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Abstract: Defining smart city pillars, and their nature and essence, continues to be debated in the
scientific literature. The vast amount of information collected by electronic devices, often regarded
merely as a means of rationalizing the use of resources and improving efficiency, could also be consid-
ered as a pillar. Information by itself cannot be deciphered or understood without analysis performed
by algorithms based on Artificial Intelligence. Such analysis extracts new forms of knowledge in the
shape of correlations and patterns used to support the decision-making processes associated with
governance and, ultimately, to define new policies. Alongside information, energy plays a crucial role
in smart cities as many activities that lead to growth in the economy and employment depend on this
pillar. As a result, it is crucial to highlight the link between energy and the algorithms able to plan and
forecast the energy consumption of smart cities. The result of this paper consists in the highlighting of
how AI and information together can be legitimately considered foundational pillars of smart cities
only when their real impact, or value, has been assessed. Furthermore, Artificial Intelligence can be
deployed to support smart grids, electric vehicles, and smart buildings by providing techniques and
methods to enhance their innovative value and measured efficiency.
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1. Introduction

A process of transformation inevitably has a cost, which can be considerable when
it involves a paradigmatical leap and affects the individuals. This change of perspective
derives from a lack or incompleteness of policies able to manage one or more social
problems, causing, as a result, a degradation with respect to the quality of life or even
safety. The demographic explosion that started in 1950 has made our planet more and more
densely populated, causing the uncontrolled growth of a larger and larger number of urban
areas. In 2021, Tokyo-Yokohama had a population of 37,843,000; Jakarta had 30,539,000, and
Delhi had 24,998,000 [1], raising dramatic problems related to transport, pollution, energy,
poverty, and so forth. In this sense, scaling up the urban architecture is an approach that is
hardly sustainable, from both the economic and the social points of view. As a result, one
interpretation of the concept of a smart city could emerge from the need to adopt different
perspectives on the usage of technology and to develop a deeper awareness of the role
of the citizen. Even though the term smart city [2] was introduced in 2009 to denote an
idealized city organized by means of intelligent automatisms, there is yet to be a common
agreement on a comprehensive, universal definition (see Section 2.1).

Whereas there are conceptual variants in the determination of the term, according to
Lee et al. [3], three factors can be used to identify a smart city: the technology, the people,
and the institutions. As such, the goal of a smart city should be the integration of these
three components to resolve urban problems and to help create more sustainable, livable
environments for citizens. Adopting this perspective, a smart city can be defined as the
connection effort among physical, social, technological, and business infrastructures to
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improve operational efficiency and the collective quality of life [4]. This connection should
result in a framework composed of four general components, which can be summarized as
smart communities, smart energies, smart transportation, and smart healthcare [5]. Data
are the backbone of a smart city. In fact, data are used to drive the operation of a smart city,
through monitoring, forecasting, and real-time management [6]. Smart city implementation
is strictly connected to collection and data analysis. Accordingly, Silva et al. [5] have identi-
fied an architecture comprising four layers: the sensing, transmission, data management,
and application layers. The sensing layer is necessary to collect the data, and it consists
of a sensor network, which gathers data from various physical devices. The transmission
layer is used to converge all the data sources and communication networks. The data
management layer performs data storing and analysis to support decision-making tasks.
The application layer is the mediator between the citizens and the data management layer,
representing all the services available in a smart city. Through this theoretical architecture,
IoT has been strongly associated with the concept of the smart city [7]. Recently, AI has
started to be considered a powerful tool for the evolution of smart cities. AI-backed appli-
cations are still in a developmental phase, and their full potential has yet to be achieved [8].
However, the introduction of AI has already drawn attention to the potential double-edged
sword effect, according to which negative consequences could go unnoticed as a result of a
techno-optimistic bias. As advocated by Yigitcanlar et al. [9], there is a need to research
the potential shortcomings of AI when applied to smart cities. Hence, the energy-related
components of a smart city would be under consideration for this purpose, particularly in
relation to the ethical dilemmas related to environmental concerns and the complementary
potential policies. In fact, the goal of decarbonization is emerging as the main goal in
the evolution of smart cities. Cities, in particular, have long been associated with high
generations of greenhouse emissions. In this context, stationary energy is one of the largest
contributors to the greenhouse emissions of cities, along with the transportation sector [10].
Most importantly, a relatively small number of urban areas appear to account for a dis-
proportionate share of the world’s carbon footprint; hence, this degree of concentration
indicates that, in many cases, local-level governments have a jurisdiction over emissions
of the same order of magnitude as national governments [11]. This call for action is of
great importance as according to the International Energy Agency, global energy-related
carbon dioxide emissions rose by 6 percent in 2021, reaching a level of 36.3 billion tonnes,
the highest ever recorded [12].

Although the term pillar is not always well defined within the definition of the smart
city (see Schipper et al. [13] for an overview), its definition generally revolves around
governance, economy, mobility, energy, and people and does not consider the pervasive
influence of information (in the shape of Big Data) and, more specifically, AI. However, the
effective value and governance of both with regard to smart cities is a relatively new topic,
and it deserves a thorough analysis.

An interesting challenge consists in the assessment of smart city pillars in terms of
(i) a value that can change over a period of time and that is defined by the contraposition
between the cost related to its realization and the resulting benefits to the citizens and the
environment and (ii) the definition of the policies and monitoring techniques. As a result,
the contribution of this work consists of (i) an analysis of the value and the principles
governing information with relation to the Internet of Things (IoT) and, more generally,
Big Data when deployed towards smart cities; (ii) a discussion of the value of AI within
smart cities, especially with regard to what concerns the impact on the environment; and
(iii) a review of whether energy-related components of a smart city may benefit or not from
the introduction of AI applications.

This paper is organized as follows: Section 2 reviews the methodology for the identifi-
cation of the data; Section 3 discusses the value of information and its governance when
it is originated from IoT devices on one side and as a whole on the other, such as when
it is exploited in terms of directing citizens in the shape of nudging; Section 4 debates
the value of AI per se in terms of the impact on the environment; Section 5 reviews the
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environmental challenges of the energy-related components of a smart city when supported
by AI; Section 6 discusses the contribution of AI to smart cities by presenting a few case
studies. Finally, the article draws some conclusions in Section 7.

2. Methodology for the Collection and Review of the Data

The research area surrounding the concept of smart cities is very dynamic and in
continuous evolution. This has resulted in a vast knowledge being produced that allows
for an integrative literature review methodology. Hence, a careful collection and filtering of
relevant academic papers has been performed for the scope. Two databases have been used:
Google Scholar and the Catholic University of the Sacred Heart’s Online Public Access
Catalogue (OPAC). The primary focus was to collect peer-reviewed papers published by
high-quality publishers. The aim was to retrieve studies that were pertinent to previously
formulated questions:

• What studies concern the development of AI in the three proposed energy-related
areas (smart grid, EVs, and smart building) of a smart city?

• What research has been carried out in relation to the negative effects that AI can have
when applied in those areas?

• How effective have nudging practices empirically been in inducing energy-saving
behavior or in switching to renewable energy?

• Is AI a sustainable technology? What about data collection techniques?

The references of the collected papers were used to find additional resources to expand
the analysis. The inclusion criteria were based on the relevancy of an academic paper in
comparison with the issues planned for investigation, with the objective of providing a
good balance between empirical research and qualitative studies. Instead, exclusion was
considered for research with repetitive results or for research that could not be contextual-
ized in the development of a smart city.

After an exhaustive evaluation of all the retrieved academic papers, additional sec-
ondary data (e.g., reports, websites of governmental agencies, newspaper articles from
reputable publishers . . . ) were searched for on Google to further support the emerging
findings and to build up the case studies presented in Section 6. A deductive approach has
been used to derive the final considerations.

Finally, with regard to the other existing literature, this work aims to present an
objective analysis of AI, avoiding approaches that are either over-positive [14] or biased by
anthropocentric interpretations of AI, where the latter would be regarded as a convoluted
issue and potentially dangerous [15,16].

2.1. The Concept of “Smart City” and the Contribution of This Research

In the scientific literature, the assortment around the definition of a smart city (Table 1)
has contributed to ideals and expectations that lack a corresponding concreteness in the real
world [17]. Albino et al. [18] have supported the idea that the uniqueness of the objectives
that may be endorsed may compromise a universal assessment of a smart city. With regard
to this matter, Burns et al. [19] have discussed how the variety of smart city initiatives
around the world has produced a term that is strictly related to the contexts in which
it is deployed.

