food industry, including artificial intelligence, big data, 3D printing technology, and
blockchain technology. The application of these new technologies can improve productivity,
reduce waste, improve food quality and safety, increase mass demand, and retain food
consumers [15].

1.3. The Importance of Food Safety

Food safety issues have always been a focus of attention. Establishing a safety trace-
ability system is key to ensuring food safety and generating revenue for food supply chain
components [16–19]. The food safety cloud [20] is the intersection of food safety work with
big data, information technology, and the internet to achieve data and information technol-
ogy for food quality traceability and identification and to help government departments
predict food safety-sensitive information and identify periodic and trending food safety
key issues promptly using big data analysis. Meanwhile, it can also provide consumers
with information about food’s origin, composition, personalized nutrition programs, stan-
dards, and other individualized services and dietary structure advice to help consumers
choose safe food and nutritious food, not only to eat safely but also to eat healthily. In the
field of food safety [21], machine-learning technology has shown significant improvement
in detecting potential food contamination sources. By employing a supervised learning
algorithm, we can train the model to analyze multiple variables in the production process,
such as temperature, humidity, and chemical composition. This model can identify patterns
associated with past food safety incidents and detect anomalies in real-time production.
For example, image analysis using convolutional neural networks (CNN) [22] can accu-
rately identify tiny defects or foreign objects on food surfaces, which can help prevent
substandard products from entering the market. In the field of food quality [23–25], the
application of deep learning technology has become the frontier of improving the precision
of product quality monitoring. Using sequential models such as recurrent neural networks
(RNN) [26] and short-term memory networks (LSTM) [27], multiple parameters can be
monitored in real-time on the production line, and fine classification of product appearance
and quality characteristics can be achieved. For example, by training convolutional neural
networks on high-resolution images, small color changes or shape defects can be detected,
thereby improving the overall quality level of the product.

1.4. Digital Transformation in the Food Industry

As technology continues to advance, the food industry is undergoing a digital transfor-
mation [28]. Automated production and smart manufacturing technologies have improved
production efficiency, while big data analytics have provided better insight into consumer
needs. In addition, blockchain technology enhances the transparency and traceability of the
supply chain, providing security for food safety. At the same time, emerging technologies
such as 3D-printed food and virtual reality also open up new possibilities for future food
innovation. These digital trends provide a solid foundation for the application of artificial
intelligence and big data, and this article will further explore big data, blockchain, and
artificial intelligence and their key roles and advantages in the food industry.

2. Big Data in the Food Industry

Big data refers to data sets that are huge in scale, of many types, and difficult to
process [29–31]. It arises from the rapid advancement of computer technology, the Internet
of Things, cloud computing, mobile internet, and other technologies. The development
of data has driven the progress of science and technology, and the huge amount of data
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provides new opportunities and challenges for data analysis. Big data generally has 5 V
characteristics [32]. Volume refers to the scale of big data. The characteristic of big data
is that the amount of data is very large, far exceeding the capacity of traditional data
processing methods. Velocity is the speed at which data are generated and transmitted.
Variety is the variety of types and formats of data. Value is the ability to extract useful
information and insights from big data. Veracity is the accuracy and credibility of the
data. This kind of data is very difficult to manage and analyze using traditional databases
or data processing tools and requires distributed computing and storage technologies.
Data technology covers the collection, storage, management, analysis, and visualization
of data. However, big data technology differs from small data technology in that big data
technology needs to deal with larger data sets, which require more powerful data collection,
storage, management, analysis, and visualization capabilities. Through big data technology,
people can better understand customer needs, market trends, product performance, and
other information to provide better decision support and market insight for enterprises. In
the food field, big data, on the other hand, can provide massive food-related information
and analysis results to provide decision support for food companies. Applications of big
data in the food field include data analysis, food traceability, food nutrition, and health [33].

Big data has an extremely important position in modern society [34]. It can be widely
used in business, government, healthcare, transportation, finance, culture and entertain-
ment, and scientific research. For example, Torre–Bastida et al. [35] discussed the ap-
plication of big data in the field of transportation and mobility, including urban traffic
management, intelligent transportation systems, travel mode analysis, and traffic conges-
tion prediction. The analysis of big data [36] can provide unexpected information and
insights that can help companies make business decisions, increase productivity, improve
product quality, and optimize the customer experience. The application of big data is
particularly evident in the food industry [37]. For example, Zuheros et al. [38] used big
data to propose a decision model based on artificial intelligence sentiment analysis that
analyzes and evaluates restaurant reviews to recommend restaurants to users. Delanoy
and Kasztelnik [39] believe that big data analytics can enable factories that produce food
to improve food safety and security. With the development of the computer industry,
artificial intelligence and big data technology have also developed significantly. When
artificial intelligence and big data are combined, synergies can be created. Artificial intelli-
gence can process big data through techniques such as machine learning, deep learning,
natural language processing, and computer vision to discover patterns and laws in the
data, thus helping people to better understand the data and grasp the information. These
intelligent technologies have had a profound impact on people’s lives and brought a lot of
convenience. Especially in the food industry [40], these two technologies have achieved
remarkable results in food flavor matching, food safety, and food testing [41–43].

2.1. Applications of Big Data in the Food Industry

With progress and economic development, people’s requirements for food have be-
come more stringent. People are now more concerned about food flavor and food nutri-
tion [44]. Traditional food science and technology fail to meet the specific food needs of
each region and each individual. The emerging artificial intelligence and big data analytics
technologies have brought revolutionary changes to the food industry in terms of supply
chain optimization and food safety. The internet, combined with artificial intelligence and
big data, is the future direction of food safety, and big data is an important factor in food
safety [45]. For example, Kazama and Sugimoto [46] have used big data technology to form
a neural network that converts food from one country’s recipes to another’s recipes based
on its ingredients and composition, completing the transformation of regional food styles
and making it easier for people to taste cuisines from exotic places. Kalra et al. [47] built
a big data-based nutritional assessment system that allows people to give higher priority
to the nutritional content of the food on their plates and calculate the nutrition of food
through recipe analysis.
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In addition, Whitehouse et al. [48] used big data technology (surveillance cameras)
to monitor kitchen operations, improving food safety and providing greater peace of
mind for guests sitting at the table. Not only from the food point of view, AI and big
data technologies can also advise diners to choose quality restaurants and help restaurant
managers make the best and most rational decisions. Lee et al. [49] developed a predictive
model of restaurant reviews based on big data that is useful for customer decision-making
and to help restaurant managers make the best and most rational decisions. The integration
of AI and big data brings benefits to small-scale food producers or localized food systems, as
described by Ajit Maru in 2018 [50], using AI and big data to design tools and applications
tailored to their specific circumstances and capabilities to make data-driven agriculture [51]
friendlier to them. Through real-time monitoring and feedback, local food producers
can adjust their production strategies more flexibly to better meet local market needs. In
addition, by establishing a blockchain-based traceability system, small-scale producers can
provide more transparent and traceable product information, increasing consumer trust
in local products, thereby promoting the sustainable development of local food systems.
Figure 2 illustrates the different applications of big data in the food sector, including food
safety and traceability, consumer insight and market analysis, product optimization and
quality control, and innovation and sustainability. Figure 3 also illustrates five aspects of
big data security in the food industry and the processing model of big data.
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2.1.1. Application of Personalized Marketing and Recommendation System

