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A B S T R A C T

Nature-inspired optimization algorithms, especially swarm based algorithms (SAs), solve many scientific and
engineering problems due to their flexibility and simplicity. These algorithms are applicable for optimization
problems without structural modifications. This work presents a novel nature-inspired metaheuristic optimization
algorithm, called SailFish Optimizer (SFO), which is inspired by a group of hunting sailfish. This method consists
of two tips of populations, sailfish population for intensification of the search around the best so far and sardines
population for diversification of the search space. The SFO algorithm is evaluated on 20 well-known unimodal and
multimodal mathematical functions to test different characteristics of the algorithm. In addition, SFO is compared
with the six state-of-art metaheuristic algorithms in low and high dimensions. It also indicates competitive results
for improvement of exploration and exploitation phases, avoidance of local optima, and high speed convergence
especially on large-scale global optimization. The SFO algorithm outperforms the best algorithms in the literature
on the majority of the test functions and it shows the statistically significant difference among other algorithms.
Moreover, the SFO algorithm shows significantly great results for non-convex, non-separable and scalable test
functions. Eventually, the promising results on five real world optimization problems indicate that the SFO is
applicable for problem solving with constrained and unknown search spaces.

1. Introduction

In real-world, resources are always limited and the optimization of
available resources is crucially important. Optimization can be used
essentially in a variety of fields from engineering design to economics
or holiday planning to Internet routing. Metaheuristic algorithms can
provide appropriate technique to solve optimization problems through
mathematical modeling of social political evolution. These algorithms
are using methods that find solutions close to the optimum with an
acceptable cost. Since random mechanisms play the key role in creating
their structure, metaheuristic algorithms are known as imprecise meth-
ods for solving complex optimization problems.

In the last several decades, metaheuristic algorithms are applied to
many applications. The main reason behind the success of metaheuristic
algorithms is that they use commonly shared information among mul-
tiple agents. Also several factors may help these algorithms in creating
the highest quality results such as self-organization, coevolution, and
learning. All of the metaheuristics algorithms are not successful and a
few techniques that have potential for solving real-world problems can
be very efficient (Yang, 2018).
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Recently, many metaheuristic algorithms have been proposed. Based
on the source of inspiration, these algorithms is classified into four main
categories: swarm based, physics based, human based and evolution
based. Vast variety of metaheuristic algorithms are introduced in Swarm
Intelligence (SI). Swarm based method imitates the population of homo-
geneous agents interacting with each other and with their environment.
Colonies of ants, flocks of birds, and schools of fish are examples of
such swarm intelligence. Physics based method is another category in
this classification that mimics the physical rules in the world. The third
category of metaheuristic algorithms includes human based techniques
that are inspired by human behaviors and the laws that is existed
among them. The last category is evolution based methods that are
inspired by the laws of biological evolution such as selection, mutation,
reproduction, and recombination.

In fact, the metaheuristic algorithms have a great ability for ex-
ploring and exploiting search experiences by using different methods.
Of great importance hereby is that a metaheuristic algorithm will be
successful if it can provide the dynamic balance between exploration
and exploitation on a given optimization problem. In exploration phase,
the movement of search agents should be randomized as much as
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possible. Whereas the exploitation phase investigates the promising
area(s) in detail. Generally speaking, the main distinction between the
existing metaheuristic algorithms is how to balance exploration and
exploitation phases.

Some general aspects which may be affected by reputation of meta-
heuristic algorithms are as follow (see Fig. 1): First, trajectory methods
vs. discontinuous methods. A main difference among these methods
is that discontinuous method allows large jumps in the neighborhood
graph, but trajectory method traces only one single trajectory on the
neighborhood graph. Trajectory methods have the ability to avoid from
local optimum by moving worse solutions. The Tabu Search algorithm
(TS) (Glover, 1989) can be a good example for trajectory method. In this
algorithm, the local searches (neighborhood) take a potential solution
for a problem and check its immediate neighbors with hope to find
an improved solution. Using this strategy, the TS algorithm can trace
single trajectory to find an optimum point. Second, population based vs.
single point search. A population of agents is used for population based
search. This method is suitable way for improving the exploration phase.
Certainly, how to manipulate a population affects the performance of
the algorithm. On the contrary, one single agent is manipulated over
the course of iteration in single point search during optimization. Since
ant colony optimization algorithm (ACO) (Dorigo et al., 2006) uses a
swarm of ants for recording the position of search agents for solving
computational problems, it can be a good example for the population
based strategy. Third, memory usage vs. memoryless methods. These
are another methods in metaheuristic algorithms to influence the future
search direction. The algorithms that use the memory functions to
achieve this effectiveness are memory usage and the algorithms do
not use the memory function are memoryless usage. One of the good
examples of memory usage method is particle swarm optimization
(PSO) (Kennedy and Eberhart, 1995) because this algorithm can keep
the best local and global solutions in memory to calculate the future
solution during the optimization. Fourth, multiple neighborhood vs.
one neighborhood. Some algorithms use more than one neighborhood
structure. They start the local search to escape from local optima
with 𝑁 neighborhood and the kick-move is applied to approach the
global optimum in the search space. For example, mutation in genetic
algorithm (Holland, 1992) acts as a kick-move and it can interpret like
a jump between neighborhoods during local search. In Fig. 1, several
examples for each aspect previously mentioned are shown.

Various algorithms are applied in different areas by many re-
searchers. Numerous algorithms and their various applications could not
offer a particular algorithm to solve all the optimization problems. Some
algorithms are beneficial for several specific problems but are futile for
another kind of problems (Wolpert and Macready, 1997). Therefore,
researchers attempt to create new optimization techniques for solving a
wider range of unsolved problems.

This paper describes a novel metaheuristic optimization algorithm
(namely, SailFish Optimizer, SFO). The SFO algorithm mimics the
sailfish group hunting that alternates their attacks on schooling sardine
prey. To the knowledge of the present authors, there is no previous study
on this subject in the optimization literature. The current study has
several major differences with other methods that recently published.
Firstly, SFO is employed two groups of prey and predator populations
to simulate the group hunting behavior strategy. Secondly, the proposed
algorithm uses the alternation of attacks to break down the collective
defense of grouping prey. Thirdly, the prey movements can be updated
over the search space, and hunter is allowed to catch the appropriate
prey to become fitter than the past. The efficiency of the SFO algorithm
is evaluated by solving 23 mathematical optimization functions. The rest
of this paper is organized as follows:

Section 2 describes the sailfish optimization algorithm. In Section 3,
experimental results of the test functions are presented and discussed.
Several directions for future research concludes in Section 4.

2. Sailfish optimizer

The main inspiration of SFO algorithm will be described in this
section. Then, the proposed algorithm and mathematical model are
discussed in details.

2.1. Inspiration

One of the interesting example of social behavior in groups of arthro-
pods, fishes, birds, and mammals is group hunting. In group hunting,
predators do not need much effort to kill the prey compared with when
hunting alone. In the simplest form of group hunting, predators attempt
to kill the prey with little or no coordination of attack, while in the
complex form of group hunting, predators use the specific roles to herd
and catch the prey (Bailey et al., 2013).

One of the complex group hunting strategies is the alternation of
attacks. This strategy provides the opportunity for the hunter to save
the energy, while other predators are injuring the prey. One example
of this kind of strategy is group hunting sailfish (Istiophorus platypterus)
that alternate their attacks on schooling sardine prey (Sardinella aurita)
(Domenici et al., 2014; Marras et al., 2015). Fig. 2 shown each behav-
ioral state of sailfish’s group hunting.