Table 1. Some definitions of the term “smart city” in the scientific literature.

Source Definition

Harrison et al. [4]
“Connecting the physical infrastructure, the IT infrastructure, the
social infrastructure, and the business infrastructure to leverage

the collective intelligence of the city”.

Almirall et al. [20]
“A concept that encompasses most of the areas where local

governments operate: transportation, civic entrepreneurship,
democratic transparency, clean energy, and services provision”.
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Table 1. Cont.

Source Definition

Mohanty et al. [7]

“A place where traditional networks and services are made more
flexible, efficient, and sustainable with the use of information,

digital and telecommunication technologies, to improve its
operations for the benefit of its inhabitants”.

Park et al. [21]

“A concept has gained substantial attention over the last few
years, as it applies advances in the Internet of Things (IoT)

technology to enhance the quality and efficiency of services and
resources”

Wang et al. [6]

“The idea . . . is to use information technology to drive the
operation of the city, which includes monitoring, forecasting, and

real-time management. The combination of IoT and AI can
replace the traditional means of managers in the past.”

Lazaroiu and Roscia [22]

“The large and small districts are proposing a new city model,
called the smart city, which represents a community of average
technology size, interconnected and sustainable, comfortable,

attractive and secure.”

The study of Ahvenniemi et al. [23] is among the first to highlight the importance of
the sustainable development of smart cities and how the employment of new technologies
should not be an end in itself. In particular, from this perspective, Kramers et al. [24]
have assessed how different ICT solutions could be used to reduce energy consumption in
smart cities. More recently, Hoang et al. [25] have reviewed the introduction of renewable
resources into smart cities, along with the potential challenges. As electric vehicles are
becoming an important topic in the discussion on the demand-side of a smart grid, the
barriers to their adoption have been comprehensively evaluated by Adhikari et al. [26] in
connection with the energy requirement. Similarly, the argument has been assessed by
Sanguesa et al. [27], but in the specific framework of smart cities. While many AI applica-
tions have been developed for the smart grid, and Omitaomu and Niu [28] have provided
a complete survey on the matter, there is yet to be an analysis of whether the introduction
of AI can be an actual solution to environmental concerns. In fact, Yigitcanlar et al. [9] have
provided the general shortfalls of AI when deployed in smart cities. It is important to point
out that data collection can not only support AI but also nudging techniques. The idea of
hypernudging has been presented by Yeung [29], and it has been further enriched by the
work of Ranchordás [30] with regard to the academic literature on smart cities in terms of
legal and ethical issues. Hence, a review of the effectiveness of hypernudge techniques
aimed at conscious energy consumption will be provided to expand this discussion.

3. Evaluation of Information

According to The Economist [31], not only are data the new oil, but it is even rea-
sonable to talk about a data economy as a force driving the economic market. Aside
from text, information over the internet is delivered in different shapes, ranging from
the visual (i.e., YouTube videos), to emoticons, to likes and tweets, although there is an
impressive amount of data revolving around individuals that is generally overlooked. For
instance, every time we visit a website, the deployment of cookies on our device makes
the website able to recognize us in the future; the simple act of using a cash withdrawal
machine triggers a camera that records the movements of the customer; every financial
transaction is meticulously recorded and preserved; supermarkets and commercial chains
study our shopping habits and propose discounted items according to customers’ previous
purchases; navigator systems embedded in smartphones will send the users an e-mail
with a monthly report about the visited places. IoT has emerged as the technical backbone
of the information and communication technology (ICT) current architecture (see [7,32]
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regarding cloud computing technology). Sensors are the most important components of an
IoT system. The design of a smart city application is contingent upon the way the sensors
are deployed; mobile, stationary, and crowd-sourced sensors perform different methods of
data collection [33]. Whereas stationary sensors always monitor the same area, the mobile
ones are implemented on vehicles, such as buses or garbage trucks. Crowd-sourced sensors
are a special class of mobile sensors, where the digital devices of the citizens are used
to monitor the surrounding environment. Cloud computing technologies provide data
storage and platforms to process the sensors’ data and to deploy smart city applications.
According to Bauer, there are mainly four different data analytics approaches that can be
identified in smart cities: descriptive, diagnostic, predictive, and prescriptive analytics.

Big Data is a recent paradigm denoting a large amount of unstructured data deriving,
for example, from sensors typically deployed in an IoT structure in the e-health domain. The
so-called “4 Vs” identify some of the crucial issues emerging with Big Data, i.e., (i) volume,
(ii) velocity, (iii) variety, and (iv) veracity: specifically, the latter poses some problems
revolving around the validity of data and, indirectly, implies the existence of procedures
protecting access to information. As highlighted by Hashem et al. [34], Big Data represents
a remarkable value in smart city development in different aspects: (i) weather data, in order
to prepare the citizens for adverse meteorological conditions, see Chin et al. [35]; (ii) better
quality of life, resulting from the facilitated access to government procedures or, as pointed
out by Chow et al. [36], even to public libraries; (iii) smart healthcare, following a more
efficient monitoring of patients; Praman et al. [37] highlight that the Big Data concept has
triggered a deeper change, going beyond the development of new IT architectures, as it
embraces the social awareness of health issues; (iv) smart transportation, determined by a
more rational choice of routes according to factors such as traffic peaks, pollution level, and
safety criteria. See, for example, Gohar et al. [38] where the authors define an Intelligent
Transportation System (ITS) able to transform an ordinary city into a smart city. The
framework is composed of four modules, namely a Big Data Acquisition and Preprocessing
Unit, a Big Data Processing Unit, a Big Data Analytics Unit, and a Data Visualization Unit.
ITS is able to generate warnings when, for example, the level of traffic exceeds a given
threshold. The final aspect is (v) smart governance. An example of a framework is given by
Ju et al. [39]; the framework is structured into three layers: a data-merging layer, presenting
citizen-centered panoramic data generated by assembling citizen-related big data, followed
by a knowledge–discovery layer which, by using statistical methods, generates a profile of
citizens in terms of urban public service delivery. The last component is a decision-making
layer, supporting governance decision making by using data mining methods.

On the other hand, information ubiquity can bring different benefits, from a better
and higher level of education (see Livingstone [40] for a fair assessment on the benefits
and the difficulties) to the granting of access to distributed services to mentally disabled
persons (Chadwick [41]). More specialized technologies, such as blockchain (a robust and
resilient digital ledger of transactions being duplicated and distributed across the whole
network of computer systems, see [42]), serve different applications revolving around
smart cities. With regard to the former, Karale et al. [43] consider different applications
based on blockchain in smart cities: (i) secure data communication, (ii) smart contracts
(a transaction between two parties without an intermediary), (iii) citizen participation,
(iv) economy, (v) renewable energy, (vi) safety, and (vii) health.

As data content regarding the individual is sensitive, proper regulation and legislative
procedures have been put in place, from the General Data Protection Regulation approved
by the EU Charter of Fundamental Rights [44] to the European Data Protection Board’s
guidelines on processing of personal data through video devices [45].

However, data can be found in not so obvious places, such as smartwatches communi-
cating information regarding the physiological status of the human body, i.e., heartbeat,
blood pressure, number of steps taken by a user in a day and so forth, to the software in-
stalled on our smartphones, which can be used to monitor bad habits—such as a sedentary
lifestyle—and provide the user unsolicited recommendations about her health. Another—
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perhaps hidden—source of data can be found in the garbage bin: for example, a bill of a
supermarket reveals the preferences of a customer in terms of bought products, the size
of a family and the favorite day for shopping (working days or weekends); bills about
electricity or any other utilities provide information about the daily habits of a consumer.
Furthermore, sensitive documents (such as an expired credit card), even if shredded, can be
recomposed in their original form. Although this information may not be meaningful when
taken separately, by an in-depth analysis it can lead to identity theft [46]. The neutrality of
data is obviously a myth, as has emerged recently in some courts of justice in the U.S.A. [47],
where the deployment of AI algorithms revealed that the serious failures in predicting
violent crime were being affected by a bias based on race and prejudice in the data collection
process. More generally, biased data can be used to influence opinions and beliefs.

With regard to monitoring and governing information, the different data sources pose
different challenges. IoT devices are usually considered to be the basic components of Big
Data architectures. Although this paradigm offers a wide scalability, traffic congestion in
the network may occur, due to undersized nodes (in terms of hardware) or faults: these
issues can be prevented by techniques where the performance of the architecture is studied
by building a mathematical model and then simulating it in terms of discrete events (for
example, see Sankaram [48]). Furthermore, a new paradigm has recently emerged called fog
computing [49,50], where sophisticated data pre-processing can take place at the IoT level
(therefore, locally), instead of the data being transmitted directly to cloud services, which is
demanding to the latter’s the entire processing and slows the system performance down.