Personalized marketing is a customized marketing strategy and recommended content
based on consumers’ interests, preferences, and behavioral characteristics. For example,
Liao et al. [52] explored how marketing campaigns in social networks can be analyzed with
big data to understand user behavior, preferences, and interaction patterns. The application
of personalized marketing and a recommendation system can be realized through big data
analysis and artificial intelligence algorithms.

With the help of big data analytics, companies can understand consumers’ purchase
history, preferences, and behaviors to provide personalized product recommendations,



Foods 2023, 12, 4511 7 of 29

pricing strategies, and promotions that enhance consumers’ buying experience and loy-
alty [53].
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A recommendation system [54] uses algorithms and models to recommend food
products that suit consumers’ tastes and needs based on their preferences and similar
consumer behaviors, increasing purchase conversion rates and sales.

2.1.2. Consumer Behavior Analysis and Forecasting

Big data analytics can help companies better understand consumer behavior patterns,
decision-making processes, and purchase motivations and, thus, predict trends in consumer
behavior and changes in preferences [55]. Through consumer behavior analysis, companies
can identify the characteristics and needs of different consumer groups and optimize
product positioning, marketing, and channel strategies. Predicting consumer behavior can
help companies make more accurate inventory management, production planning, and
supply chain decisions and improve operational efficiency and the ability to meet consumer
demand. Through the application of personalized marketing and recommendation systems
and consumer behavior analysis and prediction, food companies can better understand
consumers, provide personalized products and services, enhance consumer satisfaction
and loyalty, and, thus, gain an advantage in the market competition.

2.1.3. The Utilization of Big Data Analytics in Supply Chain Management

Big data analytics holds a significant position in food supply chain management [56].
By collecting and analyzing large amounts of supply chain data, companies can gain in-
sights into inventory, procurement, production, distribution, and more. Big data analytics
can help companies optimize supply chain processes, improve operational efficiency, re-
duce inventory costs, and decrease transportation time. With the technology and tools of
big data analytics, enterprises [57] can conduct real-time monitoring and forecasting of
the supply chain, identify potential risks and bottlenecks, and take appropriate measures
to adjust and optimize. The application of AI and big data in the food supply chain has
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also proposed specific solutions to supply chain inefficiencies and food waste. As Joshi
pointed out in 2020, through advanced predictive analysis of machine learning [58], ac-
curate prediction of demand fluctuations can be achieved, and then real-time adjustment
of optimal inventory levels can be achieved through intelligent inventory management
systems. In addition, big data analysis plays a role in optimizing production plans [59], in-
tegrating information such as market trends, raw material supply, and production capacity
to ensure the precise matching of production and market demand. Real-time monitoring
and feedback mechanisms improve the visibility and responsiveness of the supply chain
through IoT (Internet of Things) sensors and advanced data analytics, helping to identify
and resolve problems in a timely manner. These advanced applications provide strong
support for improving supply chain efficiency and reducing food waste.

2.1.4. Application of Forecasting Models and Machine Learning Algorithms in
Demand Forecasting

Demand forecasting [60] is a critical component of decision-making in the food in-
dustry. By forecasting changes and trends in consumer demand, companies can plan
production and supply rationally and avoid overstock or out-of-stock situations. Forecast-
ing models and machine learning algorithms can use historical sales data, market trends,
and other relevant factors to build accurate demand forecasting models. By analyzing
and learning from the data, these models and algorithms can automatically identify and
capture demand patterns, make forecasts, and provide targeted recommendations and
decision support.

Through the application of big data analytics in supply chain management and predic-
tive models and machine learning algorithms in demand forecasting, food companies can
more accurately understand the supply chain situation and consumer demand, achieve
matching of supply and demand, and improve operational efficiency and customer satis-
faction. This will help optimize supply chain management [61] and production planning
and enhance the competitiveness of companies.

2.2. The Bottleneck of Big Data Applications for the Food Industry

Big data technology is now extensively employed in the food sector [62], including
many aspects of production, sales, and consumption. Although big data technology can
bring many advantages, such as increasing production efficiency, improving marketing
strategies [63], and enhancing product quality, there are also some disadvantages. These
include data privacy issues, quality control problems, and bias problems. In the process of
big data analysis, a great deal of data must be collected and analyzed, including consumers’
personal information, behaviors, and preferences. These data may be illegally accessed and
misused, posing a risk of privacy leakage to consumers. Although big data analytics can
help producers better understand consumer preferences and needs, it may sometimes lead
to producers overemphasizing market demand at the expense of product quality and safety,
thus posing a health risk to consumers. Big data analytics is based on historical data and
is used to make predictions and analyses, so there may be some bias. If producers make
decisions based on data analysis alone, without considering the impact of other factors, the
final decision may be wrong or risky.

Although big data technology can facilitate the development and progress of the
food industry, it must be applied carefully to avoid negative effects such as data privacy
issues [64] and quality control problems. Meanwhile, the government should strengthen
regulation and legislation to protect the legitimate rights of consumers.

Blockchain technology is considered a viable solution to address the challenges and
implications of big data [65]. ‘Blockchain combined with Big Data’ is considered to be an
effective solution for sharing data. The changes brought by blockchain technology on the
food supply chain include food security, food safety, food integrity, smallholder support,
monitoring and management, etc. It also employs technologies for verifying and digitally
signing documents, verifies and tracks ownership of intellectual property and proprietary
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systems, enables smart contracts [66], and tracks patient health records. Decentralized
ledger solutions leveraging blockchain technology can also be linked with smart contracts
and decentralized applications [67]. As De Filippi explained in 2016 [68], the decentralized
nature of blockchain ensures distributed storage of data, eliminating a single point of attack
and, thus, reducing the risk of data being hacked or tampered with. Each block contains
information from the previous block, forming an immutable chain structure that provides
a reliable guarantee of data transparency and integrity. Secondly, the blockchain’s smart
contract capabilities can be used to formulate and enforce data access rights [69]. With
smart contracts, it is possible to specify which parties have the right to access, modify,
or share specific types of data. This method ensures that data access can be traced and
controlled and improves the management level of data privacy.

