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Abstract: Mitochondria are intracellular organelles that utilize nutrients to generate energy in the
form of ATP by oxidative phosphorylation. Mitochondrial DNA (mtDNA) in humans is a 16,569 base
pair double-stranded circular DNA that encodes for 13 vital proteins of the electron transport chain.
Our understanding of the mitochondrial genome’s transcription, translation, and maintenance is still
emerging, and human pathologies caused by mtDNA dysfunction are widely observed. Additionally,
a correlation between declining mitochondrial DNA quality and copy number with organelle dys-
function in aging is well-documented in the literature. Despite tremendous advancements in nuclear
gene-editing technologies and their value in translational avenues, our ability to edit mitochondrial
DNA is still limited. In this review, we discuss the current therapeutic landscape in addressing the
various pathologies that result from mtDNA mutations. We further evaluate existing gene therapy
efforts, particularly allotopic expression and its potential to become an indispensable tool for restoring
mitochondrial health in disease and aging.

Keywords: mitochondria; mtDNA; mtDNA mutations; mitochondrial diseases; mtDNA editing;
allotopic expression; gene therapy

1. Introduction

Mitochondria are found in nearly every cell type in the human body, the sole ex-
ception being red blood cells. Organelle biogenesis is semi-autonomous and involves
the coordinated action of nearly 1400 nuclear-encoded proteins, including those respon-
sible for organelle DNA (mtDNA) replication and mitochondrial fusion and fission [1,2],
along with the essential 13 subunits encoded in mtDNA itself. The vast majority of these
nuclear-encoded proteins are translated in the cytosol, and thus must be targeted to their
mitochondrial destination, either by (1) an N-terminal mitochondrial targeting sequence
(MTS), generally consisting of a positive charge and an amphipathic α-helix, which directs
the protein to translocases of the inner and outer mitochondrial membranes for matrix
import or (2) using poorly understood “cryptic” signals carried within their mature protein
sequences, which may be recognized with the assistance of chaperones [3].

The quality and number of mitochondria in a cell are regulated by mitochondrial bio-
genesis (fusion and fission) and turnover (largely governed by mitophagy, a mitochondria-
specific form of autophagy) [4]. Fusion of mitochondria, wherein undamaged mitochon-
drial components are combined, not only defends the cell against internal build-up of
oxidative damage, but is also used to assemble an intracellular network for energy distri-
bution throughout the cell [5]. Conversely, mitochondrial fission is necessary for isolating
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damaged mitochondria from the network to be targeted for mitophagy and the process can,
in principle, also be controlled to select against mutated mtDNA in heteroplasmic cells [6,7].
Factors that impede efficient removal of damaged mitochondria increase mitochondrial
ROS production and mutant mtDNA load, which ultimately decreases cell survival [8].

2. mtDNA and Its Role in Mitochondrial Function

Despite organelle-level protective mechanisms, mtDNA remains especially vulnerable
to damage and accumulation of mutations. Quality and quantity of mtDNA is closely
linked to mitochondrial function [9,10] and its location adjacent to the OXPHOS machinery
exposes the genetic material to higher risk of mutagenic events [11]. In humans, the
remnant mitochondrial genome contains 37 genes, encoding for 13 proteins, 22 tRNAs
and 2 rRNAs [12]. All 13 proteins synthesized from mtDNA are integral subunits of
the 5 enzyme complexes which comprise the oxidative phosphorylation (OXPHOS) relay.
mtDNA is more susceptible to mutation than its nuclear counterpart due to several factors,
including its high replication rate and errors therein, the paucity of effective DNA repair
mechanisms within the organelle, an absence of the canonical protective proteins observed
in nuclear DNA, such as histones, and its proximity to DNA-damaging ROS byproducts of
the oxidative phosphorylation relay [13–15].

The genes and protein products controlling mtDNA replication are all synthesized
from nuclear DNA and can be grouped according to three main functions: (1) the DNA
replication process itself, (2) maintenance of the nucleotide balance within the organelle,
and (3) mitochondrial homeostasis mechanisms, such as fusion and fission. In theory,
a mutation or impaired function in any of these component genes can thus result in
compromised mtDNA synthesis.

There are between 5 and 10 copies of mtDNA in each mitochondrion, and depending
on the energy burden, a cell may contain hundreds to thousands of mitochondria, adding up
to a very large mtDNA copy number [16]. Acquisition of aberrant mtDNA from the mother
and/or selective amplification of mutated mtDNA during embryogenesis and later during
the lifespan of the individual are causative for several known mitochondrial diseases. As
mtDNA propagates independently of the cell cycle, this can result in replication of mutated
mtDNA alongside wild-type copies, which then segregate randomly and asymmetrically
with the mitochondrial network during cell division. High mutation frequency combined
with the large number of mtDNA copies in each cell leads in most cases to both wild-type
and mutated mtDNA coexisting in a heteroplasmic condition [17,18]. There is however
evidence for clonal expansion of some mutant mtDNA in postmitotic cells which then
become homoplasmic for a range of large deletions with age [19]. Aberrant ratios of mtDNA
heteroplasmy have been implicated in numerous pathologies, including both inherited
mitochondrial encephalomyopathies, and acquired conditions, such as type 2 diabetes
mellitus, aging, cancer, and neurodegenerative diseases [17,18]. There is often a direct
correlation between the level of mutant mtDNA heteroplasmy and the severity of the
phenotype, though for many diseases caused by mtDNA mutations, the heteroplasmy
must cross a threshold to cause clinically recognized symptoms [17,20].