Table 2 summarizes the different sources of information, their value, and the corre-
sponding management techniques of each.

Table 2. Data value and its management.

Data Source Value Management/Monitoring

IoT Data generation. Examples: eHealth, Transport,
Weather

Integration within Big Data by means of
frameworks. Fog computing

Blockchain Security, Participation, Digital democracy Distributed processing

Cloud Data distribution, Liquid data GDPR

Hidden data Profiling. Very hard to achieve

Cognitive bias Biased algorithms (negative value) Achievable by using algorithms correcting bias
in data

Nudging for Energy Savings and Environmentally Aware Choices

The objective of nudging is to steer people in certain directions for their welfare and
well-being, without affecting their freedom of choice [51]. Their behavior is influenced
by how the choices are presented to their decision makers, or in other words, by the
choice architecture. It is important to specify that nudging does not involve any direct
form of economic incentives to influence the decision making, and it does not forbid
any other options. One example of such a practice can be identified in the competition
“Project Carbon Zero” held in Singapore for primary and secondary school, in which
students were encouraged to learn energy-saving tips and to reach the goal of reducing
their overall electricity usage at home by at least 10 percent [52]. The common commitment
to reducing energy consumption and the information received on the issue of climate
change were indeed effective in inducing people to make more environmental friendly
choices. It follows that nudging could be of great importance in facilitating energy-saving
and reducing greenhouse emissions, especially given the emerging complexity of how such
issues can be effectively solved. It is believed that nudging could have great potential if
expanded to promote pro-environmental behavior, and the technique has yet to receive
adequate consideration for this purpose [53]. AI can be considered a promising tool in
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this context, which could lead to more environmentally aware choices concerning energy
saving. To discuss this point, it is necessary to review the available forms of nudge, such
that a theoretical assessment of whether AI can support such practices can be made. In
the context of a smart city, it is also of great importance to understand how these types of
nudges could be implemented and to understand the ethical issues related to them.

The enormous collection of data that is likely to happen in a smart city framework
could facilitate the design of highly specific nudges, especially when fed into AI algo-
rithms. This data-driven nudging technique has been referred to as hypernudge, which
allows for a dynamic refinement of an individual’s choice architecture [29]. The most
significant difference from regular nudging techniques is that the latter only allow for
universal, population-wide initiatives; thus, they may be less effective on a smaller scale.
Thunström et al. [54] have pointed out that the distributional effects of a nudge may be far
from optimal as they may fail to influence the individuals for which the policy itself was de-
signed. From this perspective, hypernudge techniques may support more targeted pushes
towards desired behaviors. There are different forms of nudges, from which Sunstein [51]
has listed ten techniques: default rules, simplification, use of social norms, increase ease
and convenience, disclosure, warnings, precommitment, reminders, elicit implementation
intention, and information on past choices. However, in the context of reducing energy
consumption, not all the nudging techniques have been proven effective on all occasions.
In the case of shifting to an energy supplier that relies on renewable resources, a default
transfer increases the number of individuals that adapt to the decision [55]. However, the
technique of default rules in the form of enrollment in automatic bill payments has been
shown to increase energy consumption [56]. In addition, other types of nudges do not
represent the necessary encouragement. Social norms, which can be defined as a technique
that relies on influencing people through peer comparison, seem to fail, particularly when
not supported by monetary incentives [57,58]. Hence, disclosure of the cost savings ap-
pears with the reduction in energy consumption. Still, receiving constant information on
energy consumption appears to better support the purpose of energy saving [59]. Moreover,
warnings through visual representation tend to be a motivational aid [60], as well as tools
supporting goal setting and commitments that can serve as an effective implementation
intention to reduce energy consumption [52,61]. A study conducted by Ruokamo et al. [62]
has shown that peer comparisons decrease electricity consumption only when combined
with energy-saving tips, but most importantly, energy-saving behavior is more challenging
to encourage within households that are less interested in reducing energy consumption
whatever the motivation. Kendel et al. [63] suggest that high-income and low-income
households should be engaged in energy-saving behavior by using different types of infor-
mation and objectives. Apps that provide push notifications, which can be categorized as
remainders, can be successful thanks to the advantage of the possible personalization [64].
The latter is an example of a hypernudge. With regard to this topic, AI could have the
potential to support personalized forms of the types of nudges listed; yet, there appears to
be a scarcity of AI-backed nudges. As previously discussed, AI-backed virtual assistants
could have the potential to be a useful means of nudging inside consumers’ houses to
lower energy consumption. However, such technologies entail consumers paying a price
to own them, such as with smart meters. As it comes as a choice, consumers may not be
interested in acquiring energy-saving devices. Free riding can happen; some households
might not respond to any incentive to purchase energy-saving appliances because they
prefer to believe that greenhouse emissions can be attenuated by others [65]. However, is it
ethical to use a private possession, such as a virtual assistant or a smartphone, to influence
the behaviors of the owners? Two issues may arise with this form of hypernudge. The first
is that the use of personal possessions may make the nudge less transparent and noticeable
to the consumers, thus going against the guidelines of nudging. Similarly, the second is that
opting out may be harder as it would be necessary to turn down some functionalities that
may comprise the overall working of the device. Conversely, consumers may be willing
to be subjected to recommendations and reminders but may then decide to ignore them



Smart Cities 2022, 5 735

with time. For instance, the effect of moral suasion for energy saving diminishes as the
number of interventions increases [66]. Overall, the concept of hypernudging has been
associated with the concept of a smart city in order to discuss the ethical concerns related
to privacy, autonomy, and subtle manipulation. Even if it appears that most applications
focus on targeting a single household to reduce energy consumption, all the critiques of the
hypernudge can still be valid.

To conclude, in general, environmentally oriented nudges seem to be rather limited
with respect to their behavioral effectiveness, and their impact may be highly context-
dependent [67]. Moreover, they appear to work more effectively if they are complementary
to incentive-based measures.

4. Evaluation of AI

The term AI denotes a discipline that stemmed from computer science and, specifically,
from the work of A. Turing [68,69]. AI has been under severe criticism over the last century
(partially losing its credibility in periods of time called “AI winters” [70], due to some
unjustified claims), although it has recently been leading the development of industry 4.0
and IT companies [71].

Historically, AI has been evaluated according to its capacity for playing classic board
games against humans [72] and then by taking into account more challenging competi-
tions [73], although a full evaluation of the discipline requires a multidisciplinary perspec-
tive, including linguistics, psychology, cognitive sciences, philosophy, and ethics.

However, there are some aspects related to AI and its deployment that need to be
analyzed. Computation has a cost determined by the time taken by a calculus system to
execute one or more algorithms, which can be determined in terms of memory allocation,
Central Processing Unit (CPU) usage, the time taken to perform bug fixing, and, finally, the
energy consumption requested by a machine. The last factor refers literally to the power
requested to feed hardware consisting of one or more servers and data centers. According to
Forbes [74], 2.5 quintillion bytes of data were produced on a daily base in 2019 from different
sources: users, Graphics Processor Units, healthcare devices, IOT sensors, and so forth.
This growth has made more evident the inadequacy of the classical techniques representing
data structures, such as the relational model (where data are represented in tables linked to
each other through relationships), and of consolidated hardware infrastructures, based on
centralized solutions providing on-demand services to clients. However, the innovation
of data models, and logical and physical models, reflects the deep changes occurring
in society and reflects different aspects: more and more entangled communications via
social networks, remote, on-line labor, and entertainment based on digital multimedia
(tablets, smart TVs, smartphones), just to name a few. The concept of the liquid society
was introduced by the philosopher Zygmunt Bauman [75] to denote the change of social
habits due to the establishment of a new paradigm based on the fragmentation of working
activity as the internet has made it possible to connect people physically distant at an
insignificant cost and, more generally, by the way in which ordinary people use and
propagate heterogeneous information. The distributed data models recently built, where
no center exists, suit well the need to deploy sensors collecting data continuously, which
are pre-processed, indexed, catalogued, fragmented, and then reassembled to answer to
complex queries, triggered either by search engines on the web or requested by specific
applications belonging to the AI’s realm.