2.3. Blockchain Technology

Blockchain technology is one of the emerging technologies currently receiving a lot
of attention, and it brings many benefits to the agri-food supply chain [70]. Blockchain,
derived from Bitcoin, is a decentralized database recorded in the form of cryptographic
blocks for the execution and sharing of every transaction or digital occurrence in a public
ledger, whose information can be authenticated at any time in the future. The core features
of blockchain are data immutability and decentralization, which makes the information
recorded more authentic and reliable and effectively solves the problem of mutual distrust.
In the field of food traceability, blockchain can achieve traceable supply chain management
by assigning a unique digital identifier to each food product [71,72]. This includes the
growing conditions, batch number, and expiration date of the food. This will not only help
reduce food waste but also help consumers assess the ecological footprint of their food and
manage the redistribution of extra food. In addition, food authentication in the food supply
chain [73] (such as food ingredients, production date, production source, processing, and
technology used) has been a focus of attention, and traditional authentication methods
often have problems such as fraud, while the use of blockchain technology can effectively
avoid such problems [71,74].

Lin et al. [75] proposed a framework for building a food traceability system with smart
contracts built upon blockchain technology and the Ethereum platform. The framework is
explicitly applied to the food industry, using blockchain technology to ensure transparency
and safety in food production and supply chains. Mohan et al. [76] proposed a model that
combines existing food quality systems and technologies at all stages of the supply chain
and uses blockchain technology to propose a solution for food (chicken) tracking. Kim
and Laskowski [73] used a blockchain modeling approach that integrates IoT devices for
capturing and sharing data from supply chain sources. The study also addresses the issue
of the existence of common data standards at different stages of the supply chain when
using decentralized blockchain networks. On the other hand, Kumar and Iyengar [13],
built a rice supply chain system built upon blockchain technology that aims to improve
security in the management process. This case is directly relevant to the food industry,
using blockchain technology to solve security issues in the rice supply chain. However, it is
also important to recognize that not all blockchain applications are equally focused on food
safety issues, while some may focus on other aspects such as finance and logistics.

Blockchain technology, with its reliable, secure, distributed-based nature, provides a
monitored and managed full-chain solution in the agri-food supply chain from the pro-
duction of raw materials to the store shelves, involving producers, consumers, suppliers,
and regulators, and greatly improving food traceability [77,78]. In addition, with smart
contract technology, manufacturers can further reduce costs and enhance the overall ef-
ficiency of the manufacturing industry. It is also important to mention that the potential
transparency offered by blockchain technology can also help facilitate the development of
a reputation-based trading system. In the context of blockchain systems applied to food
supply chains, the communication and processes are typically represented as one-way.
Figure 4 illustrates the process of the food supply chain in a blockchain system and the
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behavior of different participants, and Table 1 illustrates how blockchain can guarantee
transparency and traceability in the food supply chain, improve food safety and product
quality, and enhance consumer trust in products.
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Table 1. The application of blockchain in the supply chain of agricultural products.

Products Objectives Projects/Companies Involved

Beer
Tracking the entire production process of beer to
reveal its relevant ingredients. (Downstream is the
first company to apply blockchain technology to beer.)

Downstream Brewing Company [79]

Beef Implement blockchain technology to detect its supply
chain process and prevent food fraud. BeefLedger Corporation [80]

Grain Identify the entire supply chain. Agri-Digital [81]

Mango Guarantee the traceability of the mango
production chain. IBM, Wal-Mart, Nestle, etc. [82]

High fructose corn syrup Supervision and management. The Coca-Cola Company
Chicken Ensure its traceability. Gogochicken, OriginTrail Inc. [83]
Food waste Monitoring and management, waste forecasting. Plastic Bank, Agora Technology Labs

Rice Supervision and to ensure the quality of rice during
transportation. “Agri-Food Blockchain” Project [13]

Milk Traceability to prevent food fraud in the dairy
production process. “Agri-Food Blockchain” Project

However, blockchain technology also faces future challenges and issues to be ad-
dressed [84]. With the integration of an increasing number of components into blockchain
systems, such as RFID, smart sensors, smart robots, biometric data, IoT, and big data, the
underlying logic and implementation may become more complex. In addition, although
blockchain technology is already widely applied in food supply chains around the world,
operation and maintenance costs are increasing, which may limit the entry of new suppliers
into the market. In addition, large companies may adopt privately licensed blockchain
technology, which may lead to giants and oligopolies monopolizing the market. In addition,
how to improve the regulatory system related to blockchain technology is still an issue that
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needs to be further debated. Currently, there is no consensus among top policymakers and
experts on how to properly apply blockchain technology and cryptocurrency transactions.

3. Artificial Intelligence in the Food Sector

When we talk about artificial intelligence in food, we are in a field full of cutting-
edge technology and limitless potential. With the rapid development of science and
technology, artificial intelligence has profoundly affected all levels of the food industry.
From expert systems to fuzzy logic systems, from ANFIS technology to NIRS technology
to CVS technology and the application of artificial intelligence and sensors in the food
industry, these innovations are bringing unprecedented changes to food production, quality
control, and safety [85,86]. Compared with big data, these technologies have unique
characteristics and application scenarios, and each plays a unique role in solving problems
and optimizing processes.

3.1. Knowledge-Based Expert Systems in the Food Industry

In the food industry, expert systems, as a knowledge-based artificial intelligence
technology [87,88], can simulate the thinking style and knowledge structure of experts
to achieve automated decision-making and problem-solving [89]. The system can use
the knowledge and experience of domain experts, combined with techniques such as
machine learning and natural language processing, to build a system with certain reasoning
capabilities to automate the solution of complex problems. For example, expert systems
can be used in applications such as assessing food quality, detecting food safety problems,
and optimizing production processes.