Specific mutations in the 13 oxidative phosphorylation genes are known to cause a
host of mitochondrial diseases and disorders, and their study offers mechanistic insight
linking mutation with functional impairment. It is observed that mtDNA mutations which
cause structural changes in OXPHOS subunits disrupt the electron transfer relay, resulting
in inefficient energy production. Inefficient transfer can, in turn, generate superoxide
byproducts, resulting in increased ROS and reactive nitrogen species (RNS), causing a
chronic state of cellular stress. This cascade can overwhelm mitochondrial protective
stress responses, such as fission and fusion, proteostasis, and mitophagy, thereby allowing
continued exposure of mtDNA to mutagenic agents while permitting damaged mtDNA
and defective proteins to persist—all of which contribute to further damage accumulation
and functional decline [21].
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The consequences of mtDNA mutations are often most apparent in cells and tissues
that have a high energy demand and rely heavily on OXPHOS for metabolism, like the
central and peripheral nervous systems and muscle tissue. mtDNA mutations affecting
these tissues constitute a heterogenous group of diseases, broadly categorized as mitochon-
drial encephalomyopathies, of which MERRF syndrome (myoclonic epilepsy associated
with ragged-red fibers) and MELAS syndrome (mitochondrial encephalomyopathy, lactic
acidosis, and stroke-like episodes) are two well-studied examples. Both of these syndromes
are caused by mutations in tRNAs and OXPHOS proteins produced from the mitochon-
drial genome [22–24]. mtDNA mutations in tRNALeu, ND1, and ND4 are known to cause
MELAS [25–28], while the A8344G mutation in tRNALys has been implicated in MERRF [29].
Other well-studied mtDNA diseases affecting ATP synthesis include LHON (Leber’s hered-
itary optic neuropathy, due to mutations in ND1, ND4, ND4L, or ND6 genes) [30–34],
Leigh’s syndrome (with mutations in ND3, ATP6, and ATP8) [35–37], and NARP (neuropa-
thy, ataxia, and retinitis pigmentosa, with mutations in the ATP6 gene) [22,38–40]. These
diseases can be difficult to treat because patients often present with disparate symptoms
and severity, even when harboring the same mutations [41,42].

Owing to the unique susceptibility of mtDNA to mutation [43,44], spontaneous alter-
ations also arise within somatic cells and further accumulate with age [45–48]. As stated,
mitochondrial DNA is prone to acquire deletions with age; in particular, it is observed
that a rising number of cells acquire large deletions overlapping the gene for nicotinamide
adenine dinucleotide dehydrogenase (NADH) subunit 4 (ND4) [49] which expand clonally
and become homoplasmic in the affected cell [19]. The absence of any wild-type mito-
chondrial genomes in such cells abrogates remediation through mitophagy and, in fact,
the mechanism of clonal expansion of such large deletions may itself involve defective
mitophagy [50,51]. Several large deletions and point mutations also have documented
associations with age-related disorders, such as Parkinson’s disease [52], Alzheimer’s dis-
ease [53], and sarcopenia [19,54]. Acquired mtDNA mutations have also been implicated
as drivers of late-onset neurodegenerative conditions, including Huntington’s disease,
amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegias (HSP), and spinocere-
bellar ataxias (SCA) [55]. While specific mtDNA mutations have yet to be associated with
many of these diseases, cytochrome b dysfunction has been implicated in Parkinson’s and
cytochrome c oxidase deficiency is associated with SCA [56,57].

Importance of mtDNA Maintenance in Aging

Although it is clear that dysfunction in mitochondrial metabolism is the cause of
several inherited and acquired diseases, aberrant mitochondrial function has also been
linked to the physiology of aging itself. Age-related changes in mitochondrial metabolism
may take several forms, including a decreased number of mitochondria, declining rates
of ATP synthesis, or reduced oxidative capacity [58,59]. These changes, in turn, influence
critical mitochondrial functions, such as maintenance of the chemical and electrical trans-
membrane potentials of the inner membrane, electron transport chain subunit functions,
and the transport of critical substrates and metabolites into and out of the mitochondria [60].
mtDNA mutations disrupting these processes, particularly those which decrease reliance
on OXPHOS function, are also thought to promote tumor survival in many cancers by
facilitating evasion of apoptosis and hypoxia-driven cell death [61,62]. Interestingly, onco-
cytomas comprise a distinct tumor subclass affecting endocrine tissue, characterized by
non-silent loss-of-function mtDNA mutations and the absence of early driver mutations
in the nucleus. Sequencing of oncocytic tumors has revealed disruptive mutations in all
seven mtDNA-coded subunits of Complex I, as well as in Complex IV subunits and in
ATP6 [63,64]. While many such oncocytic tumors are benign, the loss of complex I function
has been implicated as an early driver in thyroid oncocytomas (Hürthle cell carcinoma),
which are highly aggressive [65]. Indeed, somatic mutations in Complex I and Complex
IV subunits are among the most frequent aberrations identified in the cancer-associated
mtDNA landscape, which is comprehensively surveyed in several recent reviews [64,66].
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In addition to changes directly resulting from mutations, decreased expression of
mtDNA-encoded genes may also contribute to age-related decline in mitochondrial func-
tion [67]. Reduced expression may be due to decreased transcription levels or mRNA insta-
bility, either of which would be exacerbated by decreased mtDNA copy number [59,67].
The lower number of mRNA templates directly affects protein expression and OXPHOS
complex assembly. The impact of aging on mtDNA quantity and gene expression may also
be traced back to oxidative damage that accumulates within mtDNA and resultant base
deletions and point mutations [67]. A study investigating mtDNA heteroplasmy and copy
number in 1511 women between 17 and 85 years old showed that mtDNA heteroplasmy
increases with age and mtDNA copy number decreased by an average of 0.4 copies per
year in mitochondria of isolated peripheral blood mononuclear cells (PBMCs) [68]. Thus,
augmenting mtDNA quality and quantity during the lifespan may help counteract the
downstream effects of dysfunctional mitochondria and slow down the aging process [68].
Below, we discuss the various strategies to address pathologies arising from mtDNA
mutations with special reference to gene therapy and current mtDNA editing technologies.