Such an infrastructure comes with a non-negligeable cost. The emergence of new
approaches—see, for example, edge computing [76], which is based on the concept of
proximity in order to pre-process data as close as possible to the sensors—allows the
reduction in the response time, the requested bandwidth, the computational effort, and,
indirectly, the value of energy consumption. As a result, the adjective green, expressing the
concern for an ethical, parsimonious, and rational exploitation of the available resources,
can be applied within reason to smart cities and AI in different ways. By the term Red
AI, Schwartz et al. [77] meant the impact caused by AI software by means of the carbon
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footprint. The problem, which is due to grow in time, is even more evident for those AI
applications which are computationally intensive, such as Deep Learning and, in general,
paradigms based on artificial neural networks, where a training activity on datasets is
requested. The authors propose a simplified and yet convincing formula to consider some
key indicators, such as the cost of processing one data example and neglecting some others,
such as the number of epochs requested to train an algorithm. Contraposed to Red AI,
Green AI aims at favoring a type of computation oriented to reduce energy consumption.
To properly evaluate the nature of Green AI, the first step results in measuring quantitively
the energy consumption taken by the execution of an AI algorithm. Typical connectionist
approaches consist of Artificial Neuron Networks (ANN), which stem from Rosenblatt’s
perceptron [78] and are being further developed into a model of the human brain’s neurons
and dendrites. Formally, an ANN consists of a large number of cells able to perform a
simple operation deployed into tiers. The neurons in the first tier receive the raw data,
while the other tiers retrieve their input from the previous one; finally, the last one produces
an output (i.e., a classification). The tiers are connected through weighted arcs. A neuron
is activated or not depending on the value of an activation function calculated as the
summation of the products between each input and the weight assigned to an incoming
arc, plus a bias value. The learning process consists of an algorithm called backpropaga-
tion [79], where the weights of arcs are optimized according to a mathematical method
called gradient descent, an iterative process that can be—according to the complexity of
the ANN—computationally expensive.

Labbe [80] reviewed the work of OpenAI when training 45 terabytes of data and
running a cluster of 512 V100 GPUs for nine days, resulting in 27,648 kWh measured
against 27,648 kWh, which is the average household usage in the US. Saenko [81] debated
the risks of applying inefficient training-language-processing AI (such as the one used
by Google) to the continuously increasing data, proposing a novel paradigm meant to
reduce the model size, known as a shapeshifter network. Specifically, Saenko targets a
typical problem of ANNs called over-parametrization (i.e., when the number of parameters
of the ANN is much larger than the number of training data). Some approaches—such
as parameter pruning—mitigate the issue, although parameter-sharing techniques pro-
duce better results by reducing the number of weights in an ANN, resulting in a smaller
amount of allocated memory. The approach proposed by Plummer et al. (Neural Param-
eter Allocation Search [82]) allows the generation of a high-performing model provided
with a fixed number of parameters and a specific architecture, reducing considerably the
computational complexity.

However, the issue regarding the energy consumption level affects IoT, which is
based on the massive deployment of embedded sensors collecting data. A unique Internet
Protocol (IP) address is associated with each component to send data over a network or to
communicate with other devices. A component called the IoT Hub has the responsibility
of assembling and transferring the data to more complex software systems, performing
a deep analysis to, for example, discover new knowledge, data trends, and patterns and,
ultimately, to forecast a significant aspect of a business, such as the level of pollution or the
energy needed for a building. As a result, an IoT results in a combination of hardware and
software. Tahiliani et al. [83] review the layer of IoT architecture organized into the different
layers (perception, transport, processing, network and application) identified in sensing,
communicating, processing, and communicating across the layers as the power-hungry
components. The authors recall different techniques to optimize energy consumption (such
as multi-hop) in transmission over long paths. The way in which the sensors work can be
oriented to a scheduling that switches them off when they are not needed, as well as to
data centers where the load is balanced according to dedicated algorithms. More generally,
the areas subject to improvement concern (i) data processing, as the information flow can
result in a bottleneck if the architecture has not been properly designed, (ii) perceiving, by
limiting the activity of sensors, and finally (iii) processing, by reducing the computation
complexity of the business analytics processes.
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AI and Smart Cities

Smart cities share a strong bond with AI. Specifically, AI is emerging as a particular
facilitator in the process of providing faster data analysis to identify current and probable
future urban issues. Up to now, it has mainly been applied to providing accurate estimates
for energy modeling and planning, supporting the adoption of renewable energy sources,
developing tools for health care, and ensuring sustainability in mobility and transportation
systems. Cugurullo [84] provides a definition of Urban Artificial Intelligences, including
innovative concepts such as autonomous cars, drones and nanorobots, and a city brain as
an instance of platform urbanism.

Smart city AI applications are still in an evolutionary phase, and their full potential
has yet to be realized. Still, the introduction of AI has already drawn attention to the
potential double-edged sword effect that can go unnoticed because of the techno-optimistic
perception of a smart city; hence, social, ecological, and economic hidden costs may be
ignored when there is support for current, unsustainable urban models [85]. There is the risk
that structural inefficiency and counterproductive urban behaviors that date back to a time
when there was less attention paid to scarce resources can be amplified by AI applications.
Similarly, the social disparity may be accidentally reinforced, as highly connected citizens
are more represented in datasets than children, marginalized groups, and older generations.
Moreover, these omitted groups of citizens may compromise the interconnectivity that is at
the base of smart city development.

For example, Ullah et al. [86] discuss the use of AI in different crucial aspects of a smart
city, such as intelligent transportation systems, cyber-security, energy-efficient utilization of
smart grids, and efficient deployment of automatic aerial vehicles, by using techniques of
Deep Reinforcement Learning (whose idea consists in pairing the connectionist approach
known as Artificial Neural Network (ANN) with another technique called Reinforcement
Learning, where a machine learns how to classify new observations according to a deter-
ministic system of awards and penalties). Machine Learning (ML), a branch of AI deploying
statistical methods (supervised or not by a user) is deployed to forecast the behavior of
crucial key factors of a smart city. With regard to traffic congestion, Akthar [87] reviews
different ML methods, ranging from clustering models to ANNs; energy conservation in
buildings is studied by Dounis [88], who joins two well-known AI techniques, Compu-
tational Intelligence and Mobile Agents, together with ambient intelligence; finally, see
Masood et al. [89] for models predicting the amount of pollution using fuzzy logic (an
alternative branch of logic to Boolean formalisms, where the yes/no contraposition is
translated into a real number between zero and one).

Golubchikov et al. [90] claim that AI and robotics can be part of the deployment
of smart cities. What emerges from the analysis of several case studies is a significant
difference between Global North and Global South, with different social considerations.
Specifically, the authors have grouped the cases into five clusters (automation, decision
making, education, smart infrastructure, and smart mobility), with which cities can consider
AI and robotics.

However, despite some paradigms related to statistical learning’s (and more generally
to Machine Learning’s) claim to be able to cope with uncertainty, Batty [91] remains
rather skeptical, especially when AI pretends to replace human activity with regard to city
planning. Kassens-Noor [92] compares some aspects of AI when applied to smart cities,
warning about the risks of full automation, questioning the actual purpose of connected
autonomous vehicles, and finally, criticizing the impact of AI on a society once all the
most repetitive jobs have been taken by machines. Similarly, Yigitcanlar [93] remarks on
similar concerns as integrating AI within a smart city could determine more issues, such as
a degradation of urban problems (unless paired with a system of democratic governance)
and questions revolving around the concept of sustainable urbanism when AI is not used
on holistic terms. Finally, Cugurullo [15] introduces the term “Frankenstein urbanism” to
denote some of the risks in involving AI software inside smart cities’ architecture, noting
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however that the same neologism deviates significantly from what AI claims to be as the
term Frankenstein is clearly anthropocentric and somewhat biased by classical literature.

5. The Role of AI in Energy Issues

In this section, the objective is going to be the analysis of the energy-related elements
of a smart city (Figure 1) and, in particular, their intersection with AI to tackle environ-
mental concerns. The three sectors that are going to be under consideration are electricity
generation, transportation, and buildings, given that they are the major determinants of
greenhouse emissions [94]. It is expected that AI might be able to drive decarbonization the
most in these sectors. Moreover, transportation is currently shifting towards electrification;
so, it is important to assess the sustainability of this deviation. Overall, the introduction of
renewable energy in the context of a smart city is going to be considered. Renewable energy
is obtained by resources that are not extinguishable; in fact, the advantage over energy
coming from fossil fuels is that the natural endowment of fossil fuels is limited. Thus, for
a type of energy to be included in this category, its source should be not depletable or
at least be replenishable. The most common forms of renewable energy are wind, solar,
hydropower, biomass, and geothermal. Their distinguishable characteristic is that their
production of greenhouse gases and pollutants is less intensive than that of non-renewable
resources. However, not all renewable energy is carbon-free, as in the case of biofuels and
bioenergy; correspondingly, not all non-renewable energy is carbon-intensive, as a nuclear
power plant does not emit any greenhouse gases, even if it relies on a scarce resource such
as uranium [95]. Obviously, some renewable energy allows for decentralization, intended
as the ability of single households to be ideally self-reliable, such as through the installation
of solar cells or wind turbines. However, this is not the case for all renewable energy.
Therefore, understanding how an energy system could work in a smart city and its linked
challenges is paramount for the discussion.
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Figure 1. Energy-related elements of a smart city.