In addition, some expert systems can continuously learn and improve [90]. As data
and knowledge accumulate, the system can update and optimize itself, thereby improving
its problem-solving accuracy and efficiency. A knowledge-based system, alternatively
referred to as an expert system, is a computer application that integrates a large number of
problem solutions associated with a particular domain. The system is capable of mimicking
the decision-making process of human experts. Typically, it comprises six components: the
human–computer interface, knowledge base, inference engine, interpreter, comprehensive
database, and knowledge acquisition module, among which the most important are the
knowledge base and the reasoning machine. The knowledge base stores a large number
of facts, objects, cases, and rule conditions, which are expressed in the form of “IF-THEN”
statements. The reasoning machine can perform specific operations on this knowledge and
generate solutions to various problems with the help of human experts.

Since food safety is a top priority in the food production industry, expert systems
have been applied in the production of food, quality testing, and food risk assessment [91].
In addition, expert systems are also used in the food industry, such as web-based expert
systems for diagnosing pests and diseases of banana plants [92], intelligent expert system
databases [93] for automatic control of product quality indexes, and expert systems based
on fuzzy logic models [94] applied to the coffee industry.

The Future and Challenges of Expert Systems

In the coming years, we predict knowledge-based expert systems will be combined
with techniques such as fuzzy logic and neural networks for advanced control processes in
food processing, control modeling, and multivariate and nonlinear processes. In particular,
the ability of fuzzy logic to handle uncertainty in hybrid fuzzy expert systems may bring
significant advantages. In the food field, the application of knowledge-based expert sys-
tems has the potential to help companies reduce production costs, improve productivity,
optimize product quality, and enhance market competitiveness. In the 1990s, due to the
lack of hardware and software conditions, expert systems did not reach their full potential.
Today, with the rapid development of hardware and software and the progress of artificial
intelligence and machine learning, expert systems are highly practical and have been ap-
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plied to engineering, medicine [95], business, food, and other fields; it is an integral part of
artificial intelligence [96].

3.2. Fuzzy Logic Systems

Traditional knowledge-based general expert systems have a distinct disadvantage
in that they are unable to handle problems that are beyond the scope of their knowledge
database. When the system is confronted with problems that are not included in the
knowledge base, the rule-based system will not be able to provide deterministic results.
To solve the problems of traditional expert systems in dealing with uncertain and fuzzy
data, Zadeh first introduced the concept of fuzzy logic in 1965. A fuzzy logic system is
an artificial intelligence technique based on the principles of fuzzy logic [97–99]; its main
use is to deal with problems involving fuzzy concepts. Unlike traditional logic systems,
fuzzy logic systems allow the truth value of propositions to take any value between 0 and
1, thus allowing better handling of problems with fuzzy boundaries. In addition, fuzzy set
theory provides a convenient means of dealing with uncertainty and transforming expert
knowledge into computer-processable quantitative functions. Traditional analytical and
statistical methods often struggle to deal with expert knowledge, but complex mathematical
relationships are not required in building fuzzy logic applications. Fuzzy models can
be expressed in easily comprehensible linguistic rules, resembling the format of rule-
based expert systems. The emergence of fuzzy logic systems introduces the stereotypical
judgment and imprecise nature of human judgment and can improve the generalizability
of expert systems.

Fuzzy logic translates variable values into a linguistic representation, where the
interpretation corresponds to a fuzzy set, and based on these representations, the fuzzy
system then proceeds to the next step of judgment. Fuzzification [100] is a process in
which explicit values are converted into affiliations, and a fuzzy input set is generated. The
correspondence of a membership function fuzzy system is usually between 0 and 1. Fuzzy
rules are also called “IF-THEN” rules [101], where IF is the necessary precondition and
THEN is the corresponding result. The fuzzy logic system consists of the following steps:
first, the actual values are transformed into fuzzy values, and then rules are applied to
map these fuzzy inputs to fuzzy outputs. Next, a fuzzy output is obtained by combining
the results of the fuzzy rules through statistical methods. Finally, the fuzzy output is
transformed into specific actual values through the process of defuzzification. These steps
work in concert to form the basic operational flow of a fuzzy logic system. Figure 5
illustrates these steps in the operations of a fuzzy logic controller.
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Fuzzy logic systems are efficient and simple designs for fast analysis and problem-
solving with a highly accurate approach. As a result, these systems have been widely used
in industry [94,100,102,103]. In the food industry, fuzzy logic techniques are also applied.
For example, Farzaneh et al. [104] proposed an adaptive neuro-fuzzy inference system and
applied it to canola oil extraction modeling. Samodro et al. [105] used fuzzy logic tech-
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niques to help a coffee roaster maintain the smell and quality of coffee. Yulianto et al. [106]
implemented a fuzzy inference system and used it for salt yield estimation. Basak et al. [107]
employed fuzzy logic techniques to assess the concentration of essential oil in withered
leaves and its efficacy as a preservative for fruit juices. Vivek and Subbarao [108] utilized
fuzzy logic techniques in the sensory evaluation of food items. Furthermore, emerging
approaches such as fuzzy set theory have proven effective in evaluating the sensory at-
tributes of diverse traditional and innovative foods developed [109] through fortification
and modified processing methods.

In fuzzy modeling, linguistic entities such as “unsatisfactory, fair, moderate, good,
and very good” are used to describe sensory attributes (including color, aroma, taste,
texture, and mouthfeel) of food products obtained through subjective evaluation. Shahbazi
et al. [110] proposed a food traceability system based on blockchain machine learning
that combines a fuzzy logic traceability system based on shelf life management systems to
manipulate perishable foods to address issues regarding food resolution such as lightweight,
evaporation, warehouse transactions, or shipment time. With the application of fuzzy logic
systems, problems with fuzzy boundaries can be better handled, leading to more accurate
and objective decisions.

3.3. Adaptive Neuro-Fuzzy Inference System (ANFIS) Technology

The adaptive neuro-fuzzy inference system [111] is an innovative structure for fuzzy
inference systems that seamlessly integrates fuzzy logic and neural networks. It is a
technique that adjusts the premise parameters and conclusion parameters using a hybrid
algorithm of least squares and backpropagation and can automatically generate IF-THEN
rules. It combines the computational learning capability of ANN (artificial neural network)
networks with the human-like reasoning capability of a fuzzy logic system. Where ANFIS
comes into play is reflected in the fact that, in some cases, it can automatically determine
the appropriate parameters of the membership functions and does not need to set the
appropriate affiliation functions and their parameters by itself. This is especially the case
when we already have a set of inputs and associated output variables and values. Like
artificial neural networks (ANN), ANFIS systems can “automatically” adjust their nodes
and the connections between them. The five-layer structure of ANFIS consists of a fuzzy
layer, a product layer, a normalization layer, a defuzzification layer, and a total output layer.
Figure 6 illustrates the network structure of ANFIS.
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In Figure 5, f i is the output result corresponding to rule i; A1 and B1 are the nonlinear
parameters corresponding to rule i; Wi represents the trigger ratio of rule i in all rule bases.