Sailfish is the fastest fish in the ocean that can reach maximum
speeds of around 100 km/h. They hunt in groups, driving schools of
smaller fish, such as sardines, toward the surface (Fig. 2a, b). The
maneuverability and acceleration of the sardines during the attack
are very challenging for sailfish (Fig. 2c). The sailfish either makes a
slashing motion with its rostrum, injuring several sardines, or it taps
a single sardine and destabilizing it (Fig. 2d). Because the sailfish has
one of the highest accelerations ever recorded in an aquatic vertebrate,
sardines cannot swim fast enough to avoid the tip of the sailfish’s
rostrum and they are unable to do anything in response to this group
hunting. Given the observational behavior of sardines shown injured
sardines will be separated from the prey school and could not move
with the school, so they will quickly capture by the sailfish (Fig. 2e)
(Herbert-Read James et al., 2016).

Most sailfish attacks do not lead to the death of sardines and only a
few percent of sardines are directly captured. But with frequent attacks
of sailfish, more and more sardines are hurt. This type of hunt is more
typical of animals that hunt in packs, such as wolves. However, these
groups of sailfish regularly break up and reform with new members.

A sailfish keeps its large dorsal fin and pelvic fins erect during an
attack, probably to keep its body stable (Fig. 2f). Also, they change
their body color with the normally bluish-silver lateral sides darkening
to almost black just before beginning an attack. The reason for color
changing is not very clear, but it should be some kind of communication
between sailfish (Herbert-Read James et al., 2016). It is possible to avoid
injuring by a compatriot, sailfish use the changes in their body to signal
who goes first.

The main inspiration of the SFO algorithm is based on the attack-
alternation strategy of sailfish’s group hunting. In the next subsection
the natural behaviors of sailfish and sardines are modeled mathemati-
cally and then an optimization algorithm based on this mathematical
model is established.

2.2. SFO: The proposed algorithm

2.2.1. Initialization
The SFO is a population based metaheuristic algorithm. In this

algorithm, it is assumed that the sailfish are candidate solutions and
the problem’s variables are the position of sailfish in the search space.
Accordingly, the population over the solution space is randomly gen-
erated. The sailfish can search in one, two, three or hyper dimensional
space with their variable position vectors. In an d-dimensional search
space, the ith member at the kth searching bout has a current position
𝑆𝐹𝑖,𝑘 ∈ R (𝑖 = 1, 2,… , 𝑚). Matrix SF has been considered to save the
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Fig. 1. Four effective aspects on reputation of metaheuristic algorithms.

Fig. 2. Behavioral state of sailfish’s group hunting.

position of all sailfish. So these positions show the variables of all
solutions during optimization.

𝑆𝐹𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =

⎡
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𝑆𝐹1,1 𝑆𝐹1,2 ⋯ 𝑆𝐹1,𝑑
𝑆𝐹2,1 𝑆𝐹2,2 ⋯ 𝑆𝐹2,𝑑
⋮ ⋮ ⋮ ⋮
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⎥

⎦

(1)

where m shows the number of sailfish and d indicates the number of
variables and 𝑆𝐹𝑖,𝑗 shows the value of the jth dimension of ith sailfish.
In addition, the fitness of each sailfish is computed by calculation the
fitness function as follows:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠𝑎𝑖𝑙𝑓 𝑖𝑠ℎ = 𝑓 (𝑠𝑎𝑖𝑙𝑓 𝑖𝑠ℎ) = 𝑓 (𝑆𝐹1, 𝑆𝐹2,… , 𝑆𝐹𝑚) (2)

To evaluate each sailfish, the following matrix shows the fitness value
for all solutions:
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where m is the number of sailfish, 𝑆𝐹𝑖,𝑗 is the value of the jth dimension
of ith sailfish, f calculates the fitness function, and 𝑆𝐹𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 saves the
fitness value that returns the value of fitness or objective function for
each sailfish. The first row of 𝑆𝐹𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 matrix is sent to the fitness

function and the output indicates the fitness value of the corresponding
sailfish in the 𝑆𝐹𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 matrix.

The school of sardines is another significant incorporator in SFO
algorithm. It is assume that the group of sardines is also swimming in
the search space. So the position of sardines and their fitness values are
utilized as follows:

𝑆𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
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⎥
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(4)

where n is the number of sardines and 𝑆𝑖,𝑗 is the value of the jth
dimension of ith sardine, 𝑆𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 matrix indicates the position of all
sardines.

𝑆𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 =
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where n is the number of sardines, 𝑆𝑖,𝑗 shows the value of the jth
dimension of ith sardine, f is the objective function and 𝑆𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 saves the
fitness value of each sardine. It is notable that sailfish and sardines are
corresponding factors to find the solutions. In this algorithm, the sailfish
are the main factor that is scattered in the search space and sardines can
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cooperate to find the best position in this area. In fact, sardine can be
eaten by sailfish when searching the search space and sailfish updates
its position in case of finding a better solution that obtained so far.

2.2.2. Elitism
Occasionally good solutions can be lost when updating the posi-

tion of search agents and these positions may be weaker than the
old positions unless the elitist selection is employed. Elitism involves
copying the unchanged fittest solution(s) into the next generation. In
SFO algorithm also, the best position of sailfish is saved in each iteration
and considered as an elite. The elite sailfish is the fittest sailfish that is
obtained so far and it should be able to affect the maneuverability and
acceleration of sardines during the attack. In addition, as previously
mentioned, sardines will be injured by slashing motion with sailfish’s
rostrum during group hunting. Therefore, the position of injured sardine
in each iteration is also saved and this sardine will be selected as the
best target for collaborative hunting by the sailfish. The position of elite
sailfish and injured sardine that have the highest fitness at ith iteration
are called 𝑋𝑖

𝑒𝑙𝑖𝑡𝑒_𝑆𝐹 and 𝑋𝑖
𝑖𝑛𝑗𝑢𝑟𝑒𝑑_𝑆 respectively. These positions can have

a dramatic impact on performance of SFO and they prevent the waste
of time for re-discovering previously discarded solutions.

2.2.3. Attack-alternation strategy
In fact, sailfish mostly attack the prey school when none of their

compatriots is attacking. In the other words, sailfish can promote
the rate of success in hunting with the temporally coordinated attack
(Herbert-Read James et al., 2016). Sailfish chase and herd their prey.
The herding behavior of sailfish adjust their position according to the
location of the other hunters around the prey school without direct
coordination between them. The SFO algorithm demonstrates sailfish’s
attack-alternation strategy while hunting in groups. It is observed in
Fig. 3 that search agents provide the exploration phase and it consists
of searching a large section of the search space to find the promising
solutions that are yet to be refined. As shown in Fig. 3, sailfish do not
attack just from up to down or from right to left and vice versa. They
can attack in all directions and within a shrinking circle. Consequently,
sailfish update their position within a sphere around the best solution.