3. Mitochondrial Therapeutics

The complicated nature of mitochondrial biology makes it challenging for clinicians to
treat patients diagnosed with mitochondrial diseases. Few effective treatment strategies
exist to manage symptomatic patients, and none are considered curative. For adults and
children with non-lethal disease manifestations, therapeutics have historically been limited
to symptom management using nutraceutical supplements, and lifestyle interventions, such
as dietary restriction and exercise; more severe mutations generally result in embryonic or
early-life lethality.

High-throughput technologies have led to the identification of small-molecule candi-
dates that can alter the redox balance, some of which hold promise for ameliorating patient
symptoms. For example, Idebenone, a CoQ10 derivative, is the first line of treatment in
LHON patients [69]. EPI-743 (α-tocotrienol quinone) and RP103 (cysteamine bitartrate) are
two other small molecules in clinical trials [70] for their potential therapeutic application
in several other mtDNA genetic disorders. The status of these and other pharmacological
interventions have been recently reviewed [71]. In addition to small-molecule therapeutics,
several groups have studied the effects of manipulating TFAM (a key activator of mito-
chondrial transcription that also participates in mitochondrial genome replication) [72] by
inhibiting the mTORC1/S6 kinase signaling pathway to increase mitophagy [73]. Manipu-
lation of SOD2 (mitochondrial superoxide dismutase) [74,75] is also being explored as a
means to mediate the symptoms of LHON caused by the m.G11778A mutation. Though
additional small molecule candidates continue to be identified, each of these treatments
offers limited therapeutic potential and aims only to lessen the severity of patient symptoms
or slow disease progression.

In recent years, several additional approaches have evolved, aiming for curative
therapeutic potential and even prevention of germline transmission. Perhaps the most
promising potential disease-modifying therapy for a congenital mitochondrial disorder
currently in clinical use is allogeneic hematopoietic stem cell transplantation (AHSCT)
for children with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), an
extremely rare mitochondriopathy caused by mutations in the TYMP gene. This gene
encodes the enzyme thymidine phosphorylase, and loss-of-function mutations result in
systemic accumulation of thymidine and a range of disabling symptoms. In case studies and
small, uncontrolled ongoing pilot trials, AHSCT reduced systemic exposure to thymidine
and results showed significant improvements in quality of life and functional status in a
subset of MNGIE patients (clinicaltrials.gov, NCT 02427178 accessed on 9 August 2021).
The treatment is limited in availability by the need for immunologically matched donors,
however, and entails ongoing immunosuppression, and even with treatment 63% of patients
still perish from the condition [76,77]. The pathologies associated with most congenital and
disease-associated age-related mitochondrial mutations are, however, not similarly linked

clinicaltrials.gov
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to excessive production of a specific metabolite and occur in a cell-autonomous way in
less-dispensable cell types, such as heart muscles and neurons, so this promising example
is not a suitable strategy for generalized mitochondrial disease(s).

The emerging role of mitochondrial health in fertility has led to more active research
into both preventative and curative treatment options, including mitochondrial replacement
technologies [78] and gene editing approaches [79,80], such as with directed nucleases [81]
or nucleic acid therapies [82,83]. Strategies to directly manipulate mtDNA sequences
and thereby shift heteroplasmy levels have also been attempted using sequence-specific
DNA editing enzymes, such as zinc-finger nucleases and TALENs. Termed “mitoREs”
(for mitochondria-targeted restriction endonucleases), the first of these strategies involves
importing specific DNA restriction enzymes to the mitochondrial matrix to cut unique sites
introduced by mtDNA mutations [84–86]. However, this approach has limitations in that
the acquired mutation must harbor a specific restriction site to distinguish mutant and
wild-type mtDNA copies, and efficiently introducing restriction enzymes into target cells
and into mitochondria still relies on challenging mitochondrial protein delivery techniques
or equally complicated advanced gene therapy approaches. Advancements in the iden-
tification of sequence-specific DNA recognition proteins have led to the development of
next-generation mitoREs along with strategies exploiting custom Zn-finger nucleases and
TALENs to cut specific mtDNA mutations [84–86]. More recently, certain base-editing en-
zymes, such as cytidine deaminases, have also been used to modify specific sequences in the
mitochondria [87]. Modified base-editing enzymes and methods for shifting heteroplasmy
remain active areas of research and have been extensively reviewed [88–90].

All of the above DNA editing strategies are amenable only to a small subset of muta-
tions in mtDNA. The use of CRISPR to target mtDNA is being explored [91,92], although
this application of the technology remains hindered by our limited knowledge of RNA im-
port into mitochondria and how one might achieve sufficient guide RNA (gRNA) import to
confer specificity of cleavage. The importation and dimerization of a large protein, such as
CAS9, to the mitochondrial matrix presents an additional challenge. One proposed strategy
has been to employ different Cas nucleases, such as the smaller Type V Cas12a nuclease
of Lachnospiraceae bacterium ND2006 (lb), in conjunction with a mitochondria-targeting
gRNA aptamer [93]. gRNAs designed for mitochondrial matrix import have also been
recently reported, accomplished utilizing PNPase (polynucleotide phosphorylase), a 3′→5′

exoribonuclease and poly-A polymerase that regulates the import of nuclear-encoded
RNAs into the mitochondrial matrix [94,95]. These authors were able to show a ~75%
reduction in mtDNA in mouse embryonic fibroblasts using an RP-gRNA targeted for the
11205G sequence in the mt-ND4 gene. Thus, although our ability to manipulate and utilize
gene-editing tools is rapidly growing, in addition to technical hurdles associated with the
therapy itself, numerous challenges to the above DNA editing strategies persist, making it
unlikely that such an approach can offer broad curative potential.