The functions of the nodes in each layer are as follows.
Layer 1: The fuzzification layer, where input variables are transformed into fuzzy sets,

and the output represents the degree of membership in the fuzzy set. A1, A2, B1, B2 belong
to fuzzy set A. It is responsible for fuzzifying the input features x and y using membership
functions to obtain a degree of membership in the range of [0, 1].

Layer 2: The rule activation layer, which implements the operation of the fuzzy set in
the antecedent part of each rule. Each node in this layer is fixed and computes the strength
of each rule by multiplying the degree of membership of each feature. The output of each
node represents the activation strength of a rule, and the node function can be implemented
as taking bounded products or strong products.

Layer 3: The normalization layer, which normalizes the activation strengths of each
rule to indicate their relative weights in the entire rule base.

Layer 4: The defuzzification layer, the result of the calculation rule, is generally given
by a linear combination of input features.

Layer 5: The output layer calculates the exact output by defuzzifying the aggregated
outputs of the rules. The single node in this layer computes the sum of all incoming signals
as the final output of the system.

With the progress made in fuzzy logic and neural networks, the adaptive neural
network fuzzy inference system, as a product combining these two theories, has emerged
as a significant research direction in the field of computational intelligence due to the
combined benefits of the expressive nature of fuzzy logic and the self-learning capability
of neural networks. In the field of food testing, this technique has had an impact [107].
For example, researchers have used the ANFIS model to study the sensory attributes of
ice cream [108] and predicted the acceptability of the taste based on the input parameters.
The model achieved a minimum error rate of 5.11% and a correlation coefficient of 0.93.
In a separate study, another researcher employed the ANFIS model to forecast the quality
of virgin olive oil samples [112]. These results show that combining fuzzy inference
systems with neural networks, especially in food testing, has great advantages. In addition,
Abbaspour-Gilandeh et al. [113] designed a system combining artificial neural networks
and ANFIS for predicting the kinetic energy and energy of quince under a hot air dryer,
Kaveh [114] designed an ANFIS model for predicting the moisture diffusivity and specific
energy consumption of drying potatoes, garlic, and melons under convection hot air dryers,
Arabameri et al. [112] utilized an adaptive neuro-fuzzy inference system (ANFIS) to assess
and forecast the oxidative stability of virgin olive oil. Mokarram et al. [115] employed
an adaptive neuro-fuzzy inference system and multivariate linear regression to estimate
the flavor of oranges. Table 2 lists the published ANFIS technology applications in the
food industry.

Table 2. Published ANFIS technology applications in the food industry.

Authors Research Subjects Expected Goals Experimental Results

Arabameri et al. [112] Olive Oil
Prediction of the quality of olive oil
samples and determination of the
influence of other factors

Highly accurate prediction of olive oil
quality and successful prediction of the
effects of time, temperature, and
phenolics on its stability

Kaveh et al. [114] Potatoes, garlic, and
cantaloupe

Predicted moisture diffusion rate and
energy consumption ratio

Successful use of the ANFIS model for
accurate prediction of its water content

Mokarram et al. [115] Orange Predicting orange flavor
Successful use of the ANFIS model for
accurate prediction of
orange flavor
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Table 2. Cont.

Authors Research Subjects Expected Goals Experimental Results

Abbaspour-Gilandeh
et al. [113] Quince Prediction of kinetic energy and

energy of quince under hot air drying

Accurate prediction of kinetic energy of
quince using the ANFIS model and
multiple linear regression

Kumar et al. [116] Taro Optimization of the extraction
process of taro

Successful optimization of extraction
process of taro bioactive compounds
using response surface methodology
and ANFIS

Ojediran JO et al. [117] Yam Predicting the drying characteristics
of yam

Accurate prediction of drying
characteristics of yam slices in
convective hot air desiccant
using ANFIS

3.4. Near-Infrared Spectroscopy Technology Combined with Artificial Intelligence

Near-infrared spectroscopy (NIR) is a non-invasive analytical technique based on
optical principles that can be used for rapid and accurate analysis and detection of the
chemical and physical properties of substances, which uses the absorption and scattering
properties of the substance molecules in the near-infrared spectral region to analyze the
chemical composition, structure, and properties of substances by detecting the intensity
of the absorbed and scattered light. NIR technology can be used for rapid and accurate
analysis of food composition and quality indicators [118]. Compared with previous tech-
niques, NIR technology has the advantages of no chemical substances, fast and accurate
results, non-destructive, low cost, and resource-saving, thus becoming a viable alterna-
tive to traditional techniques. In the past few years, the fusion of artificial intelligence
algorithms and NIR technology has achieved effective monitoring of food internal quality
detection and disease conditions, mainly using methods such as least squares and multiple
linear regression. In the food field, NIR technology has been widely applied in food quality
inspection and quality control. For example, the NIRS system combined with artificial
intelligence technology can classify and detect food products, and NIR technology can
detect mechanical damage to mangoes [119]. In 2020, Curto et al. [120] used artificial neural
network-based near-infrared spectroscopy to precisely forecast the sensory characteristics
of cheese; this technology provides an efficient and reliable quality assessment tool, but its
application is not limited to cheese, it is also applicable to the quality control of other foods.
Gunaratne et al. [121] used NIR spectroscopy and machine learning modeling for chocolate
quality assessment; it provides a scientific basis for improving the quality and consistency
of chocolate products. At the same time, this technology also provides a reference for other
food composition analyses and quality assessments. Qiao et al. [122] used a hyperspectral
imaging system to assess pork quality and marbling levels; it provides a new perspective
on food quality control. This technology not only has a wide application in meat quality
but also can be used for quality monitoring of other agricultural products, bringing new
possibilities to the agricultural field. Alshejari et al. [123] designed an intelligent system for
decision support in identifying meat spoilage through the analysis of multispectral images;
it also provides an innovative solution to other food freshness and preservation problems.

In conclusion, NIR technology is fast, accurate, non-invasive, and low-cost, which
can enhance the quality and market competitiveness of food products. With the continu-
ous development and popularization of artificial intelligence technology, the application
prospects of NIRS technology in the food field will be broader.