In the SFO algorithm, at the ith iteration, the new position of sailfish
𝑋𝑖

𝑛𝑒𝑤_𝑆𝐹 updates as follows:

𝑋𝑖
𝑛𝑒𝑤_𝑆𝐹 = 𝑋𝑖

𝑒𝑙𝑖𝑡𝑒_𝑆𝐹−𝜆𝑖×

(

𝑟𝑎𝑛𝑑 (0, 1) ×

(𝑋𝑖
𝑒𝑙𝑖𝑡𝑒𝑆𝐹

+𝑋𝑖
𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑆

2

)

−𝑋𝑖
𝑜𝑙𝑑𝑆𝐹

)

(6)

where𝑋𝑖
𝑒𝑙𝑖𝑡𝑒_𝑆𝐹 is the position of elite sailfish formed until now,𝑋𝑖

𝑖𝑛𝑗𝑢𝑟𝑒𝑑_𝑆
determines the best position of injured sardine formed so far, 𝑋𝑖

𝑜𝑙𝑑_𝑆𝐹 is
the current position of sailfish, 𝑟𝑎𝑛𝑑(0, 1) is a random number between 0
and 1, and 𝜆𝑖 is a coefficient at the ith iteration that generated as follows:

𝜆𝑖 = 2 × 𝑟𝑎𝑛𝑑 (0, 1) × 𝑃𝐷 − 𝑃𝐷 (7)

where 𝑃𝐷 is prey density that shows the number of prey at each
iteration. Because the number of prey will decrease during group
hunting by sailfish, the 𝑃𝐷 parameter is a significant parameter for
updating the position of sailfish around the prey school. The adaptive
formula for this parameter is as follows:

𝑃𝐷 = 1 −
(

𝑁𝑆𝐹
𝑁𝑆𝐹 +𝑁𝑆

)

(8)

where 𝑁𝑆𝐹 and 𝑁𝑆 are respectively the number of sailfish and the
number of sardines in each cycle of the algorithm. In addition, due to the
initial number of sardines is mostly larger than sailfish, 𝑁𝑆𝐹 is defined
by 𝑁𝑆 × 𝑃𝑃 Where 𝑃𝑃 represents the percentage of sardine population
that form the initial sailfish population.

Fig. 3 demonstrates the rationale behind Eq. (6) for a 2D problem.
According to the average distance between position of the current best

sailfish (Elite sailfish) and the current best sardine (Injured sardine), the
position of sailfish can be updated over course of iteration. With this
strategy, the promising area of search space will be saved. Also, sailfish
can achieve different places around the school by adjusting the value of
𝜆. According to Eq. (7), the fluctuation range of 𝜆 is between −1 and 1
but it depends on the number of prey. In other words, with increasing
𝑃𝐷 the amount of 𝜆 will be close to −1 or 1 with respect to 𝑟𝑎𝑛𝑑(0, 1) in
Eq. (7).

The 𝜆 parameter will be tended to 1 when 𝑟𝑎𝑛𝑑 (0, 1) > 0.5, while it
tend to −1 when 𝑟𝑎𝑛𝑑 (0, 1) < 0.5 and it will be zero if 𝑟𝑎𝑛𝑑 (0, 1) = 0.5.
Fluctuation of 𝜆 and update position of sailfish can mathematically
model divergence of sailfish from each other and convergence of them
around the prey schools. This emphasize exploration and search the
solution globally.

By doing so, the SFO algorithm assists any sailfish to update its
position around the prey school with two way. In the first way, sailfish
have the alternative attack to prey school with respect to elite sailfish
and injured sardines such as sailfish 2 and 3 in Fig. 3. In the second
way, sailfish occupies empty space around the prey school and simulate
encircling the prey like sailfish 1 in Fig. 3. In both ways, sailfish are
going to injure more sardines in first stage of hunting and it leads to
higher capture success rate at later stages of collaborative hunting.

2.2.4. Hunting and catching prey
At the beginning of the group hunting, the complete slaughter of

sardines are rarely observed. In 95% of cases, sardines’ scales will be
removed when the sailfish’s bills hits the sardines’ bodies (Herbert-
Read James et al., 2016). This causes a large number of sardines in
the schools having pronounced injuries on their bodies. In (Herbert-
Read James et al., 2016), researchers found the positive correlation
between the capture success rate and the amount of injuries in the prey
school. At the beginning of the hunt, sailfish have more energy to catch
prey and also sardines are not more tired and injured. Therefore sardines
sustain high escape speed and they have a great ability to maneuver.
Gradually, the power of sailfish’s attack will be decremented over time
of hunting. Because of intense and frequent attacks, the energy stores
in prey will also reduce and may have the reduction of ability to detect
directional information about the location of sailfish, which it affects
the school’s escape maneuvers. Eventually, sardines will hit by sailfish’s
bill, break off from the shoal and will capture quickly.

For mimicking this process, each sardine is obliged to update its
position with respect to the current best position of sailfish and power
of its attack at each iteration. In the SFO algorithm, at the ith iteration
the new position of sardine 𝑋𝑖

𝑛𝑒𝑤_𝑆 may be given as:

𝑋𝑖
𝑛𝑒𝑤_𝑆 = 𝑟 ×

(

𝑋𝑖
𝑒𝑙𝑖𝑡𝑒_𝑆𝐹 −𝑋𝑖

𝑜𝑙𝑑𝑆
+ 𝐴𝑃

)

(9)

where 𝑋𝑖
𝑒𝑙𝑖𝑡𝑒_𝑆𝐹 is the best position of elite sailfish formed so far, 𝑋𝑖

𝑜𝑙𝑑_𝑆 is
the current position of sardine, 𝑟 is a random numbers between 0 and 1
and 𝐴𝑃 shows the amount of sailfish’s Attack Power at the each iteration
that is generated as follows:

𝐴𝑃 = 𝐴 × (1 − (2 × 𝐼𝑡𝑟 × 𝜀)) (10)

where 𝐴 and 𝜀 are coefficients for decreasing the value of power attack
linearly from 𝐴 to 0. To see the effects of using Eqs. (9) and (10), some
of the possible locations of sardines after slashing the prey school are
illustrated in Fig. 4. When a sailfish attacks, sardines escape to different
places immediately. As it can be seen in Fig. 4, sardines update their
position for confusing the predator and reducing the risk of being found
according to the amount of 𝑟 and 𝐴𝑃 parameters. The random value 𝑟
can regulate the dispersion rate of prey around the predator in the space
search (Fig. 4a). Eq. (9) is one of the main components of the proposed
algorithm because it indicates how the sardines update their positions
around the sailfish after each attack. This equation allows a sardine to
escape from the best sailfish (Elite) which assists to exploit information
from their respective neighbors and it can be considered as a robust local
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Fig. 3. Swimming sailfish around the prey school in the search space.

Fig. 4. Slashing the prey school by sailfish and update the position of sardines in the search space.

search. Therefore, the exploration and exploitation of the search space
can be balanced with this method.

In addition, the number of sardines that update their positions and
the amount of their displacement depends on the power of sailfish attack
(𝐴𝑃 ) (Fig. 4b). As mentioned above the power of sailfish’s attack will
reduce over time of hunting. In fact, reducing the intensity of sailfish’s
attack power can adaptively assist the convergence of the search agents.
Using 𝐴𝑃 parameter, the number of sardines that update their position
(𝛼) and the number of variables of them (𝛽) can be calculated as follows:

𝛼 = 𝑁𝑆 × 𝐴𝑃 (11)

𝛽 = 𝑑𝑖 × 𝐴𝑃 (12)

where 𝑑𝑖 is the number of variables at ith iteration and 𝑁𝑆 is the number
of sardines in each cycle of the algorithm. According to 𝐴𝑃 parameter,
if the intensity of sailfish’s tap is low (𝐴𝑃 < 0.5) just 𝛼 sardines with
𝛽 variables of sardine will be updated. However, if the intensity of
sailfish’s tap is high (𝐴𝑃 ≥ 0.5) the position of all sardines will be
updated. Basically, 𝐴𝑃 and 𝑟 parameters assist SFO to show a more
random behavior throughout optimization and they are very helpful for
local optima stagnation during all iterations.