4. Allotopic Expression
Allotopic Expression of mtDNA Genes to Correct Underlying mtDNA Damage

The concept of allotopic expression (AE) originated from work by Nagley and col-
leagues in 1985 [96], wherein yeast ATP8 was recoded to the nuclear DNA code and ex-
pressed cytosolically for use as a research tool to elucidate mitochondrial function. Dozens
of AE studies ensued in the following decades in an effort to gain mechanistic understand-
ing of the organelle (summarized in Table 1). While multiple studies have found that
eukaryotic ATP8 and ATP9 of N. crassa can be effectively recoded and expressed cytosoli-
cally [97–99], the basic mtDNA recoding approach has otherwise been largely unsuccessful
for nuclear expression of other OXPHOS subunits, leading many to question the general
feasibility of the AE strategy as a potential therapeutic approach [99,100]. It is generally
accepted that design features, such as nuclear recoding and addition of a targeting signal
(MTS), are minimal requirements for AE; however, researchers also agree on several likely
mechanisms limiting successful allotopic expression for other mtDNA genes (Figure 1).
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tation of the allotopic expression strategy are depicted, beginning with design of the optimal DNA
expression construct and ending with incorporation of the exogenous protein into the correct RC
complex. HR: homologous region, UTR: untranslated region, MTS: mitochondrial targeting sequence,
IMS: intermembrane space, IM: inner membrane, RC: respiratory chain.

5. Circumventing Biological Roadblocks
5.1. Mitochondrial Targeting

One feature common to all allotopic constructs currently reported is the addition of a
mitochondrial targeting sequence (MTS) from a nuclear-encoded mitochondrial gene to
direct the expression product to the mitochondrion. MTSs are similar to ER-targeting signals
and are predominantly found at a protein’s N-terminus, allowing recognition of the nascent
chain by the organelle’s import machinery [101]. While N-terminal MTSs generally share
characteristics, including presence of hydrophobic residues and an amphipathic alpha-
helix structure, they are variable in length and cleavage properties. Several groups have
probed the efficacy of different N-terminal extensions for import of mitochondria-destined
cargo [98,99,102–105], and while most MTSs have shown the ability to transport passenger
proteins to the mitochondria, efficiency of matrix translocation varies between MTSs tested
and is influenced by the protein cargo. Additionally, many imported proteins fail to achieve
post-import cleavage of the MTS, the requirements for which are yet to be fully understood.
Incomplete translocation, an altered membrane orientation, or other disruptions to normal
ETC complex assembly may further hinder successful allotopic expression.
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Table 1. Allotopic expression studies and experimental strategies.

Expressed
mtDNA Gene

Expression System Gene Origin
Strategy Features

References
MTS Gene Other

ATP6 S. cerevisiae S. cerevisiae + * Optimized — [106,107]

ATP6 S. cerevisiae S. cerevisiae ++ * Optimized — [108]

ATP6 S. cerevisiae P. anserine +, + * Recoded — [109]

ATP6
Oli-sensitive CHO line
(11-11); NARP cybrids

(T8993G)
C. griseus + Recoded — [110]

ATP6

HEK293, COS7 cell
lines; NARP and MILS

cybrids (JCP213,
JCP261)

C. reinhardtii — Unchanged — [111]

ATP6

HEK293, 143B WT cell
lines; NARP cybrids
JCP261 (206.8993E

(T8993G))

H. sapiens,
C. reinhardtii + * Recoded — [112]

ATP6 NARP cybrids JCP261
(T8993G) H. sapiens + Recoded — [102]

ATP6 HeLa H. sapiens + Recoded 3′UTR [113]

ATP6 NARP cybrids
(T8993G) H. sapiens + Recoded 3′UTR [114]

ATP6 CHO; NARP cybrids
(T8933G) H. sapiens + * Recoded

Multiple residue
substitutions to

reduce TM
hydrophobicity

[115]

ATP6, ATP8 A8/A6 mutant cybrids
(G8529A) H. sapiens + Recoded or

optimized
coexpression of
ATP6 and ATP8 [116]

ATP6

Transgenic ATP6 WT
or NARP/MILS

mutant (L156R in
ATP6) mice

M. musculus +

Recoded or
mutant
recoded

ATP6

— [117]

ATP8 S. cerevisiae S. cerevisiae +, + * Optimized — [98,107,118,119]

ATP8 S. cerevisiae S. cerevisiae + * Optimized — [108]

ATP8 HeLa, COS-7 H. sapiens +, ++, + *+ Recoded — [99]

CYB S. cerevisiae S. cerevisiae + * Recoded Piecewise import
as TM bundles [120]

CYB HeLa, COS-7 H. sapiens +, ++, + *+ Recoded — [99]

ND1 LHON ND1 cybrids
(G3460A) H. sapiens + 3′UTR [121]

ND1
Heteroplasmic ND1

KO cybrid line
(mt3571insC)

H. sapiens + Recoded 5′UTR and 3′UTR [122,123]

ND1

HEK293 and 143B WT
lines; homoplasmic
ND1 KO cybrid line

(mt3571insC)

H. sapiens + Recoded,
optimized — [124]

ND4 LHON cybrids
(G11778A) H. sapiens + Recoded — [105]
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Table 1. Cont.