5.1. Smart Grid

The concept of a smart grid is stringently related to the introduction of fluctuating
renewable resources and shifting the reliance away from fossil fuels, while, at the same time,
keeping the demand and the supply balanced [96]. However, from a wider perspective,
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the typical core feature to identify in a smart grid is a bi-directional power flow, meaning
that consumers are also producers of energy themselves, leaving behind the traditional
role of passive users [97]. The main challenge that the development of smart grids faces is
the grids themselves, as most of them were constructed to accommodate large fossil fuel-
powered plants, delivering power in one direction only, to consumers [98]. An overview of
a regular power grid is illustrated in Figure 2. Hence, three components are fundamental
for this bi-directional flow; these are demand-side management, storage technologies, and
real-time infrastructure management. Each of these components favors the integration
of technological support. In particular, AI has been applied in four main areas: load
forecasting, power grid stability assessment, faults detection, and security problems [28].
To clarify the meaning of the latter area, security problems may arise with the introduction
of information technologies themselves into the electric grid as they can allow cyberattacks
aimed at disrupting the normal, regular operations. As a result, AI applications have
been devised to detect when these attacks are happening. In the context of a smart city,
the development of a smart grid may be considered a fundamental basis for tackling the
environmental issues and energy shortages that are becoming more and more common
around the world, especially in Europe and Asia (for a timeline of the global energy
shortage crisis, Bloomberg Green provides a detailed account of the most significant
events, at: https://www.bloomberg.com/news/storythreads/2021-09-28/global-energy-
shortage-why-is-everyone-talking-about-a-power-crunch, accessed on 2 May 2022). The
question is whether AI can facilitate the transition to renewable resources, especially the
ones of an intermittent nature (Table 3), and the reduction in energy consumption.
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Table 3. Summary of the different types of renewable energy.

Type Energy Source Intermittent/Not
Intermittent

Bioenergy Plant and algae-based materials Not Intermittent

Geothermal energy Hot water below Earth’s surface Not Intermittent

Hydropower Drop in flows of water Not Intermittent

Marine energy Waves, tides in flows of water Intermittent

Solar energy Solar radiation Intermittent

Wind energy Wind Intermittent
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One technique that has been used to match the demand for energy with the supply
is variable pricing. For instance, an increase or decrease in the price is coordinated with
an increase or decrease in the demand. Hence, at peak hours the price is higher as energy
plants operate at near-maximum capacity, while in off-peak hours the price is reduced. In
such a way, consumers are encouraged to use home appliances when the demand for energy
is lower [99]. In fact, the demand response efforts are conceived to engage consumers by
offering the financial incentive of cheaper electricity bills. The flexibility provided by such
efforts also has the potential to meet the fluctuations of renewable energies and to facilitate
their higher penetration [100]. In this scheme, AI-backed applications have been designed
to support such practices. Lu et al. [101] have proposed an RL algorithm to balance the
service providers’ profit and the customers’ savings to achieve the reliability of the power
system. A promising area for demand response in which AI can be applied is the data
centers [102]. In fact, one of the most important elements of a smart city is the vast stream
of data that it should collect [34]. However, at the same time, the data collection and storage
process could represent an environmental challenge for the development and expansion
of such a city. Data centers are energy-intensive enterprises, estimated to have accounted
for around 1 percent of worldwide electricity use in 2018 and whose efficiency is based
on compacting together thousands of servers [103]. In 2021, it was predicted by Koot and
Wijnhoven [104] that data centers would be likely to consume 2.13 percent of the global
electricity available by 2030. On the matter of energy consumption, Crawford [105] has
guarded against claims made by companies about being carbon neutral as it can be due to
the purchase of carbon credits instead of the use of renewable resources.

From an environmental point of view, the sustainability of data centers is strictly con-
nected to whether renewable or low-carbon resources are used to power their functioning.
It is important to point out that excessive water consumption is a linked issue as water is
not only used to cool down data centers, which in turn are also the major factor in energy
consumption, but it is also indirectly used in electricity generation itself [106]. This is
extremely relevant to the water scarcity related to climate changes as it has been reported
that the entire supply of water on the planet, including snow and ice, has declined by 1
cm per year over the past two decades [59]. Even though steps towards the mitigation of
these environmental issues have already been taken by the service providers and policy-
makers [103,106], the optimization of energy consumption can further aid in solving this
challenge. Li et al. [107] have proposed a DRL algorithm to optimize the cooling system of
data centers and to reduce the cost related to it. A related real-life application of AI in data
centers is the ML approach developed by DeepMind for Google, through which the amount
of energy required for the cooling system was reduced by 40 percent in 2016 [108]. In 2020,
it was reported that Google was collaborating with DeepMind to make the technology
available to industrial enterprises [109].

Another technique to balance demand and supply is energy storage. Overall, there
are many different types of storage systems, such as mechanical (e.g., flywheels), electro-
chemical (e.g., lithium-ion batteries), thermal (e.g., heat storage), or chemical (e.g., fuel
cells) energy storage systems. However, they can be further divided into two categories
based on their applicability. On the one hand, there are grid-scale applications suitable for
bulk storage. On the other hand, there are demand-side applications, which are limited
to localized areas. Demand-side storage is often associated with the on-site production
of energy, as the case generally is with some forms of renewable resources, such as wind
and solar. AI can be considered for a wide scope of applications in storage technologies.
For instance, AI has also been applied to the design and testing of the storage systems
themselves, as in the case of the material selection for lithium-ion batteries to maximize
their autonomy [110]. In the framework of an electric grid with renewable resources, an
algorithm has been developed to assess the right placement and sizing of a battery energy
storage system as this should ensure better reliability and reduce power losses [111].

Similarly, Han et al. [112] have proposed an approach for the appraisal of the minimal
power capacity of an energy storage to accommodate variability from high penetration
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levels of renewable generation. However, AI also has the potential to be applied to the
infrastructure itself, as presented in the work of Ahmad et al. [113]. A problem that should
not be overlooked in connection with energy storage systems is the one of potential cyber-
attacks. More generally, the concept of the smart grid has been associated with the risk
of cyberattacks given the expected dependence on the communication infrastructure to
support the large amounts of data necessary for operations. Such attacks are expected to
provoke significant damages; plus, the recovery process could require enormous invest-
ments, as analyzed by the World Economic Forum [114]. The first reported cyberattack on
critical infrastructure was in 2010; the attack aimed to sabotage a nuclear power facility
in Iran [115]. Another important event was the cyberattack on Ukraine’s power grid in
2015; hackers were able to disable the control systems used to coordinate remote electrical
substations, leaving people without power for several hours [116]. Commonly, the nature of
cyberattacks can be either false data injection attacks (FDIA) or distributed denial of service.
Whereas AI can be maliciously weaponized in cyberattacks [117,118] the technology also
has the potential to represent a valuable solution to these issues in the near future [119].
To conclude, AI can aid in the transition to renewable energy but without becoming a
source of high energy consumption itself. Hence, the principles of Green AI should receive
recognition among policymakers for safeguarding the environment.