In the final stage of hunting, the injured sardine that is break off
from the shoal will be captured quickly. In the proposed algorithm, it
is assumed that catching prey occurs when the sardine becomes fitter
than its corresponding sailfish. In this situation, the position of sailfish
substitutes with the latest position of the hunted sardine to increase the

chance of hunting new prey. The equation is proposed as follows:

𝑋𝑖
𝑆𝐹 = 𝑋𝑖

𝑠 𝑖𝑓 𝑓
(

𝑆𝑖
)

< 𝑓
(

𝑆𝐹𝑖
)

(13)

where 𝑋𝑖
𝑆 shows the current position of sardine at ith iteration and 𝑋𝑖

𝑆𝐹
shows the current position of sailfish at ith iteration.

In the SFO algorithm, the position of sailfish and sardines are
generated randomly. In every iteration, the position of each sailfish will
be updated with respect to an injured sardine and the elite sailfish. Also,
the updating position of sardine is then accomplished by selected sardine
and elite sailfish depending on the power of sailfish attack. When the
process of updating the position of sailfish and sardines finished, they
will be evaluated by the objective function. If any of the sardines become
fitter than any other sailfish, the sailfish updates its position to this
corresponding sardine. Also, the position of elite sailfish and the injured
sardine will be updated in each cycle of the algorithm. Eventually, the
hunted sardine will be removed from its population. These steps are
updated iterative until the end of criterion is satisfied. The pseudocode
of the SFO is summarized in Table 1

Some significant points to show the ability of SFO for approximating
the global optima point of optimization problems may be noted as
follow:

• Random selection of sailfish and sardines guarantee exploration of
the search space.

• Since the SFO algorithm uses a sardine population the local optima
stagnation become very low.
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Table 1
Pseudocode for the SFO algorithm.

• The proposed encircling strategy provides a hyper-sphere neigh-
borhood around the solutions that guarantee the exploration phase
for the search space.

• Maneuverability of sardines around the best agent promotes ex-
ploitation when the iteration counter increases.

• Updating the position of sardine causes the diverse movement
behaviors for sardines after slashing the prey school that creates
the diversity of position explored around the sailfish.

• The gradual decrement of 𝐴𝑃 parameter provides the dynamic
balance between exploration and exploitation.

• The convergence of the SFO algorithm will be guaranteed when
the intensity of sailfish’s attack power is adaptively decreased at
each iteration.

• Since the sailfish relocate to the position of the fitter sardine, the
promising areas of search space will be saved during optimization.

The following section investigates the effectiveness of SFO practically.

3. Result and discussion

To evaluate the performance of the SFO algorithm, a set of mathe-
matical functions are selected. Tables 2, 3, and 4 describe unimodal,
multi-modal and fixed dimension multimodal benchmark functions
where Dim is dimension of the function, Range indicates the boundary
of the function’s search space, and 𝑓𝑚𝑖𝑛 is the optimum (Suganthan
et al., 2005). Also the experiments were carried out on a machine with
the following configuration. A CPU with an Intel(R) Core(TM) i7-2630
CPU @ 2.00 GHz and 6.00 GB RAM. All the programs were written
and executed in MATLAB 2016. The operating system was Microsoft
Windows 10.

The unimodal functions (F1–F6) have one global optimum and no
local optima, so they are suitable for benchmarking the exploitation. The
SFO outperforms all other competitive algorithms in F2, F3, F4 and F6. It
may be due to the proposed exploitation operators previously discussed.
In contrary, multi-modal functions (F7–F11) have a massive number of
local optima and are suitable to evaluate local optima avoidance and
exploration ability of an algorithm. This set of benchmarks are most

Table 2
Unimodal benchmark functions.

Function Dim Range 𝑓min

𝑓1 (𝑥) =
∑𝑛

𝑖=1 𝑥
2
𝑖 30 [−100,100] 0

𝑓2 (𝑥) =
∑𝑛

𝑖=1

(

∑𝑖
𝑗−1 𝑥𝑗

)2
30 [−100,100] 0

𝑓3 (𝑥) = max𝑖
{

|

|

𝑥𝑖|| , 1 ≤ 𝑖 ≤ 𝑛
}

30 [−100,100] 0

𝑓4 (𝑥) =
∑𝑛−1

𝑖=1

[

100
(

𝑥𝑖+1 − 𝑥2𝑖
)2 +

(

𝑥𝑖 − 1
)2
]

30 [−30,30] 0

𝑓5 (𝑥) =
∑𝑛

𝑖=1
([

𝑥𝑖 + 0.5
])2 30 [−100,100] 0

𝑓6 (𝑥) =
∑𝑛

𝑖=1 𝑖𝑥
4
𝑖 + 𝑟𝑎𝑛𝑑𝑜𝑚[0, 1) 30 [−1.28,1.28] 0

difficult functions to optimize since the number of local minima in-
creases as the function dimension increases. Eventually, fixed dimension
multimodal functions (F12–F20) have also more than one optimum but
the number of local minima is less than the second category and their
dimension is low (Dim < 6).

For verification of the performance of the SFO, several well-known
algorithms are employed: Grew Wolf Optimizer (GWO) (Mirjalili et al.,
2014), Satin Bowerbird Optimizer (SBO) (Moosavi and Khatibi Bardsiri,
2017), Ant Lion Optimizer ALO (Mirjalili, 2015a,b), Genetic algorithms
(GA) (Holland, 1992), Particle swarm optimization (PSO) (Kennedy and
Eberhart, 1995) and Salp Swarm Algorithm (Mirjalili et al., 2017) (SSA).
In order to generate meaningful statistical results, each algorithm is
executed on test functions for 30 times. Every test function is solved
with 30 candidate solutions on the 500 iterations to provide a fair
comparison. Also, it should be noted that the number of sailfish or any
other search agents can be selected experimentally. The large number of
artificial sailfish determine the higher probability of the global optima.
But, it is obvious that 30 agents are a reasonable number for solving
optimization problems. To adjust some of the control parameters of each
algorithm, the values in the latest version (source code) are employed
to ensure the best performance as follows:

1. SFO: Parameter values of 𝐴 and 𝜀 are considered, 4 and 0.001,
respectively. Maximum iteration = 500 and initial population =
30.

2. GWO: Maximum iteration = 500 and initial population = 30.
3. PSO: 𝑐1 = 2, 𝑐2 = 2, 𝑤 = 1. Maximum iteration = 500 and initial

population = 30.
4. ALO: Maximum iteration = 500 and initial population = 30.
5. SBO: Parameter values of 𝑎 and 𝑧 are considered, 0.94 and

0.02, respectively. The mutation probability is 0.05. Maximum
iteration = 500 and initial population = 30.

6. SSA: Maximum iteration = 500 and initial population = 30.
7. GA: The single point crossover with a crossover probability of

0.9, mutation probability of 0.01. Maximum iteration = 500 and
initial population = 30.

Since metaheuristic algorithms are stochastic optimization tech-
niques, mean and standard deviation are calculated for evaluating the
performance of algorithms. Because of the stochastic nature of the
metaheuristic algorithms, t-test analysis also is employed. A t-test uses
the statistical examination to analyze two sets of populations and it can
indicate that the result have statistically significant difference or not.
This test returns a 𝑝-value parameter that should be less than 0.05 to
prove the statistical difference.

3.1. Assessment of exploitation phase

The test functions that have only one global optimum are unimodal
(F1–F6). These functions are suitable for evaluating the exploitation
phase of metaheuristic algorithms. Table 6 shows that the SFO is very
competitive compared with other metaheuristic algorithms. As it can be
seen in the convergence curve in Fig. 5, the SFO algorithm can converge
rapidly toward the optimum for unimodal functions. This indicates
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Table 3
Multimodal benchmark functions.