Expressed
mtDNA Gene

Expression System Gene Origin
Strategy Features

References
MTS Gene Other

ND4 M. musculus (DBA/1J) H. sapiens +

Recoded or
mutant

recoded ND4
(R340H)

In vivo [125]

ND4 M. Musculus (DBA/1J) H. sapiens + Recoded In vivo [126]

ND4 HeLa, COS-7 H. sapiens +, ++, + *+ Recoded — [99]

ND4 LHON ND4 cybrids
(G11778A) H. sapiens + Recoded 3′UTR [114,121]

ND4
In vivo in rat retina

induced LHON model
(G11778A)

H. sapiens +

Recoded,
optimized,
or mutant

recoded ND4
(G11778A)

3′UTR; IRES, β
globin intron

introduced into
gene construct

[127,128]

ND6
Mouse NIH3T3 ND6

KO mutant line
(del13887)

M. musculus + Recoded — [100]

COX1 HeLa, HEK293T,
MCF-7, MDA-MB231 H. sapiens + Optimized — [129]

COX1 HeLa Bos taurus +

Recoded or
mutant
recoded
COX1

(D51N)

— [130,131]

COX2 S. cerevisiae S. cerevisiae + Recoded

Single, double, or
triple residue

substitutions to
reduce TM

hydrophobicity

[132]

COX2 S. cerevisiae S. cerevisiae + Recoded
W56R mutation

to reduce TM
hydrophobicity

[133,134]

COX2 S. cerevisiae S. cerevisiae +, + * Recoded

3′UTR; W56R
mutation to
reduce TM

hydrophobicity

[97]

COX3
CHO; COX3 15bp
deletion cell line

CSP112.5
H. sapiens + * Recoded

multiple residue
substitutions to

reduce TM
hydrophobicity

[115]

ATP6, ATP8,
ND1, ND2,
ND3, ND4,

ND4L, ND5,
ND6, COX1,

COX2, COX3,
CYB

HEK293 and 143B WT
cell lines H. sapiens + Recoded and

optimized — [124]
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Table 1. Cont.

Expressed
mtDNA Gene

Expression System Gene Origin
Strategy Features

References
MTS Gene Other

mtATP6
(mRNA)

Drosophila model for
mitochondrial

encephalomyopathies
(MEs)

D. melanogaster —
Drosophila
mtATP6
mRNA

mRNA targeted
to mitochondrial

matrix for
expression

(mtTRESPro)

[135]

mtND1,
mtND3,
mtND4,
mtND6,

mtCOX2,
mtCOX3,
mtATP6,
mtATP8

(mRNAs)

HeLa H. sapiens MTS
Panel

Human
mRNAs 3′UTR Panel [104]

Strategies employed across allotopic expression studies of mitochondrial genes. Subunits listed are proteins
expressed using nuclear translation machinery. Subunits preceded by “mt” (e.g., mtND4) are genes or mRNA
encoding the subunit, for expression within mitochondria. Abbreviations: TM, transmembrane domain. Symbols:
+ single MTS, same species as origin of gene expressed; ++ double MTS, same species as origin of gene tested;
+ * single heterologous MTS; ++ * heterologous tandem MTS; + *+ chimeric double MTS. “Recoded” indicates
minimal adjustments to the allotopic expression constructs for productive nuclear translation; “optimized”
indicates codons optimized for nuclear translation; and “unchanged” indicates expressing a transkingdom gene
without any modifications.

5.2. Probing the Hydrophobicity Threshold

One proposed reason for inefficient import of allotopically expressed proteins is
the high hydrophobicity of these 13 OXPHOS subunits, all of which exist in complexes
embedded in the mitochondrial inner membrane (MIM) [99]. In fact, one widely believed
hypothesis is that the hydrophobic nature of these proteins could have forced the retention
of their encoding genes in mtDNA, where translation within the mitochondrial matrix
places the nascent chains in direct proximity to the destination membrane. Translation from
within the matrix allows subunits to be inserted into the inner membrane co-translationally,
thereby avoiding aberrant hydrophobic folding or aggregation in the cytosol that may cause
import incompetence. Hydrophobicity has proven to be a challenge post-translationally for
several subunits. For example, cytochrome b (CYB), the sole mtDNA-encoded subunit of
Complex III, remains encoded in the mtDNA of all known eukaryotes. AE attempts have
repeatedly failed, with evidence that exogenous recoded CYB forms cytosolic aggregates,
precluding mitochondrial import [99].

5.3. Coupling for Co-Translational Import

One strategy employed in the hope of circumventing temporospatial import limitations
has been the inclusion of various elements of untranslated regions (UTRs) from nuclear
genes encoding other proteins of the respiratory chain. In yeast, it is well-established that
the mRNAs of many proteins destined for the mitochondria localize to ribosomes at the
outer mitochondrial surface, suggesting that a co-translational import mechanism may
exist for such nuclear-encoded proteins [136–138]. While the Clueless (CLUH) and Pumilio-
family (Pufp) RNA-binding proteins have an identified role in mRNA localization in lower
eukaryotes [139,140], an analogous mechanism has yet to be identified in mammalian
cells, and no consensus mRNA “zip code” sequence has been identified. Nonetheless,
it is postulated that cryptic localization signals may exist in the 5′ and 3′ UTRs of some
mitochondrially destined protein genes. Several research groups have utilized this frame-
work in an attempt to improve mitochondrial targeting of exogenously expressed proteins
by means of transfactor recruitment, including unpublished experiments from our own
lab, but thus far the role of UTR regions remains ambiguous. The 3′ UTRs of ATP2 [97],
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COX10 [121,122], or SOD2 [113], all of which are nuclear genes with mRNAs that localize
to the mitochondrial surface, have been examined and employed in this context.

5.4. Piecewise Import

In order to circumvent cytosolic aggregation, Claros et al. attempted the piecewise
expression of individual or pairs of helices of the mature CYB protein, a strategy which
has been successful for hydrophobic prokaryotic membrane proteins, such as bacteri-
orhodopsin [120]. Studies of COX2 in yeast determined that this Complex IV subunit
could be effectively expressed and imported upon replacement of hydrophobic residues in
transmembrane segments of the protein [97,133,134]; however, despite achieving import,
expression of the modified protein failed to restore function of the complex, suggesting
that merely achieving import to the matrix does not ensure functional incorporation of the
expressed protein. Studies in the mammalian ATP6 and COX3 genes also showed similar
results. While protein products with apparent reduced hydrophobicity were imported into
mitochondria, they were unable to achieve functional rescue [115].