3.5. Application of Computer Vision Systems in the Food Industry

Computer vision is an artificial intelligence technology that utilizes image processing
and pattern recognition techniques to automate the analysis and interpretation of visual
data, such as images and videos. It aims to simulate human vision by enabling com-
puters and related devices to understand digital images and videos, extract meaningful
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information, and make informed decisions. It involves the development of sophisticated
algorithms, including traditional methods and deep learning approaches, to enable com-
puters to perceive, analyze, and comprehend visual data in a manner similar to humans.
The underlying principle of computer vision is to enable a computer to process and com-
prehend images at the pixel level, utilizing specialized software algorithms to retrieve,
process, and interpret visual information effectively. Its main task is to acquire images
and videos and process them with a computer to obtain three-dimensional information
about the corresponding scene, including image segmentation, image classification, and
image detection. The earliest experiments with computer vision began in the 1950s when
it was used to parse typed and handwritten text. At that time, the analysis procedure
was relatively simple and required a lot of manual operations, where the operator had
to provide data samples manually for analysis. The traditional manual operation made
it difficult to provide large amounts of data, and coupled with limited computing power,
the error rate of such analysis was quite high. Today, we do not lack powerful computing
power. Cloud computing, coupled with powerful algorithms, can help us solve even the
most complex problems. However, it is not only the combination of new hardware and
advanced algorithms that are driving the development of computer vision technology; it is
also the vast amount of publicly available visual data that we generate every day that is
driving the technology. Computer vision has a wide range of applications, including but
not limited to medical image detection, autonomous driving, facial recognition, agricul-
ture, and food inspection. In the food field, computer vision technology has been widely
used [124]. Computer vision can be used in food production lines for automated inspection
and quality control and can also be applied to food quality inspection. Lopes et al. [125]
developed a computer vision classification system for barley flour that incorporates spatial
pyramid segmentation integration. Phate et al. [126] employed a computer vision system
to cluster the ANFIS weighing model for sweet orange (Citrus limetta); Nadim et al. [127]
applied image processing techniques to quality control in mushrooms; Villaseñor-Aguilar
et al. [128] used an artificial vision system for sweet pepper for ripeness assessment for
quality control. Among the various deep learning neural networks, convolutional neural
networks have been applied to computer vision, and it is particularly suitable for handling
various tasks in the field of computer vision, such as image classification, object detection,
and semantic segmentation. With advances in machine learning, especially the develop-
ment of convolutional neural networks, collected food pictures can be further processed
to classify food. Figure 7 illustrates the use of a convolutional neural network (CNN) in
computer vision to automatically extract food shape features for food recognition. Table 3
lists published computer vision applications in the food industry.
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Table 3. Published computer vision applications in the food industry.

Authors Research Subjects Objectives Experimental Results

Lopes et al. [125] Barley flour Forecast for barley flour Classification using spatial pyramid segmentation
method, the final prediction with SVM is 95%

Siswantoro
et al. [129] Eggs Predicting egg volume Successfully predicted egg volume with ANN model

with a 97.38% success rate

Villager-Aguilar
et al. [128] Sweet pepper Predicting the ripening status

of bell peppers

Successfully developed an artificial vision system
using CVS and ANN/FL to predict the ripeness of
bell peppers with a maximum accuracy of 88% for
FL and 100% for ANN

Bakhshipour et al.
[130]

Iranian black tea
and green tea

Classification of black and
green teas in Iran

Successful classification of both with REP
decision trees

Mazen et al. [131] Banana Predicting the ripening
of bananas

Successfully used SVM and ANN algorithms to
accurately predict the ripening level of bananas with
an accuracy of 98%

Wan et al.
[132] Tomato Predicting the ripeness of

fresh tomatoes
Accurate detection of tomato ripeness with ANN
algorithm with 99% accuracy

Markande
et al. [133] Potatoes Grade classification

of potatoes

A combination of CVS technology and fuzzy logic
system successfully classifies potatoes and
reduces costs

Garcia et al. [134] Vegetable seeds Sorting vegetable seeds Successful classification of spinach seeds and
cabbage seeds with ANN technology

Ozkan et al. [135] Dry beans Classification of different
types of dry bean seeds

Successful classification of dry bean seeds with SVM,
DT, ANN, and KNN algorithms

Zareiforoush
et al. [136] Rice Grading the quality of rice Successfully developed a system to grade rice

quality with 97% accuracy

3.6. Artificial Intelligence Combined with Smart Sensors for Real-Time Inspection in the
Food Industry

In today’s food industry, guaranteeing product quality and safety holds utmost signifi-
cance. With the ongoing advancements in artificial intelligence and smart sensor technology,
it is now feasible to monitor and assess the quality and safety of food products in real-time.
Artificial intelligence analyzes large amounts of data through machine learning algorithms
to predict possible problems and identify and solve food safety issues promptly. Meanwhile,
smart sensors can monitor parameters such as temperature, humidity, pressure, and odor
in real-time to detect potential problems. The application of these technologies enables the
food industry to more effectively ensure product quality and safety, bringing better health
and quality of life to consumers.

The integration of artificial intelligence and smart sensors [137] allows for real-time
monitoring and early warning to ensure food safety. Once the sensor detects an abnormality,
the system immediately notifies the operator and takes appropriate action to avoid food
safety problems. In addition, the sensor data can be analyzed to better understand the
characteristics of product quality and process changes so that the production process and
product quality can be continuously optimized. The effectiveness and practicality of this
technology application open up a wider scope of development for the contemporary food
industry and provide a reliable guarantee for safeguarding public health.

Smart sensors are the core foundation of artificial intelligence technologies and can
be divided into different types, such as physical sensors, chemical sensors, and biological
sensors. Artificial intelligence technologies that can enhance sensor systems encompass
a variety of methodologies, such as knowledge-based systems, fuzzy logic, automatic
knowledge acquisition, neural networks, genetic algorithms, case-based reasoning, and
ambient intelligence. These intelligent techniques contribute to the capabilities of sensor
systems, enabling them to acquire, process, and interpret data more effectively. These
artificial intelligence technologies can be widely used in scenarios such as small sensor
systems and single sensors.
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The appropriate utilization of artificial intelligence technology can enhance the compet-
itiveness of sensor systems and applications. One common approach involves integrating
sensors for real-time detection, such as electronic nose (E-nose), electronic tongue (E-
tongue) [138], and machine learning. These sensor integrations are often combined with
technologies such as artificial neural networks to enable advanced data analysis, pattern
recognition, and decision-making capabilities. This integration enables the development
of intelligent sensor systems that can effectively analyze complex data and make accurate
real-time assessments in various domains [138]. The first of these technologies is used
to monitor food products in real-time, achieve high accuracy, and issue alerts in a short
time so that timely action can be taken to safeguard food safety and quality [139]. The
application of these technologies can not only improve the efficiency and productivity of
the food industry but also provide the public with safer and healthier food.