Function Dim Range 𝑓min

𝐹7 (𝑥) =
∑𝑛

𝑖=1 −𝑥𝑖sin
(

√

|

|

𝑥𝑖||

)

30 [−500,500] −418 ×𝐷𝑖𝑚

𝐹8 (𝑥) =
∑𝑛

𝑖=1[𝑥
2
𝑖 − 10 cos

(

2𝜋𝑥𝑖
)

+ 10] 30 [−5.12,5.12] 0

𝐹9 (𝑥) = −20 𝑒𝑥𝑝
(

−0.2
√

1
𝑛

∑𝑛
𝑖=1 𝑥

2
𝑖

)

− 𝑒𝑥𝑝
(

1
𝑛

∑𝑛
𝑖=1 cos

(

2𝜋𝑥𝑖
)

)

+ 20 + 𝑒 30 [−32,32] 0

𝐹10 (𝑥) =
1

4000

∑𝑛
𝑖=1 𝑥

2
𝑖 −

∏𝑛
𝑖=1 cos

(

𝑥𝑖
√

𝑖

)

+ 1 30 [−600,600] 0

𝐹11 (𝑥) = 0.1
{

sin2
(

3𝜋𝑥1
)

+
∑𝑛

𝑖=1
(

𝑥𝑖 − 1
)2 [1 + sin2

(

3𝜋𝑥1 + 1
)

+
]

+
(

𝑥𝑛 − 1
)2 [1 + sin

(

2𝜋𝑥𝑛
)]

}

+
∑𝑛

𝑖=1 𝑢
(

𝑥𝑖 , 5, 100, 4
)

30 [−50,50] 0

Table 4
Fixed dimension multimodal benchmark functions.

Function Dim Range 𝑓min

𝑓12 (𝑥) =
∑11

𝑖=1

[

𝑎𝑖 −
𝑥1(𝑏2𝑖 +𝑏𝑖𝑥2)
𝑏2𝑖 +𝑏𝑖𝑥3+𝑥4

]2
4 [−5,5] 0.00030

𝑓13 (𝑥) = 4𝑥21 − 2.1𝑥41 +
1
3
𝑥61 + 𝑥1𝑥2 − 4𝑥22 + 4𝑥42 2 [−5,5] −1.0316

𝑓14 (𝑥) =
(

𝑥2 −
5.1
4𝜋2 𝑥21 +

5
𝜋
𝑥1 − 6

)2
+ 10

(

1 − 1
8𝜋

)

cos𝑥1 + 10 2 [−5,5] 0.398

𝑓15 (𝑥) =
[

1 +
(

𝑥1 + 𝑥2 + 1
)2 (19 − 14𝑥1 + 3𝑥21 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥22

)

]

×
[

30 +
(

2𝑥1 − 3𝑥2
)2 ×

(

18 − 32𝑥1 + 12𝑥21 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥22
)

]

2 [−2,2] 3

𝑓16 (𝑥) = −
∑4

𝑖=1 𝑐𝑖 𝑒𝑥𝑝
(

−
∑3

𝑗=1 𝑎𝑖𝑗
(

𝑥𝑗 − 𝑝𝑖𝑗
)2
)

3 [0,1] −3.86

𝑓17 (𝑥) = −
∑4

𝑖=1 𝑐𝑖 𝑒𝑥𝑝
(

−
∑6

𝑗=1 𝑎𝑖𝑗
(

𝑥𝑗 − 𝑝𝑖𝑗
)2
)

6 [0,1] −3.32

𝑓18 (𝑥) = −
∑5

𝑖=1
[(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑟 + 𝑐𝑖

]−1 4 [0,10] −10.1532

𝑓19 (𝑥) = −
∑7

𝑖=1
[(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑟 + 𝑐𝑖

]−1 4 [0,10] −10.4028

𝑓20 (𝑥) = −
∑10

𝑖=1
[(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑟 + 𝑐𝑖

]−1 4 [0,10] −10.5363

that the SFO has been accurately exploited during optimization. The
results in the Table 6 present the SFO is the most efficient optimizer
for functions F2, F3, F4, and F6 and it can hence provide very good
exploitation than the other algorithms. In addition, the 𝑝-values in
Table 5 are much less than 0.05 and it shows the superiority of SFO in
the statistical difference. Table 6 also presents the CPU time in seconds
for each unimodal algorithms.

3.2. Assessment of exploration phase

The multimodal functions contain many local minima points and
these points will be increased according to the number of variables.
Therefore, these functions are very suitable for evaluating the capability
of an algorithm in the exploration phase. The CPU time in seconds for
each multimodal functions are shown in Table 6. The results presented
in Table 6 for multimodal functions indicate that SFO has significantly
better performance on F8, F10, and F11. Also, the 𝑝-values in Table 5
report that the SFO algorithm shows significantly better results for
most multimodal functions. In addition, for fixed-dimension multimodal
functions, it can be seen from Table 6 that the SFO algorithm has
outperformed the other comparative algorithms for functions F12, F18,
F19, and F20 and it also has the same result with other algorithms for
F13, F14, F15 and F16.

The proposed algorithm is the most effective or the second best
algorithm in the most of test functions. For instance, the minima of
no algorithm for F18, F19, and F20 is equal to 𝑓𝑚𝑖𝑛 in Table 4 (i.e.
−10.1532, −10.4028 and −10.5363). However, the SFO algorithm can
minimize these functions exactly equal to 𝑓𝑚𝑖𝑛 in Table 4 due to a very
good exploration capability.

Moreover, The SFO has great ability to avoid local optimum with
using sardines hunted that are fitter than search agents (sailfish) for
leading this algorithm toward the global optimum. The convergence
curves of the algorithms on several multimodal test functions are
illustrated in Figs. 6 and 7. As seen in these figures, the SFO shows the
fastest convergence on multimodal functions. These results indicate that
the SFO applies the good balance between exploration and exploitation
phases to find the global optimum. Moreover, the statistical results of
the algorithms on fixed-dimension multimodal functions are presented

in Table 5. As is shown in this table, for F15, the SFO algorithm versus
other algorithms provide a 𝑝-value greater than 0.05, which means that
the superiority of the other algorithms is not statistically significant. In
other words, SFO and other algorithms perform very similar and can be
considered as the best algorithms for solving F15.

3.3. Performance of SFO on test functions

In general, test function is defined as an artificial problem and can
be used to evaluate the behavior of an algorithm in diverse and difficult
situations. They may include single global minimum, long narrow
valleys, null-space effects, flat surfaces and single or multiple global
minima in the presence of many local minima. The objective functions
in these problems could be characterized with several parameters such
as scalability, convex or non-convex, separable or non-separable, etc.
Test functions can easily manipulate and modify to test the algorithms
in diverse scenarios. In fact, test functions can be useful to test new
algorithms in an unbiased way.

As previously mentioned, the performance of the SFO is compared
on the 20 test function with various characteristics. After investigate this
compression and review the characteristics of test functions according
to Jamil and Yang (2013), the results appear that the SFO algorithm
has great ability for solving the non-convex optimization problem in the
short time. In non-convex optimization problem, any function may have
multiple feasible regions and multiple locally optimal points within each
region. This problem can take a lot of time to identify whether the
algorithm finds the global optima or sticks in the local optima. Since a
non-convex optimization problem maintains the properties a non-linear
programming problem, the SFO algorithm is also suitable for this type
of problems. In addition, the SFO is the efficient optimizer for non-
separable functions. In these functions, all the parameters or variables of
objective functions are dependent and they show inter-relation among
themselves. Therefore the non-separable functions cannot divide into
sub-objective function and are not relatively easy to solve and optimize.
However, the SFO algorithm has outperformed the other comparative
algorithms for most non-separable functions in Table 6. Another im-
portant property of test functions is scalability. This ability responds
well when the dimension of the search space increases. In previous
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Fig. 5. Convergence curve of algorithms on four unimodal functions.