6. Genetic and Molecular Characteristics of mtDNA-Encoded Proteins Present
Inherent Challenges for Successful AE

Despite these and other efforts, constructs for many other subunits have hitherto
failed to express at all, especially upon stable selection—that is, integration of the mito-
chondrial gene copy into the nuclear genome, rather than expression from a plasmid. As
the mitochondrion is a remnant of an early endosymbiont, its highly conserved, retained
genome bears similarity to those of prokaryotes and uses a coding sequence and codon
usage frequencies that diverge from those of nuclear genes [124].

With few exceptions, AE studies have employed “minimally recoded” mitochondrial
genes, wherein the only codons changed in the mtDNA sequence are those necessary
to maintain the amino acid sequence using cytosolic translation machinery. As with
the non-coding regions in the nuclear genome, however, we continue to uncover the
influence of synonymous codon substitutions on protein abundance, structure, and function;
therefore, it is likely that mitochondrial genes require coding sequences optimized for
nuclear expression in addition to being recoded to express the same amino acids. Figure 2
depicts the frequency of codon use in nuclear and mitochondrial genomes. Prophetically,
the very first studies of AE by Nagley and colleagues in 1985 [96] employed this very
principle, through manual assembly of the yeast ATP8 sequence using codons considered
ideal by nuclear expression standards, a consideration forgone by nearly every subsequent
AE study over the next several decades.

Recent work in our lab revisited this theory [116,124], and while codon optimization
does not address the challenges associated with mitochondrial targeting, import, or hy-
drophobicity of the encoded proteins, results indicate that optimizing the gene sequence
for the expression system greatly enhances our ability to translate mitochondrial genes
using the nuclear machinery. In every case, the codon-optimized constructs expressed dis-
cernible protein products that associated with mitochondria in vitro, unlike their recoded
counterparts. Furthermore, several of the Complex I genes (ND1, ND2, ND3, ND4, ND4L,
and ND6), as well as COX2 from Complex IV and ATP8 from Complex V, were successfully
expressed stably in mammalian cells using this approach [124]. Co-expression of Complex
V mtDNA genes ATP8 (codon-optimized) and ATP6 (recoded) unequivocally rescued a
severe phenotype in a patient cybrid cell line null for the ATP8 protein [116].

There are potential limitations and pitfalls to consider when optimizing codon usage
in recombinant proteins meant for therapeutics, such as depleting specific tRNAs, the
introduction of cryptic translation start sites [141], or the corruption of information encoded
in the original mRNA coding sequence [142–144]. Another important factor is the impact
of introducing such foreign genes into the nuclear environment and/or proteins into the
cytosol, as altering gene sequences for optimal translation may also generate nucleotide
and peptide sequences that can elicit host immune responses.
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Gene dosage and copy number are other important considerations, as expression
of mtDNA subunits is tightly coordinated with nuclear gene expression in a tissue- and
condition-specific manner, with carefully regulated nuclear-to-mitochondrial subunit stoi-
chiometry. As mitochondrial content and mtDNA copy number vary amongst cells and
tissue types, nuclear expression of mtDNA genes must result in a transcriptional response
appropriate for the mitochondrial load, which also fluctuates depending on energy re-
quirements, substrate availability, and cellular signaling. Placing allotopic genes under
the master regulators of mitochondrial gene expression, such as NRF1 and NRF2 or their
upstream regulator PGC1alpha [145,146], might be a way to modulate and coordinate their
expression with the rest of the OXPHOS subunits. Alternatively, placing the AE gene under
the promoter of another gene in the same complex could similarly coordinate expression of
the AE gene with other genes required for the function of its complex.

Paucity of Animal Models to Validate Allotopic Expression

Additional technical limitations must be considered in the implementation of mito-
chondrial gene therapy. Studies probing the utility of AE for mitochondrial rescue are
challenged by the lack of good animal models. Genetic tools widely used to elucidate
nuclear gene function, such as targeted knockouts, siRNA-mediated gene silencing, and
site-directed mutagenesis, are non-viable options for mtDNA genes, which are sequestered
within the organelle and therefore inaccessible. Thus, the study of mtDNA-mediated dys-
function is largely reliant on decades-old methods, mainly the use of patient-derived cybrid
cell lines with specific mutations. The use of patient-specific cybrid cell lines, however,
carries its own disadvantages, as most cybrid lines contain shifting ratios of wild-type
and mutant mtDNA, i.e., heteroplasmy, which result in variable cellular and organismal
phenotypes and weaken claims of rescue through AE.