5.2. Electric Vehicles

Electric Vehicles (EVs) can be considered extremely important for the development of
a smart transportation system, especially if the goal of tackling environmental concerns
is acknowledged in the context of a smart city. EVs have been understood to be one of
the solutions to the climate issues, as they do not have an internal combustion engine;
instead, they are driven solely by one or more electric motors, which are powered by energy
stored in the batteries. The batteries are charged by plugging the vehicle into an electric
power source, meaning that the environmental impact of EVs is strictly connected to how
electricity is generated in the first place. From this perspective, the successful adoption of
EVs as a solution to greenhouse emissions is contingent upon the reliability of the energy
system inside a city to accommodate the charging demand, particularly if the objective
is to use renewable resources. Whereas the term EV tends to be used as a synonym for
electric cars, it includes all the machines that can be used to transport people, such as
motorcycles, trucks, buses, or trains. Thus, in the case where the entire transportation
system of a city is converted to the avoiding of tailpipe emissions, the overall life-cycle
emissions have to be recognized to understand whether EVs are a feasible and sustainable
solution to environmental issues in the framework of a smart city. The concept of EVs
has seen a resurgence in recent years, but its technology has been around for more than
100 years. The first electric car hit the market in 1890 in the United States and sparked
a lot of interest given that it did not show most of the issues connected with steam and
gasoline, such as a long startup time for the first and a lot of manual effort to drive for
the latter [120]. A few years later, Henry Ford and Thomas Edison worked together to
realize an affordable electric vehicle, but Edison’s batteries, as strictly requested by Ford,
an internal resistance which was too high to power such a vehicle in comparison with the
lead–acid ones. However, the real demise of the electric car was due to the discovery of
Texas crude oil, which provided a cheaper power option. Recently, as higher importance
has been given to building and contributing to a zero-emissions future, EVs have emerged
as one of the potential technologies that can help reach the goal. A wide commitment to
shift to EVs has been undertaken by policymakers, such as the “Electric Vehicles Initiative”,
launched by Clean Energy Ministerial (CEM), and carmakers, as the pledge of General
Motors summarized in “Our Path to an All-Electric Future”. Considering that most cities
worldwide suffer from air-quality problems, mostly due to motor vehicles and traffic
congestion, EVs have been linked with the concept of sustainable, smart cities, as they
surely solve at least the problems connected to tailpipe emissions. Indeed, the 11th Goal
from “The 2030 Agenda for Sustainable Development” supported by the United Nations,
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which concerns the topic of cities, cites the importance of transport to reduce the gas
emissions related to transport [121]. However, despite this benefit, the introduction of EVs
can represent a double-edged sword. From this perspective, AI can have a critical role in
the mitigation of all the issues connected to EVs. Since 2011, the patent applications to
apply AI to EVs have sharply increased, especially to solve the shortcomings linked to the
short driving range, such as the battery capacity and charging time [122]. This convergence
is significant to understanding to what extent AI can contribute to rendering EVs more
environmentally friendly, besides their absent tailpipe emissions. As the focus is on the
energy systems, the first step is to analyze whether an increased number of EVs can be
supported by current infrastructures and whether AI can aid the charging process thereof.
The charging of an EV can be carried out either at a public or a home station, with the latter
being the more popular of the two options [123]. Urban planning supported by AI, as with
the system proposed by Flynn and Giannetti [124] to identify suitable properties for EV
charging, could promote specific incentives to citizens living in areas apt for the installation
of a private station. However, if the energy in an area comes from non-renewable resources,
such as fossil ones, should the installation still be encouraged? The issue, in this case, is
that an EV would still indirectly contribute to greenhouse emissions [27]. Whereas the
same reasoning could apply to a public charging station, a further consideration of the
effect of charging a fleet of EVs on the grid infrastructure is needed. One example of
this situation is workplace charging, in which the issue relates to the assignment of the
available resources fairly between all the EVs while avoiding overload [125]. The issue of
possible overloading and the linked malfunction of the power grid could be additionally
exacerbated by the uneven distribution of public stations. It has been stated that, on
average, in Europe, there are 62 charging points per 100,000 inhabitants and in the United
States, 37, on the same per capita basis, according to a report published on Reuters [126].
The limited number of charging stations can be an important barrier to the transition to
EVs [127]. One solution could be identified in a similar ML system to the one proposed by
Spuritha et al. [128], in which the data collected through the online booking of a charging
station is used to forecast power consumption and accommodate the demand for desired
charging for each customer. In a similar framework, it would be important to account for
the different charging times between Level 1, Level 2, and Level 3 charging stations [129].
The first has a speed of adding around a range of five to eight kilometers per hour, the
second of 19 to 129 km per hour, and the latter of 5 to 32 km per minute, which is the
fastest one [130]. Level 1 stations may create bottlenecks in public stations and might be
considered less suitable in the context of a city. In contrast, Level 2 charges approximately
ten times faster, ensuring that an EV will be charged from two to four and a half hours,
depending on the model’s charge rate. Level 3 would be the most suitable, but investing
in such fast-charging infrastructure may be improbable in places with low EV adoption
as it could fail to be economically viable [131]. This means that congestion is not only
directly connected to the number of charging points but also to the charge rate available at
each one of them. However, as the number of charging stations may increase, there is still
the risk that power grids may be inadequate to support the mass adoption of EVs [132].
Moreover, greenhouse emissions may be intensified by the higher energy demand. In
this case, estimating and scheduling an optimal temporal distribution of charging events
could be useful in reducing the environmental impact of electricity generation coming from
non-renewable resources [133]. This would entail that EV owners should freely adhere
to the timing schedule. Hence, it is likely that peak demand from charging will coincide
with the peak in the domestic demand [134]. What has yet to be contextualized about
simultaneous charging is that an increase in the energy network’s load during peak hours
can ultimately lead to a severe voltage drop [135]. Thus, the associated dissipation of
energy, which results in the wasting of resources, should be considered counterproductive
and undesirable to the environmental cause. The concept of vehicle-to-grid could help
alleviate this probable issue; in such a manner, when demand is high, the EVs plugged
into the grid can act as a support mechanism by storing and dispatching energy from
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their own batteries [136]. Hence, an aggregation of multiple EVs can have a significant
impact as a generation/storage device, which can allow the owners to economically offset
the charging costs by selling surplus energy back to the grid operator [137]. A useful RL
method to optimize this practice has been proposed by Najafi et al. [138], in which the
goal has been to allow customers to purchase energy for their EVs when the price is low
and sell it back when it is high only if enough has been stored for personal use. Whereas
such as a technique would support an adequate aid to the energy grid, it is necessary to
account for the deterioration of the batteries in the EVs participating in the vehicle-to-grid
system [139]. This is of particular importance as the disposal of lithium-ion batteries is not
always environmentally friendly, especially in landfill sites, where contamination of the
soil can happen. It has been reported that only around five percent of the disposed batteries
are actually recycled [140]. Additionally, the materials needed for the construction are
considered scarce resources, and mining lithium hurts the environment, such as by water
contamination [141]. Hence, a faster deterioration of the batteries may be an undesirable
side effect of the vehicle-to-grid system. Even if EVs do not produce tailpipe emissions,
their manufacturing process is the one that produces the higher greenhouse emissions,
which can account for 11 percent to 23 percent of the total lifecycle emissions among all the
types of vehicles [142]. If the indirect environmental impact due to the use of non-renewable
resources in the energy grid is also considered, the element of the EV inside the context
of a smart city should be promoted only if there are corresponding policies to reduce the
overall greenhouse emissions. Whereas electrification of public transportation is up to the
local government, it is important to consider that private owners play an important part
in the full process. Hence, the advantages and disadvantages of EVs (Table 4) can play a
major role in wider adoption.

Table 4. Summary of the major advantages and disadvantages related to EVs.

Strengths Weaknesses

Electricity has a lower cost than fuel High upfront costs

No direct carbon emissions Long charging time

Reduced noise pollution Shorter autonomy range

Less maintenance for battery and motor Expensive to purchase a new battery

Possibility of home charging station Limited number of charging points

5.3. Smart Buildings

The concept of a smart building is intrinsically connected with energy efficiency, given
that it can be considered as support towards the objective of the long-term sustainability of
resources. As it has been estimated that residential and commercial buildings are responsi-
ble for over one-third of energy-related greenhouse emissions globally, the major mitigation
strategy has been identified with the reduction in their overall energy consumption [143].
AI is expected to play an important role by potentially monitoring and managing the use
of energy, which in turn could ease the integration of renewable energy and independent
power production [144]. Thus, the smart building is an important element of the smart
grid as it allows for the efficient demand-side management of energy, which would be not
possible otherwise. A comparison between a conventional grid and a smart grid is provided
in Table 5. On-site energy production can be conducted only through four resources: wind,
solar, geothermal, and biomass [145]. It is important to mention that geothermal energy is
limited to areas in which there are reservoirs of water of a temperature that ranges from
20 ◦C to 160 ◦C, and biomass energy, which, even if it is considered a renewable resource,
directly produces greenhouse emissions. Thus, these two forms of energy are not going to
be considered in a general framework of a smart city and buildings. Specifically, the issues
with integrating wind turbines and solar panels are going to be presented to understand
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to what extent the independent production of energy could be considered a solution to
shortages and greenhouse emissions in cities. In this context, an assessment of whether AI
can aid efficiency is going to be made.