Fig. 6. Convergence curve of algorithms on three of the multimodal functions.

two subsection, several multidimensional scalable test functions are
evaluated and the results shows that the SFO algorithm has great ability
to optimize scalable problems as well.

3.4. Analysis of the SFO algorithm

In this section, the convergence behavior of SFO and the performance
of the proposed algorithm in terms of exploration and exploitation is
discussed. To confirm these items, five parameters are employed as
follows:

• Search history.
• Route of the first sailfish in its first dimension.
• Sardines hunted.
• Fitness history.
• Convergence curve.

The experiments are re-done with 2 variables and 4 sailfish over 100
iterations. The results are shown in Fig. 8. As it can be seen in this figure,
the second column shows the history of search agent’s positions over
the course of iterations (blue spots). These spots show that the sailfish
explore promising areas of the search space and they also exploit around
the global optima very accurately. The approximating of global optima
can effectively confirm with these observations.

The third column indicates the changes of the position of the first
sailfish in the first dimension. This parameter tracks the position of
sailfish and it assists to observe the moving of candidate solutions. These
observations demonstrate the abrupt changes for the implementation of
exploration and gradual changes for the implementation of exploitation.
According to Van den Bergh and Engelbrecht (2006), this behavior
guarantees the convergence of the population based algorithm to one
point in the search space.
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Fig. 7. Convergence curve of algorithms on four of the fixed dimension multimodal functions.

Table 5
𝑃 -value of the t test analysis over unimodal and multimodal benchmark functions.

Function SFO versus GWO SFO versus SBO SFO versus ALO SFO versus PSO SFO versus SSA SFO versus GA

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20

3.1e−3
9.38e−149
2.40e−30
8.68e−233
9.94e−26
1.37e−32
7.79e−08
7.45e−320
4.22e−05
0
1.67e−246
7.25e−23
4.88e−35
1.08e−05
0.16
4.78e−2
6.63e−04
1.18e−156
5.24e−131
5.97e−138

1.97e−323
0
7.70e−215
2.69e−255
4.32e−12
1.34e−89
1.11e−06
0
9.03e−199
0
3.13e−185
7.75e−20
4.88e−35
1.08e−05
0.61
1.68e−40
5.5e−3
6.62e−179
5.30e−172
3.92e−159

7.05e−121
1.49e−270
1.49e−134
1.06e−254
3.00e−17
3.65e−69
5.54e−12
0
1.47e−184
0
3.13e−174
6.03e−17
4.88e−35
7.90e−36
0.16
2.40e−2
2.28e−04
3.28e−176
5.33e−165
1.17e−165

5.17e−243
0
1.01e−207
3.18e−248
3.10e−17
5.82e−90
0.99
0
5.25e−175
0
3.36e−188
0.20
4.88e−35
7.90e−36
0.16
2.40e−2
9.9e−3
3.03e−168
6.53e−158
7.39e−131

3.62e−173
3.34e−137
6.71e−74
6.29e−249
8.96e−21
3.24e−61
1.40e−14
0
3.13e−188
0
1.18e−167
8.79e−16
6.40e−36
1.03e−37
0.08
1.68e−2
0.99
5.35e−194
2.44e−144
2.93e−146

0
0
3.01e−215
9.80e−246
5.26e−32
7.17e−117
4.40e−23
0
2.13e−202
0
1.37e−217
1.45e−16
8.59e−131
3.77e−06
0.99
3.94e−68
0.05
1.66e−176
1.72e−174
1.30e−167

The fourth column in Fig. 8 shows the number of sardines that are
hunted during optimization. As previously mentioned, when the sardine
becomes fitter than its corresponding sailfish, catching the prey will
be occurred. The gradual increment in the number of sardines hunted
assists search agents to improve the overall fitness and it balances
between exploration and exploitation phases.

The fifth column in Fig. 8 illustrates the average fitness of all sailfish
and sardines, respectively. The average fitness of sailfish shows the
decrement of the fluctuations over the course of iteration on all of the
test functions (red line). Also, the blue line shows the fluctuations of
the cost function of sardines that assists the sailfish in getting the fitter
points. With comparing third and fifth columns in Fig. 8, it is obvious
that when the movement of search agent becomes very gradual, the
average of its fitness will be degraded in each cycle of the algorithm.
As it can be seen in Fig. 8, these curves show the sharp acceleration
for the average fitness and they demonstrate that the improvement
of solutions become faster over the course of iteration. In the other
word, the sailfish swim around the prey school, decrease the number

of sardines adaptively in the local search and tend to converge when
the counter of iteration increases.

The last column in Fig. 8 illustrates the convergence curves during
optimization. The reduction of fitness also indicates the accuracy of the
approximation of global optima. In addition, it can be seen in these
curves that search agents explore the promising areas during initial
iterations and exploit these regions in the final iteration.

4. Optimization of large-scale problems using SFO

To further prove the scalability of SFO algorithm, which is im-
portant for applicability of the algorithm to real-world problems, the
300-dimensional versions of the unimodal and multimodal benchmark
functions (F1–F11) are employed in this subsection. The population of
30 search agents is used to solve these test problems over 500 iterations.
As shown in Table 7, the SFO outperforms all other algorithms except
GA for the test function F7. Unlike other algorithms, SFO has achieved
these strong results without increasing the number of population and
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Table 6
Comparison of optimization results for the benchmark functions.

Function SFO GWO SBO ALO PSO SSA GA

Unimodal functions

F1 Mean 6.55e−13 1.84e−27 9.57e−2 1.55e−3 1.63e−4 2.75e−07 2.6846
Std 1.11e−12 4.43e−27 3.74e−2 1.33e−3 2.70e−4 6.97e−07 1.0141
CPU 0.67 s 0.71 s 6.79 s 14.21 s 0.21 s 0.54 s 1.38 s

F2 Mean 2.18e−10 8.44e−06 865.87 3321.87 86.96 1519.48 4566.03
Std 6.04e−10 1.83e−05 363.26 1111.49 39.89 1037.73 1620.94
CPU 4.09 s 1.75 s 7.48 s 14.06 s 1.04 s 1.37 s 2.58 s

F3 Mean 3.29e−08 8.67e−07 1.87 16.86 1.06 12.31 8.21
Std 2.47e−08 9.65e−07 1.09 5.23 0.23 3.87 2.30
CPU 0.63 0.56 s 7.06 s 13.94 s 0.24 s 0.51 s 1.44 s

F4 Mean 3.86e−07 27.21 162.56 355.68 92.71 147.98 270.83
Std 5.38e−07 0.70 189.20 409.01 47.68 355.63 125.55
CPU 0.56 s 0.57 s 6.62 s 13.81 s 0.31 s 0.56 s 1.53 s

F5 Mean 0.24 0.72 0.09 0.25 2.90e−4 9.26e−10 1.98
Std 0.07 0.38 0.04 0.08 8.57e−4 3.62e−10 0.71
CPU 0.67 s 0.58 s 6.65 s 13.93 s 0.22 s 0.51 s 1.47 s