In recent years, there has been significant progress in the implementation of smart
sensors incorporating artificial intelligence techniques in the food sector. For example,
McVey et al. [140] developed a spectroscopy-based smart sensor. Ndisya et al. [141] used
an optical sensor technology based on hyperspectral imaging to assess the quality variation
of purple-speckled yam slices in dry hot air and successfully developed a predictive
model. This research is a clear example of applications in the food industry, but the same
hyperspectral imaging technology can also be used in agriculture to monitor plant growth
and predict disease. In addition, Abedi-Firoozzah et al. [142] applied kale anthocyanins
in biosensors and food packaging. Sanaeifar et al. [143] used an electronic nose to classify,
detect, and identify different types of fruits as well as to detect defective parts in food
products. Feng et al. [144] designed an electronic nose that can be used to detect spoilage of
food products such as meat and fish. The electronic tongue is an intelligent sensor capable
of analyzing and identifying food through the sense of taste. It can identify different
chemical substances, both organic and inorganic, through eight built-in electronic sensors.
Electronic tongue technology is used in a wide range of applications in the food sector,
including food traceability, food freshness, food quality grading, and quality monitoring
during food production. For example, Wadehra and Pati [145] detail the application of
electronic tongues in different food production and processing processes, such as fruit juices,
dairy products, vegetables, and fruits. The electronic tongue technology is also capable
of quickly distinguishing between chicken breeds and product quality and will, therefore,
become an important tool for the evaluation of chicken meat and its product quality. An
electronic tongue system developed in China uses bare metal electrodes such as gold, silver,
and platinum as working electrodes and can be used in combination with suitable data
analysis methods for quality differentiation of wine, liquor, tea, meat, and cow milk, as well
as qualitative and quantitative analysis of food-borne pathogenic bacteria and pesticides.
Through sensor technology and the Internet of Things, key parameters and indicators in the
food production process can be automatically collected and recorded, reducing errors from
manual intervention and providing a more accurate and comprehensive database. These
data can be used for production process optimization, quality control, and food safety,
helping companies achieve intelligent production and refined management. Table 4 shows
a comparison of conventional laboratory instruments, electronic nose, electronic tongue,
computer vision, and sensory analysis. Where ‘

√
’ represents meeting this condition, and

‘×’ represents not meeting it.

Table 4. Comparison of conventional laboratory instruments, electronic nose, electronic tongue,
computer vision, and sensory analysis.

Feature
Conventional
Laboratory
Instruments

Electronic Nose Electronic
Tongue

Computer
Vision

Sensory
Analysis

Fast detection
√ √ √ √

×
Low-cost analysis

√ √ √ √
×
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Table 4. Cont.

Feature
Conventional
Laboratory
Instruments

Electronic Nose Electronic
Tongue

Computer
Vision

Sensory
Analysis

Chemical free analysis × × × × ×
Objectivity

√ √ √ √
×

Non-destructive
measurement

√ √
×

√ √

Sample pre-treatment × ×
√

× ×
simple

√ √ √ √
×

Single operator
√ √ √ √

×
Permanent data storage

√ √ √ √ √

4. Future Trends and Challenges for Artificial Intelligence Applications in the
Food Field

In recent years, the food industry has undergone rapid and dramatic changes thanks
to the food industry revolution [146]. With the development of artificial intelligence, the
future of the food industry will be based on technologies such as smart agriculture, robotic
agriculture, drones, 3D printing, and digital twins [147–150]. Meanwhile, thanks to robotics
and automation in the sustainable food industry [151], the food manufacturing industry is
shifting from traditional manual production to an automated production phase. Within this
change, packaging, warehousing, distribution, marketing, and consumer service are also
moving toward automation. However, the emergence of these new models places higher
demands on the workforce of the food industry. In addition, food safety issues have become
a major international concern [152,153]. The development of IoT technology [154,155] can
help solve this problem as it can identify products and trace them back to every step of
food production and processing. The concept of Industry 4.0 for food processing represents
an improvement in the quality and safety of processed foods in the current digital age by
leveraging the Fourth Industrial Revolution (called Industry 4.0) technologies. Industry 4.0
for food processing technology has gained a lot of attention in recent years, revolutionizing
and transforming many aspects of the food industry, including food processing and food
inspection. The introduction of Industry 4.0 for food processing to the food industry
has led to an increase in the utilization of artificial intelligence in the food sector, which
addresses the various issues that arise in the food sector through innovative approaches.
Industry 4.0 for food processing [156,157] integrating technology or intelligent systems
into traditional industries enhances the safety and quality of processed food, standardizes
production processes, reduces production costs and time, conserves energy and resources,
and minimizes food loss and waste. Figure 8 introduces the elements related to AI and big
data in Industry 4.0 for food processing.

More and more researchers are now conducting in-depth research in the food sector,
more AI methods will emerge, and the amount of AI applications will continue to rise in
a straight line. Here are some of the latest and most cutting-edge AI technologies being
applied to the food industry, covering synthetic food, food production and energy effi-
ciency management, supply chain management, sales forecasting, assisted cooking, and
personalized nutrition. Compared to traditional naturally derived ingredients, machine
learning and biotechnology can be used to create new synthetic foods using technologies
similar to 3D printing, such as meat-free plant-based meat and egg-free cakes. By using
the Internet of Things, deep learning and computational vision technologies can mini-
mize waste energy and material resources, making production processes more efficient
and environmentally friendly. At the same time, AI can also enhance the quality of food
production by automatically controlling details of the production process, such as tem-
perature, humidity, and ventilation, based on monitored environmental parameters. AI
technologies can intelligently track large supply chains to ensure food traceability and
improve corporate response to crises by monitoring risk factors such as weather and natural
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disasters that may affect food production and distribution, which is called supply chain
management. Sales forecasting refers to feeding large amounts of data into AI models
(such as the recently popular ChatGPT 4.0 model [158,159]), which can accurately predict
consumer buying behavior. For example, factors such as food recipes, tastes, and weather
drive consumer demand based on consumer buying habits and calendar events to promote
sales to achieve personalized sales forecasts. The use of computer vision technology can
help chefs design dishes and improve ingredient recognition and the quality of dishes,
which is called assisted cooking. Nowadays, with the widespread popularity of smart
bracelets, weight scales, and sports watches, users’ physical data can be accessed by these
devices, and they can also be combined with artificial intelligence technology to analyze
users’ physical conditions and provide more personalized health management solutions.
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4.1. Future Development Direction and Outlook
4.1.1. Application Prospects of Emerging Technologies