Table 5. Smart grid vs. Conventional grid.

Smart Grid Conventional Grid

Bi-directional distribution One-directional distribution

Decentralized generation Centralized generation

Consumers are also producers Passive consumers

Back-up in case of emergency No customer-owned storages

Sensors to assess the stability Minimal use of technology

Quick restoration after disruption Disruption can create domino effects

Automated off-peak purchase Electricity rates depend on demand

Possibility for complete independence Strict reliance on the grid

Smart meters for energy saving Meters only show the consumption

Starting from solar energy, the most common way in which such energy is produced
is through the use of solar panels. Their installment is contingent upon solar exposure,
and a lack of appropriate sunlight determines the unviability of the panels. When they are
placed on top of the building, it is also necessary that the roof conditions are good enough
that they do not require a short-term replacement [146]. Otherwise, solar energy systems
can be shared among different buildings as solar panels are placed in an off-site array.
AI can aid in identifying areas in which the predicted generation of solar energy [146] is
enough to favor the installation of solar panels. Patel et al. [147] have indeed proposed
an AI-backed approach in which the predicted energy generation of a given residential
area could be used to recommend the installation of solar panels, to reduce in such a
way the gap between demand and the supply of energy. At this point, it is important
to consider the upfront cost of installing solar panels because part of the transition to
sustainable solutions can be expected to be in the hands of the people themselves. Even
if it is becoming more affordable, installation is still a significant expense that not every
household or community would be willing to pay [148]. The same reasoning applies to
wind turbines. Wind turbines, like solar panels, cannot be installed wherever, as they
require an average wind speed of around 6 m per second to function properly [149]. They
work better in rural areas, as there should not be any obstructions such as trees or tall
buildings; thus, a residential application in the context of a city is very constrained [150].
However, when solar and wind power are integrated into a building, AI applications can
be a great support for the proper functioning of the energy system. Nabavi et al. [151]
have proposed an approach that forecasts the energy demand and supply to reduce the
imported electricity from the grid, which should result in overall cost minimization. In
this way, the scheduling of when energy should be stored, exported, or imported from the
grid is optimized. One thing that can emerge is the importance of energy storage in the
framework of a smart building to support renewable resources. Adding a storage system is
an additional expense that people should independently decide to further undertake [152].
An energy market based on an AI-backed platform, such as the one proposed and discussed
by Xu et al. [153], would offer the advantage of exchanging energy, as well as buying and
selling storage capacity. This would alleviate the upfront, lump-sum investment needed to
own a storage battery. However, surplus energy can be injected back into the grid even
where there is no storage battery. In this case, households are still reliant on the energy grid,
but they can exchange back renewable energy and receive a monetary compensation—in
areas where this is possible. Even though solar power does not generate air pollution
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or greenhouse gases, the manufacturing of a photovoltaic system is estimated to use the
equivalent amount of energy that the system itself can produce within one to four years
from its installation [154]. Moreover, most photovoltaic systems have operating lives of up
to 30 years, but an appropriate recycling practice has not been established yet as the panels
contain small amounts of valuable materials [155]. This may result in the disposal of solar
panels in landfills, especially in countries where there is a lack of regulation. Similarly, wind
turbines have a limited lifespan of around 20 years, and the recycling of their components is
not an easy, cost-effective process [156]. This can represent another hurdle to the adoption
of renewable energy in a smart city. However, renewable resources are not the only way to
solve the problems of energy-related emissions in cities. Energy-efficient choices supported
by AI may also be considered be a less radical fix to this issue. An AI-backed prediction
model based on the occupant density and its related greenhouse emissions for appropriate
energy management, as envisioned by Chen et al. [157], could be one solution. Moreover,
an AI application similar to the one proposed by Bagheri et al. [158], which regulated the
heating system of a building to improve energy savings, could represent another viable
solution. This method has been shown to achieve energy savings rates of at least 67 percent
during the months of March and April. However, two shortcomings are also coming with
the smart thermostat. The first is that people may not fully understand the functioning
of an automated energy management technology and might, consequently, involuntarily
interfere with it [159]. The second is that such a system could not force consumers to
conform to its energy-saving actions as they could intervene by shutting it down. Thus,
if a consumer wants to turn on the air conditioning during a warm day, resulting in high
energy consumption, the system cannot prevent such action. He et al. [160] have tackled
this problem by using a virtual assistant to nudge consumers into taking energy-savings
actions. Still, it is up to consumers to adhere to the suggestions.

6. Cases of AI Applications in Smart Cities around the World

Whereas the potential of AI has been largely discussed up to now, in the next sections,
a few cases will be analyzed to appraise how AI is really contributing to cities around
the world.

6.1. Taiwan’s Streetlights

The government of Taiwan has recently pledged to focus on research and development
in green energy, smart grids, and energy storage equipment to cut carbon emissions [161].
However, an initial effort towards the reduction in carbon emissions was to apply AI
to streetlights to reduce energy consumption. In such a way, cameras were combined
with smart streetlights to help identify the flow of people and traffic. Hence, if there is
no movement for more than 10 min, the streetlights automatically darken by 50 percent.
Reportedly, this solution has helped in saving electricity by 12 percent in the Qingpu area
of Taoyuan City, as announced by a press release from Smart City Taiwan [162].

6.2. Barcelona’s Smart Building

Barcelona has long engaged in initiatives aimed at the evolution towards becoming a
smart city. The city is widely considered among the pioneers of this trend. In 2015, Forbes
proclaimed Barcelona as “the top smart city” in the world [163]. More recently, in a pilot
project, a building that hosts a therapeutic and educational center for young people located
in the Sarrià-Sant Gervasi district has been equipped with solar panels and energy storage.
An AI-backed management system, which takes into account a multitude of factors, such
as weather forecasts, energy market prices, and the anticipated demand, has been used to
coordinate the charge and discharge of the storage. In this way, the energy management
was optimized to reduce the carbon footprint. It has been reported that the center has
been able to achieve a 20 percent self-sufficiency rate and a 17 percent drop in greenhouse
emissions, as reported by the Barcelona city council [164].



Smart Cities 2022, 5 746

6.3. Summerside’s Smart Grid

The city of Summerside, which is located on the Canadian Prince Edward Island, has
announced that it has the first end-to-end AI-optimized smart grid in North America [165].
The AI-backed software has the scope to predict the energy need in order to improve
the efficiency of the local renewable resources. Thus, by forecasting the demand an hour
ahead, the decision to purchase additional energy should be optimized to avoid losses. The
efficiency of the software has yet to be officially assessed, and its functioning is still being
monitored by the local authorities [166].

6.4. Ottawa’s Smart Charging

A new pilot project has been announced in the city of Ottawa to meet the growing
energy needs for charging EVs [167]. The project is going to be realized by BluWave-ai, the
same company that has developed the software for the city of Summerside in the previous
case, along with Hydro Ottawa, the Independent Electricity System Operator (IESO), and
the Ontario Energy Board (OEB). It is named “EV Everywhere” and the objective is to
employ AI to create an online service for EV owners to smooth out demand peaks and take
advantage of lower-cost energy at off-peak times. This should result in an optimal dispatch
of energy, which, in turn, should support the high forecasted increase in demand due to
the higher adoption of EVs. It would be important to understand the efficiency of this pilot
project, when realized, to assess the potential of AI-backed smart charging in the context
of a city.

6.5. Singapore’s Smart Office

Singapore is among the cities at the forefront of the evolution towards becoming a
smart city. With the help of Spanos, who is a professor at UC Berkeley, an AI-backed
thermostat was developed to regulate the temperature inside an office space [168]. The
office has been equipped with sensors to detect humidity, light, temperature, and CO2
concentration. Furthermore, Wi-Fi has been used to triangulate employees’ locations by
detecting their phones. If the workers become too hot or too cold, they can use an app to
regulate the temperature. The goal is for the AI system to learn the different preferences
and tweak the environment to suit them. At the same time, it should nudge the workers
towards energy-saving behavior. Whereas the expectations were to substantially cut energy
consumption, the results from the trial have yet to be publicly shared.

6.6. Discussion and Further Analysis

As it is possible to notice, the introduction of AI in the energy-related components of
smart cities is still in a developmental phase. A limited number of pilot projects can be
observed, and the results are closely connected to the controlled context in which they take
place. This gap between the potential of AI and its actual real-life applications should be
taken as an opportunity to avoid the drawbacks that have been comprehensively presented
in Section 4.