F6 Mean 1.1e−4 1.83e−3 0.16 0.25 0.16 1.28e−2 0.10
Std 8.86e−05 1.25e−3 3.78e−2 8.24e−2 5.39e−2 1.07e−2 2.96e−2
CPU 0.89 s 0.72 s 6.65 s 13.79 s 0.34 s 0.65 s 1.85 s

Multimodal functions

F7 Mean −4662.72 −5947.55 −5752.83 −5668.22 −4550.51 −2789.44 −10863.70
Std 861.40 838.94 806.62 638.38 1112.60 296.90 313.15
CPU 0.92 s 0.59 s 6.84 s 14.51 s 0.37 s 0.60 s 1.90 s

F8 Mean 6.49e−11 2.14 49.45 79.63 59.00 16.75 3.73
Std 2.34e−10 3.75 10.32 23.40 14.80 7.06 2.15
CPU 0.80 s 0.51 s 7.23 s 4.37 s 0.28 s 0.56 s 1.53 s

F9 Mean 2.18e−07 1.05e−13 1.36 4.48 0.21 0.49 0.50
Std 3.82e−07 2.23e−14 3.73 3.02 0.49 0.83 0.21
CPU 0.99 s 0.52 s 7.01 s 13.92 s 0.37 s 0.53 s 1.55 s

F10 Mean 2.31e−14 4.4e−3 0.44 6.72e−2 7e−3 0.19 0.98
Std 6.46e−14 8.7e−3 0.21 3.82e−2 7.1e−3 0.11 0.07
CPU 1.02 s 0.57 s 7.24 s 4.88 s 0.36 s 0.68 s 2.29 s

F11 Mean 1.96e−09 0.68 5.26e−3 28.53 6.67e−2 2.16e−3 0.16
Std 4.52e−09 0.28 3.22e−3 19.69 1.28e−2 5.2e−3 0.07
CPU 1.76 s 1.04 s 6.99 s 14.00 s 0.79 s 0.99 s 5.11 s

F12 Mean 6.9e−4 4.40e−3 3.56e−3 2.94e−3 8.9e−4 1.59e−3 1.62e−3
Std 6.5e−4 8.12e−3 4.38e−3 5.93e−3 1.5e−4 3.55e−3 9.1e−4
CPU 0.72 s 0.36 s 1.36 s 6.04 s 0.20 s 0.55 s 1.36 s

F13 Mean −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03
Std 4.55e−07 2.25e−08 3.34e−06 5.97e−14 6.71e−16 1.435e−14 2.97e−07
CPU 0.51 s 0.28 s 0.97 s 3.37 s 0.10 s 0.48 s 1.34 s

F14 Mean 0.40 0.40 0.40 0.40 0.40 0.40 0.40
Std 1.06e−05 0.00029 7.269e−05 6.33e−14 0 2.45e−14 2.04e−09
CPU 0.49 s 0.29 s 0.95 s 3.38 s 0.11 s 0.41 s 1.19 s

F15 Mean 3.00 3.00 4.15 3.00 3.00 3.00 3.00
Std 6.85 4.58e−05 5.07 3.69e−17 1.98e−15 4.19e−13 4.89e−06
CPU 0.44 s 0.29 s 0.87 s 3.54 s 0.08 s 0.37 s 1.19 s

F16 Mean −3.86 −3.86 −3.81 −3.86 −3.86 −3.86 −3.41
Std 2.33e−3 3.01e−3 0.17 3.61e−13 2.62e−15 2.47e−11 0.59
CPU 1.04 s 0.45 s 1.36 s 4.95 s 0.29 s 0.60 s 1.42 s

F17 Mean −3.23 −3.29 −3.27 −3.29 −3.28 −3.23 −3.26
Std 0.09 8.29e−2 5.92e−2 5.15e−2 6e−2 6.2e−2 6.03e−2
CPU 1.08 s 0.45 s 1.94 s 8.83 s 0.28 s 0.54 s 1.79 s

F18 Mean −10.15 −9.23 −4.74 −5.79 −7.83 −6.81 −5.68
Std 1.06e−06 2.14 3.35 2.86 3.18 3.50 2.70
CPU 1.04 s 0.60 s 1.72 s 6.27 s 0.42 s 0.82 s 1.61 s

F19 Mean −10.40 −10.22 −5.77 −7.75 −8.89 −9.24 −4.76
Std 2.23e−05 0.98 3.62 3.37 2.84 2.67 2.21
CPU 1.33 s 0.83 s 1.97 s 6.77 s 0.56 s 0.89 s 1.71 s

F20 Mean −10.53 −10.08 −8.11 −6.46 −10.28 −8.50 −5.77
Std 5.61e−06 1.75 3.53 3.50 1.41 3.22 3.57
CPU 1.72 s 0.96 s 2.04 s 6.88 s 0.67 s 1.18 s 1.98 s

maximum iteration compared with comparison of low-dimensional (𝑛 ≤
30) benchmark problems. For the 11 tested high-dimensional problems,
the SFO algorithm converged to near-optimal solutions and it can be
scaled up to handle most of the 300-dimensional cases. Therefor these
results of SFO in Table 7 can be good evidence for solving large-scale
problems as well.

5. Engineering optimization problem

It has proved that no single optimization algorithm has the best
performance for all problems with different structures (Wolpert and
Macready, 1997). Some of the algorithms can solve some problems
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Fig. 8. Search history, trajectory in first dimension, sardines hunted, fitness history, and convergence rate.

Table 7
Result of unimodal and multimodal benchmark functions (300-dimensional).

Function SFO GWO SBO ALO PSO SSA GA

Unimodal functions

F1 Mean 2.49e−14 1.27e−05 1715.45 84 946.66 1197.40 41 571.17 22 997.81
Std 2.93e−14 4.35e−06 246.61 20 293.84 99.19 4099.30 3109.23

F2 Mean 2.91e−09 79 573.07 232 560.37 739 745.37 196 201.26 518 751.31 640 003.72
Std 8.81e−09 27 639.86 25 943.26 249 990.98 72 078.06 241 130.46 196 898.51

F3 Mean 6.56e−09 46.60 38.90 44.28 23.52 37.24 41.70
Std 5.22e−09 6.96 1.96 3.42 1.38 3.42 2.33

F4 Mean 1.72e−06 297.74 221 533.08 53 231 068.11 3 855 906.63 12 871 662.36 6 020 315.41
Std 2.71e−06 0.41 58 269.60 22 978 698.04 679 351.70 1 702 878.25 1 753 119.52

F5 Mean 0.33 49.04 1691.51 92 703.27 1257.88 40 213.24 21 951.73
Std 0.17 1.59 193.57 17 114.14 142.54 4164.26 2401.37

F6 Mean 1.80e−4 2.74e−2 5.41 190.17 19 255.45 61.76 32.56
Std 1.80e−4 8.39e−3 0.77 57.22 911.35 11.13 7.54

Multimodal functions

F7 Mean −40 172.20 −40 997.98 −52 321.63 −55 857.90 −18 264.96 −45 316.05 −56239.80
Std 22 281.76 3044.38 7340.83 9208.07 6320.54 3554.65 3717.84

F8 Mean 1.68e−12 38.20 920.50 1902.26 3318.14 1553.12 1168.30
Std 6.25e−12 15.21 54.20 167.70 235.16 84.10 60.63

F9 Mean 3.90e−08 2.05e−4 17.25 15.64 8.74 13.73 11.07
Std 4.08e−08 3.97e−05 0.35 0.67 0.32 0.49 0.56

F10 Mean 1.18e−16 1.44e−2 17.35 766.64 22.04 368.05 200.69
Std 2.49e−16 2.47e−2 2.88 183.24 6.30 26.38 20.12

F11 Mean 1.41e−10 27.33 8761.14 67 568 040.51 160 608.71 8 829 053.13 3 625 915.34
Std 2.60e−10 0.80 5329.49 40 934 415.75 78 961.95 3 390 630.44 2 296 342.17
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Fig. 9. I-beam design problem.