Numerous challenges have also frustrated efforts to generate meaningful animal mod-
els of mitochondrial disease, especially for systems with loss-of-function mutations. Due to
the critical function of OXPHOS subunits in respiration and metabolism, mitochondria with
mutations that severely disrupt ETC function are often not viable, consistent with selection
against such mutations in the maternal line preventing generation of true organismal
research models of primary mitochondrial disease. This phenomenon has been demon-
strated in animal models; for example, transmitochondrial mice with the dual mutation
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T6589C (COX1) and 13885insC frameshift mutation (ND6) genes, respectively, at equiv-
alent levels lost the more severe ND6 13885insC frameshift mutation completely within
four generations [147]. Efforts using enucleated human cybrids and mouse pronuclear
cells to generate mouse models for the 4.7 kb “common deletion” that overtakes a rising
number of postmitotic cells with age failed to achieve progeny beyond F3 [148]. Available
systems therefore include the study of naturally occurring mild mutations with less severe
phenotypes, such as those observed due to missense mutations in the ATP8 [149] and ND6
genes [150]. Researchers have also employed co-expression of mutant allotopic genes over
WT versions, as in the case of ND4 [151] and ATP6 transgenic mice [117,151], in attempts to
recapitulate specific disease states, such as LHON and NARP. Mouse models have further
been used to study comparable phenotypes due to mutations in nuclear-encoded proteins
involved in mitochondrial biogenesis, such as TFAM [152], PolG [153], Twinkle [154–156],
and SURF-1 [157]. Such “mutator” mice are attractive models of accelerated mutation load
that may mimic the accumulation of mtDNA mutations with age but are poor systems
for testing and optimizing single-gene therapies. A comprehensive list of mouse models
used to study OXPHOS deficiency due to nuclear-encoded OXPHOS subunits and other
mitochondrial genes can be found in the following reviews [158,159]. Recent advances in
generating induced pluripotent stem cells (iPSCs) from primary cells of affected patients
has also led to the creation of model cell lines with specific mtDNA mutations [160–162].
However, PSCs can exhibit altered mitochondrial and metabolic profiles because of the
switch from glycolysis to oxidative phosphorylation upon differentiation. Furthermore,
individual PSCs display considerable heterogeneity in mutation loads that can impact their
utilization in disease modeling and as drug screening platforms [163,164].

7. Allotopic Expression Has Been Demonstrated In Vivo

Despite these difficulties, some animal studies targeting the ATP6 and ND4 genes
using AE have shown promising data [128,165–167]. This suggests that if the more direct
limitations to AE of individual subunits are overcome, gene replacement therapy could
be a viable option to improve mitochondrial function. As of now, to our knowledge, only
the ND4, ND6, and ATP6 genes have been demonstrated in animal models for allotopic
expression. ND4 has been exclusively studied in the context of LHON, and AE constructs
have been examined for their ability to alleviate optic nerve damage and rescue visual acuity
by restoring OXPHOS function and ATP levels. Cwerman-Thibault et al. [128] modified the
ND4 gene with elements of the human COX10 mRNA to improve the delivery/import of
the protein to mitochondria and showed that AAV2-mediated delivery of ND4 is expressed
for up to 12 months in rats engineered to carry the G11778A LHON mutation. In addition
to adjusting the translation code for nuclear expression, codon usage for the non-universal
codons was optimized. Guy et al. have shown that allotopic expression of the human
ND4 gene in mice, administered via intravitreal injection, rescues visual dysfunction and
prevents the LHON phenotype caused by the G11778A mutation [125,126]. This group
used the recoded ND4 for nuclear translation and the cytochrome oxidase subunit 8 (COX8)
MTS to target the protein to mitochondria. Similarly, mutant versions of the ND4 and
ND6 genes have been expressed using mitochondria-targeted AAV, to induce LHON
phenotypes in mouse models [151,165,166,168]. Dunn and Pinkert generated two versions
for the nuclear-recoded mouse ATP6 gene: a wildtype and mt8993T > G that causes
Leigh’s syndrome and NARP in humans [117,167]. They injected plasmids harboring
mitochondrial transgenes under the EF1-alpha promoter and the COX VIII MTS directly
into mouse embryos. Their study outlines the design of the allotopic expression system
in this mouse model, from construct design to animal genotyping. However, the various
experiments used to characterize the phenotype of the rescue mice gave mixed results and
failed to definitively show an improvement in mice carrying the ATP6 mutation [117] or to
demonstrate robust expression of ATP6 in any of the tissues examined. Perhaps if those
experiments were repeated using modern methods, including codon optimization, the
in vivo expression of ATP6 would be more robust.
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A Safe Harbor Expression System for Allotopic Genes

Existing gene therapies for mtDNA mutations are currently confined to just one or-
gan (the eye). The common problems of the gene therapy field apply; namely, (1) safe
integration, (2) prolonged expression, and (3) wide tissue distribution. AE might have
an additional problem: in some cases, more than one gene needs to be transferred. Fur-
thermore, mtDNA mutations are pleiotropic and can affect almost all tissues in the body,
although particular tissues tend to be most affected in mitochondrial disease. One strategy
to overcome these limitations is by introducing the foreign genes at sheltered locations in
the nucleus via TALENS or CRISPR/Cas9. Although such studies have not yet reached
clinical phases, advances in identifying safe harbor loci in the human genome have facili-
tated in vitro transgene expression for large genes, such as the human dystrophin [169] and
beta-hexosaminidases in Tay-Sachs and Sandhoff’s syndromes [170], as well as the expres-
sion of multiple glycosyl hydrolases in the CEP112 locus in animal models [171]. Another
alternative is to place such transgenes in human artificial chromosomes (HACs) capable of
large insertions that can be maintained episomally under physiological conditions [172].

The gene therapy field almost exclusively uses AAV vectors, serotypes 2 and 5, because
of their high infectivity in a broad range of cell types and tissues. However, therapeutic use
of AAV is limited by insert capacity (<5 kb) [173], which prevents inclusion of more than
one gene in these viral vehicles. This is more evident when the mutation affects mtDNA
transcription or translation, such as mutations in the origin of replication for the light and
heavy strands [174], or in any of the tRNA genes that impact global protein translation in
the mitochondrial matrix [175]. Under such circumstances, achieving meaningful therapy
may therefore require transgene expression for more than one gene or, in certain instances,
for those of all 13 mtDNA protein subunits. Alternative delivery systems using adeno- or
lentiviruses or using multiple viruses with different cargos could be considered. Beyond
the current scope of prospective gene therapies, strategies such as mini-chromosomes or
safe harbor integration directly into the nuclear genome have the potential capability of
introducing >100 kb at a time, though there is not yet, to our knowledge, precedent for
delivering such large cargos into clinically viable vectors.