Applications for emerging technologies include augmented reality, virtual reality,
blockchain, and edge computing. Augmented reality (AR) and virtual reality (VR) technolo-
gies can provide immersive food experiences that help consumers better understand the
origin, preparation process, and nutritional information of products, enhancing consumer
engagement and trust. Blockchain technology can provide food traceability and trustwor-
thiness, ensuring transparency and security in the food supply chain. Consumers can track
information on the origin, processing, and transportation of food to ensure the quality and
traceability of products. Edge computing pushes data processing and analysis to edge
devices close to the data source, allowing real-time data processing and decision-making
at places such as food production sites or farms, improving production efficiency and
quality control.
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4.1.2. Possible Directions for Innovation and Improvement

Possible directions for innovation and improvement cover the application of deep
learning and reinforcement learning, as well as multimodal data fusion. By further devel-
oping deep learning and reinforcement learning algorithms, the prediction and decision-
making capabilities of AI systems in the food industry can be improved to better address
production, quality control, and risk management issues. Multimodal data fusion technol-
ogy will integrate multiple data sources (such as images, text, sensor data, etc.) to provide
more comprehensive food information and analysis results to help decision-makers better
understand and manage food production and supply chains.

4.1.3. Exploration of Feasibility and Sustainability Issues

With the increasing amount of data in the food industry, it has become particularly
important to protect the privacy and security of data for consumers and businesses. Appro-
priate data protection policies and technical measures are needed to guarantee the secure
storage and transmission of data. In addition, training professionals with AI and big data
analysis skills are key, and there is also a need to popularize and promote related technolo-
gies so that more businesses and farmers can benefit from AI and big data applications.
As we advance AI and big data applications, it is imperative to intensify our focus on
mitigating their adverse environmental impacts. Proactively exploring eco-friendly data
center solutions and optimizing energy consumption strategies becomes paramount to
ensure a sustainable trajectory of our progress within the natural world. These directions
and issues provide an outlook, but the sustainability of actual developments and solutions
requires further research and practice.

4.1.4. Future Challenges Ahead

In the future, the food industry will face numerous challenges. The production process
generates a vast amount of data. Industry 4.0 for food processing plays a role in captur-
ing these data, and big data plays a crucial role in collecting and processing these data,
which poses a challenge for pre-processing. AI technology is used to evaluate and analyze
the data produced by the food industry, but the data processed by AI often need to be
manually labeled. As for blockchain, it is a relatively new and advanced technology that
may encounter technical problems, cost issues, and data security and authenticity issues.
AI in the food industry also faces challenges such as data privacy and security, technical
complexity, and integration with traditional methods. In terms of data privacy and security,
new technologies may face potential data breach risks when processing large amounts of
consumer information [160]. In addition, due to the technical complexity, the maintenance
and updating of AI systems may require highly specialized skills, which may limit its adop-
tion by small businesses or farmers. When integrated with traditional methods, production
processes may be disrupted or uncoordinated due to technical differences. When adapting
to actual production conditions, AI systems may be affected by environmental changes. For
example, certain technologies may suffer from reduced performance in extreme weather
conditions, resulting in reduced productivity. In addition, if the algorithm relies on large-
scale data sets that fail to adequately account for local factors, applications in specific
regions may produce inaccurate results. Therefore, we need to pay more attention to these
potential problems and take appropriate measures to address or mitigate the impact of these
threats and vulnerabilities. The implementation of artificial intelligence (AI) and big data
technologies in the food industry faces a number of limitations and obstacles, especially
in terms of technical complexity and integration with existing systems. First, technical
complexity, which involves the understanding and application of advanced algorithms,
models, and data processing techniques, requires highly specialized technical teams. In
addition, as Anagnostopoulos pointed out in 2016 [161], data in the food industry are often
fragmented and heterogeneous, and consistency and standardization in processing these
data is also a challenge. In this process, ensuring the quality and integrity of these data is
particularly important. Integration with existing systems is another prominent issue [162].



Foods 2023, 12, 4511 22 of 29

Many food businesses already have large information management systems with tradi-
tional management approaches, and integrating new AI and big data technologies into
these systems requires careful planning and effective change management. Differences in
technology architecture, inconsistent data formats, and acceptance of new technologies
are also challenges in the integration process. In addition, for some traditional enterprises,
the change in culture and organizational structure is also an aspect that cannot be ignored
in the implementation process, and there may be situations such as incompatibility with
existing technologies. Figure 9 illustrates the relationship between food safety and big data,
blockchain, and AI.
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The application of artificial intelligence and big data in the food field can not only
enhance production efficiency and product quality but also improve consumer experience
and food safety. The emergence of emerging technologies derived from the combination
of AI and big data, such as predictive analytics, automated production, intelligent quality
inspection, personalized nutrition and food design, and intelligent marketing and person-
alized recommendation, will change the business model of the food industry, improve
agricultural production efficiency, and provide a more traceable food supply chain. Future
developments will need to focus on data privacy and security, talent development and
technology diffusion, and environmental sustainability [163] to ensure the viability and
sustainability of AI and big data in the food industry.

By leveraging the full potential of artificial intelligence and big data, the food indus-
try can embrace a more efficient, safer, and sustainable development to provide better
food products and services to consumers. This will play an important role in the future
development of the global food industry.

5. Conclusions

This paper explores the application of big data and artificial intelligence (AI) in the
food industry, critically analyzing the challenges these technologies face and the innovative
solutions they offer. The research in this review shows that AI and big data have great
potential and importance for the food industry. The application of these technologies has
brought significant benefits to the food field, such as increased productivity, reduced costs,
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optimized supply chain management, and improved product quality and safety. However,
we also note some of the challenges AI faces in the food industry, such as data privacy
and security, technical complexity, and integration with traditional methods. With the
continuous progress of technology, we can explore more advanced deep learning algorithms
to improve the accuracy of detection in the food field, the combination of blockchain and big
data as well as artificial intelligence to ensure the security of the data, and at the same time,
the emergence of Industry 4.0 has accelerated the development of various technologies in
the food industry, which is expected to realize a large number of industrial applications.
In addition, the close integration of AI and big data will drive the food industry toward
intelligence operations, sustainability, and innovation.
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