To extend the discussion of the topic of AI in relation to smart cities and sustainability,
there is another promising area in which the technology is expected to contribute consider-
ably. Autonomous Vehicles (AVs) have been predicted to lower the greenhouse emissions
from transport, through services such as automated taxi services [169]. However, how the
adoption of AVs will play out is surrounded by many questions. Cugurullo et al. [170] have
pointed out that AVs could align with sharing services, allowing for urban spaces to be
remodeled to accommodate cycling lanes, gardens, and public places, but they could also
increase the demand for private vehicles. An important perspective has been provided by
Acheampong et al. [171]. From their study, it has emerged that people who prefer owning
their vehicles are also more likely to want to own an AV. Hence, there is a strong possibility
that current, unstainable urban models will not be changed just with the introduction of
AVs. This further calls for the need for an efficient charging infrastructure for the adoption
of EVs, to which AI should be conscientiously applied.
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Aside from the possible negative side effects of AI applications discussed in rela-
tion to environmental issues, other challenges are worth analyzing. Despite the issue
of data privacy, which has been previously discussed in this paper (Section 3), another
negative externality of AI is related to excessive data generation. One insight provided by
Acemoglu et al. [172] is that this problem is still connected to privacy because when data
sharing by other users is perceived as compromising the information of another individual,
this individual has less incentive to value privacy. This is rooted in the fact that data of a
subset of users may also reveal information about other users, and, in such a way, excessive
data are generated, for which the market price tends to be correspondingly low. This easy
access to personal data can have many downsides. One of the most discussed issues in
relation to societal impacts is the one of misinformation and targeted manipulation. Cinelli
et al. [173] have analyzed the effects of feed algorithms as they are based on personal
preferences and attitudes. They have found that social perceptions and the framing of
narratives have changed with social media, and groups created around shared narratives
tend to be extremely polarized, leading to the proliferation of misinformation.

One example of such a tendency is the propagation of conspiracy theories, which are
strictly linked to economic inequality in today’s society and to intergroup hostility [174].
On this matter, a wider economic disparity has been connected with the introduction of
AI applications [175]. The prediction of mass unemployment appears to be too negative
a scenario in the light of the study by Hunt et al. [176], in which it has been evaluated
that job creation is just as likely as job destruction. However, it has been hypothesized
that AI may change workers’ access to economic opportunity even more starkly than the
redistributions generated by past waves of technological progress [177]. To close the circle,
Dauvergne [178] has related this problem of income inequality to environmental injustice,
claiming that wealthier individuals have been increasingly consuming a greater share of
the world’s natural resources. Yet, the negative effects of this increased consumption are
unfairly shared among the world population.

Smart cities could reasonably be associated with a similar argument based on the in-
creasing income inequalities due to more opportunities being available for highly qualified
individuals. However, a preliminary, empirical finding from the work of Caragliu and Del
Bo [179] appears to support the opposite view.

7. Results and Conclusions

In a smart city, governance is a fundamental asset as policies improve the quality of life
of the citizens, enhance leadership, protect the environment, and support local economies.
However, one of the challenges in planning effective practices in a smart city is uncertainty,
an issue mitigated by collecting information from heterogeneous sources and developing
proper algorithms dedicated to their analysis. The outcome of this process represents a
valuable resource to support decisions on a rational basis.

However, the cost of this operation should not be neglected, as the hardware and the
data storage facilities adopted by software can have a strong impact from the energy point
of view and, ultimately, on the environment. With regard to information processing, the
bottleneck—both in terms of performance and energy consumption—is typically located in
historical, centralized IT architectures, where a main server, which is often scalable only
at the risk of very high cost, elaborates the entirety of the incoming data. Following the
diffusion of the internet on a global scale, the usual textual representation of information
has passed through numerous transformations, becoming visual, vocal, and finally icono-
graphic, making its interpretation more complex. The exposure of the individual to the
web and, more specifically, to an entirely wired smart city where whatever information
can be measured is potentially collected and where cameras monitor the flow of traffic or
even the trajectories and movements of pedestrians to prevent safety issues, presents many
concerns in terms of privacy and freedom. A potential side-effect of over-information may
result in algorithms built to nudge smart citizens—to preserve water and energy or to take
public transport to reduce pollution—that are barely effective, due to a skepticism about



Smart Cities 2022, 5 748

the way information is circulated and handled by local authorities. Cyberattacks and the
undisciplined circulation of data about health are other sources of concern.

Firstly, more rational IT architectures have been adopted. They are based on dis-
tributed networks, where small nodes with limited processing capacity are interconnected.
Furthermore, specific units act as workload balancers, optimizing energy consumption by
distributing the data stream over the nodes in a weighted manner. Secondly, with regard to
the privacy concerns, the European General Data Protection Regulation (GDPR) poses strict
directives on data retention, data confidentiality, and data consent. Similar regulations are
discussed by the California Consumer Privacy Act (CCPA), Brazil’s Lei Geral de Proteção de
Dados (LGPD) and South Africa’s Protection Of Personal Information (POPI). In a similar
manner, the EU has recently adopted the recommendation on a European Electronic Health
Record exchange format, though the threat of cyberattacks remains potentially harmful.

More concerns revolve around AI and, specifically, the cost of deploying it pervasively
as this might result in further controversies, i.e., (i) job losses, due to an uncontrolled
replacement of working activities considered repetitive and barely motivating; (ii) populism,
deriving from undetected bias in datasets used to train algorithms that are supposed
to guide the individual in taking choices; (iii) ethical concerns, for example when the
individual has no role in decisions typically drawn by an algorithm; and, finally, (iv) lawful
issues, related to the lack of a formal definition of AI as a legal identity. All these aspects can
be mitigated by the definition of proper polices aiming at (i) supporting and encouraging
AI-inclusive education programs; (ii) implementing algorithms alleviating and reducing
bias in datasets, (iii) enforcing actions based on cooperation between humans and AI
software; and (iv) pursuing a robust definition of legal personhood defining the rights and
duties of AI software.

The results provided by the research indicate that both data and AI can be legitimately
added to the pillars of smart cities.

Recently, there has been a shift in the perception of the concept of a smart city, and
scholars are recognizing the importance of environmental awareness in its development.
From this perspective, the energy-related components (smart grid, electric vehicles, and
smart buildings) play a fundamental role in the reduction in the ever-increasing greenhouse
emissions produced by cities around the world. With regard to the proposed two pillars,
information is crucial to design adequate nudging techniques. From this study, it has
emerged that not all the nudging techniques are effective when the target is to reduce
energy consumption. However, these specific nudges are already endowed with a signif-
icant degree of personalization, with targeting being inevitable as single households or
neighborhoods are usually the addressees of such methods. This allows for the introduction
of AI-backed nudges—also referred to as hypernudging. Yet, their success is closely linked
with the personal propensity of each individual. For instance, a free-riding tendency may
compromise their impact, resulting in highly context-dependent results.

Continuing the discussion surrounding AI and the energy-related components, these
components themselves can be enhanced with the technology. The evolution towards
a smart grid has been strictly associated with the introduction of renewable resources
and on-site production that allows consumers to have an active role. AI applications
can be of crucial support but should not result in an additional source of high energy
consumption. Otherwise, a vicious circle may be inadvertently created, with AI instead
becoming an additional environmental issue. The electrification of vehicles is linked with a
functioning smart grid. The introduction of electric vehicles should be coupled with the one
of renewable energy, or it can result in indirect emissions due to carbon-intensive resources.
AI can act as an aid in localizing areas where charging points can be positioned, scheduling
charging events and participating in the vehicle-to-grid system. However, negative effects
should be considered in all these applications, including the use of carbon-intensive energy,
the risk of overloading, and the deterioration of batteries made with scarce materials such
as lithium. Smart buildings are another important element of the smart grid, as they
allow for the efficient demand-side management of energy. For the optimal management
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of the on-site production of renewable energy, AI applications have shown to possess
promising results. Forecasting the energy demand and supply can reduce the imported
electricity from the grid, both when an energy storage system is present and when it is not.
Nevertheless, the installation of solar panels, wind turbines, and storage technologies can
be a considerable investment that cannot be widely embarked upon. Renewable resources
are not the only way to solve the problems of energy-related emissions in cities. AI-backed
energy management aimed at reducing consumption is a viable solution. However, what
must be considered is that people can easily interfere with it.

The results coming from the real-life cases show that AI applications for energy-related
components are still in a developmental phase. Hence, there is no strong evidence that
points against the adoption of AI in this component of a smart city. This should be taken as
an opportunity to avoid the drawbacks that are likely to emerge with wider adoption.
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