8. Allotopic Expression Gene Therapy in Human Clinical Trials

Translational advances have also been made in isolated physiological compartments,
such as the case of intravitreal injections for treatment of LHON in human patients by the
gene therapy company GenSight Biologics SA, and separately in two small unaffiliated
academic studies [176] (ClinicalTrials.gov, Identifier NCT02161380), all of which reported
anecdotal improvements in vision in treated LHON patients harboring mtND4 mutations.
Specifically, these studies were able to follow patients for 9–36 months after intravitreal
injection of an rAAV2–ND4 gene therapy vector and fluctuations in visual acuity were
assessed. The therapy has been shown to be safe and improvements in symptoms were
observed in many patients. GenSight Biologics has also completed two phase 3 clinical trials
to treat blindness caused by mtND4 mutations (ClinicalTrials.gov, Identifiers NCT03293524
and NCT02064569) and recently reported sustained positive results from the RESTORE
study [177], though at the time of this writing neither study has reported results in any
clinical trial registries. The studies aimed for internal controls where one eye was treated
and the other not, but surprisingly patients appear to have recovered vision in both eyes.
There is reason to believe that the viral vector and/or the mitochondria migrated from
one eye to the other to yield the benefit, but as the studies lack any meaningful placebo
control, it is difficult to conclude efficacy with high confidence. GenSight Biologics has
now initiated a third phase 3 trial in which one arm of the study will receive the same
single eye treatment while the other arm receives only a mock treatment. The trial is
expected to conclude in 2024 (ClinicalTrials.gov, Identifier NCT03293524). At the time of
this writing, Wuhan Neurophth Biotechnology is also recruiting for a phase 1/2/3 clinical
trial of an ND4 gene therapy for LHON patients expected to conclude in 2027. For LHON
patients suffering from vision loss, the promising results of these clinical trials could be a
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first-in-class targeted gene therapy for a single gene mtDNA disease. Furthermore, as both
gene therapies and allotopic expression technologies advance, such precedent could lead
to broader therapeutic applications for both genetic diseases and aging.

9. Conclusions

Mitochondria are at the interface between several critical functions in the cell, includ-
ing metabolism, signaling, and immune surveillance. Advances in our understanding
of mitochondrial biology and function have illuminated the role of mitochondrial dys-
function in pathology and aging. The unique properties of the organelle predispose its
genome to mutations and compromised functions leading to several diseases collectively
called mitochondriopathies. Researchers have exploited various technologies, including
small-molecule drugs, allogeneic hematopoietic stem cell transplantation, mitochondrial
replacement, as well as gene-editing tools, such as nucleic acid therapy and mitochondria-
targeted restriction endonucleases, in alleviating these diseases. While modulating or-
ganelle function using small molecules is attractive at the outset and benefits from ease of
administration, few leads have been identified that hold curative promise, and this treat-
ment modality leaves the root cause of pathology unaddressed. Compounds currently in
clinical trials are predominantly antioxidants (such as Idebenone, EPI-743 and RPI-103) and
small molecules that have the capability of stabilizing the organelle membrane architecture
(Elampritide/SS31) [178]. Cell and, particularly, organelle replacement approaches are
being explored in the fertility space in circumventing transmission of pathogenic variants
to progeny, but the efficacy and ethical considerations pose major concerns.

Recent gene editing approaches, such as targeted restriction endonucleases and base-
editing enzymes show promise, though they are limited by their narrow specificity and may
require patient-to-patient customization. Gene therapy in the form of allotopic expression
has received the most attention for its potential as a robust method for reversing the symp-
toms of mtDNA mutations. Synchronizing allotopic expression for the 13 mtDNA genes
with the nuclear-mitochondrial transcription and translation machinery can overcome limi-
tations in competing with pre-existing mutant proteins in the respiratory chain complexes
due to heteroplasmy, a condition commonly observed in known mtDNA pathologies.
Furthermore, advances in technologies capable of inserting large DNA cargos into the
nuclear genome, such as safe harbor expression or mini chromosomes, will allow for testing
multiple allotopic genes simultaneously. While validating the technology in vivo has its
challenges due to inadequate animal models for all the protein coding genes, the ease of
generating precise human iPSCs, particularly from patients with specific mtDNA muta-
tions, may allow us to test these gene therapy approaches on a case-by-case basis in vitro.
At the organ level, the immune privilege of the eye allows for many gene therapy trials to
be conducted in patients suffering from mitochondriopathies of the eye, simultaneously
establishing precedent for this model in evaluating translational approaches. The findings
reviewed here suggest that innovative molecular and genetic therapies targeting mtDNA
may soon become available.
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Abbreviations

AE Allotopic expression
AHSCT Allogeneic hematopoietic stem cell transplantation
ALS Amyotrophic lateral sclerosis
ATP Adenosine triphosphate
ETC Electron transport chain
HR Homologous region
HSP Hereditary spastic paraplegias
IMS Intermembrane space
iPSCs Induced pluripotent stem cells
AAV/AAV2 Adeno-associated virus (vector)
NADH Nicotinamide adenine dinucleotide dehydrogenase
LHON Leber’s hereditary optic neuropathy
NARP Neuropathy, ataxia, and retinitis pigmentosa
MELAS Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
MERRF Myoclonic epilepsy with ragged-red fibers
MIDD Maternally inherited diabetes and deafness
MILS Maternally inherited Leigh syndrome
MIM/IM Mitochondrial inner membrane
MNGIE Mitochondrial neurogastrointestinal encephalomyopathy
mtDNA Mitochondrial DNA
MTS Mitochondrial targeting sequence
OXPHOS Oxidative phosphorylation
RC Respiratory complex
RNS Reactive nitrogen species
ROS Reactive oxygen species
SCA Spinocerebellar ataxias
TALENS Transcription activator-like effector nucleases
TM Transmembrane domain
UTR Untranslated regions
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