Table 8
Comparison results for I-beam design problem.

Algorithm Optimal values for variables 𝑓 (𝑥)

𝑏 ℎ 𝑡𝑤 𝑡𝑓
SFO
MFO
ARSM
IARSM
CS
SOS

50
50
37.05
48.42
50
50

80
80
80
79.99
80
80

1.7637
1.7647
1.71
0.90
0.9
0.9

5.0000
5.0000
2.31
2.40
2.3216
2.3217

0.00662584
0.0066259
0.0157
0.131
0.0130747
0.0130741

quickly and well but these algorithms have not the satisfactory per-
formances to solve another problems. In this subsection, solving five
engineering design problems such as I-beam design problem, Welded
beam design problem, Gear train design problem, Three-bar truss design
problem, and circular antenna array design problem are considered to
evaluate the ability of SFO algorithm for optimization without biased
conclusion.

5.1. I-beam design problem

This problem is one of structural optimization problem that the
objective function is to minimize vertical deflection. I-beams are usually
made of structural steel and are used in construction and civil engineer-
ing. There are several structural parameters such as length, height, and
two thicknesses for this problem. As shown in Fig. 9, designing of an I-
shaped beam are illustrated. Formulation and constraint of this problem
shows as follows:

consider 𝑥 =
[

𝑥1, 𝑥2, 𝑥3, 𝑥4
]

=
[

𝑏, ℎ, 𝑡𝑤, 𝑡𝑓
]

Min. 𝑓 (𝑥) = 5000
𝑡𝑤(ℎ−2𝑡𝑓 )3

12 +
𝑏𝑡3𝑓
6 + 2𝑏𝑡𝑓

( ℎ−𝑡𝑓
2

)2

S.t.
𝑔 (𝑥) = 2𝑏𝑡𝑤 + 𝑡𝑤

(

ℎ − 2𝑡𝑓
)

≤ 0,

10 ≤ 𝑥1 ≤ 50, 10 ≤ 𝑥2 ≤ 80, 0.9 ≤ 𝑥3 ≤ 5, 0.9 ≤ 𝑥4 ≤ 5 (14)

Table 8 shows the experimental results on I-beam design problem. As
can be seen in this table, SFO are compared with moth-flame optimiza-
tion algorithm (MFO) (Mirjalili, 2015a,b), adaptive response surface
method (ARSM) (Wang, 2003), Improved ARSM (IARSM) (Wang, 2003),
Cuckoo search (CS) (Gandomi et al., 2013), and Symbiotic organisms
search (SOS) (Cheng and Prayogo, 2014) in the literature. As the
results show, SFO produces promising results in comparison with the
other algorithms and has a good ability for achieving minimal vertical
deflection in this problem.

5.2. Welded beam design problem

As illustrated in Fig. 11 a rigid member welded onto a beam and a
load is applied to the end of the member. The total cost of production
is equal to the labor costs plus the cost of the weld and beam material.
Thus, the objective of this problem is to minimize the fabrication cost
of a welded beam. There are four decision variable such as thickness of

Fig. 10. Design parameters of the welded beam design problem.

weld (h), length of attached part of bar (l), the height of the bar (t), and
thickness of the bar (b) as shown in Fig. 10. Also the constraints of this
problem are based on shear stress (s), bending stress in the beam (r),
bucking load on the mathematical formulation is as follows:

Min. 𝑓 (𝑥) = 1.10471𝑥21𝑥2 + 0.04811𝑥3𝑥4
S.t.
𝑔1 (𝑥) = 𝜏 (𝑥) − 𝜏𝑚𝑎𝑥 ≤ 0

𝑔2 (𝑥) = 𝜎 (𝑥) − 𝜎𝑚𝑎𝑥 ≤ 0

𝑔3 (𝑥) = 𝑥1 − 𝑥4 ≤ 0

𝑔4 (𝑥) = 1.10471𝑥21 + 0.04811𝑥3𝑥4
(

14.0 + 𝑥2
)

− 5.0 ≤ 0 (15)
𝑔5 (𝑥) = 0.125 − 𝑥1 ≤ 0

𝑔6 (𝑥) = 𝛿 (𝑥) − 𝛿𝑚𝑎𝑥 ≤ 0

𝑔7 (𝑥) = 𝑃 − 𝑃𝑐 (𝑥) ≤ 0

where

𝜏 (𝑥) =
√

(𝜏′)2 + 2𝜏′𝜏′′
𝑥2
2𝑅

+ (𝜏′′)2

𝜏′ = 𝑃
√

2𝑥1𝑥2
, 𝜏′′ = 𝑀𝑅

𝐽
,𝑀 = 𝑃 (𝐿 +

𝑥2
2
)

𝑅 =

√

𝑥22
4

+
(

𝑥1 + 𝑥3
2

)2
, 𝐽 = 2

{

√

2𝑥1𝑥2

[

𝑥22
4

+
(

𝑥1 + 𝑥3
2

)2
]}

𝜎 (𝑥) = 6𝑃𝐿
𝑥4𝑥23

, 𝛿 (𝑥) = 6𝑃𝐿3

𝐸𝑥4𝑥23

𝑃𝑐 (𝑥) =
4.013𝐸

√

𝑥23𝑥
6
4

36

𝐿2

(

1 −
𝑥3
2𝐿

√

𝐸
4𝐺

)

𝑃 = 6000 lb, 𝐿 = 14 in, 𝐸 = 30 × 106 psi, 𝐺 = 12 × 106 psi
𝜏𝑚𝑎𝑥 = 13,600 psi, 𝜎𝑚𝑎𝑥 = 30,000 psi, 𝛿𝑚𝑎𝑥 = 0.25 in
0.1 ≤ 𝑥1 ≤ 2, 0.1 ≤ 𝑥2 ≤ 10,

0.1 ≤ 𝑥3 ≤ 10, 0.1 ≤ 𝑥4 ≤ 2

Welded beam is solved by the SFO algorithm and compared to
Coello (2002), GA (Carlos and Coello, 2000), GSA (Rashedi et al.,
2009), Siddall (1972), Richardson’s random method, Simplex method,
Davidon–Fletcher–Powell (Ragsdell and Phillips, 1976). Table 9 shows
the SFO is able to find best solution and corresponding constraint value
for this problem. In this compression, SFO can outperform all algorithms
and outperforms by CPSO (He and Wang, 2007).

5.3. Gear train design problem

The design of gear train is a kind of mixed problems which have
to determine various types of design variables such as continuous,
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Table 9
Comparison results for welded beam design problem.

Algorithm Optimal values for variables 𝑓 (𝑥)

ℎ 𝑙 𝑡 𝑏

SFO
CPSO
Coello
GA
GSA
Siddall
David
Ragsdell
Simplex
Random

0.2038
0.2023
0.2088
0.1829
0.1821
0.2444
0.2434
0.2455
0.2792
0.4575

3.6630
3.5442
3.42050
4.0483
3.85697
6.2189
6.2552
6.1960
5.6256
4.7313

9.0506
9.0482
8.997500
9.3666
10.0000
8.2915
8.2915
8.2730
7.7512
5.0853

0.2064
0.2057
0.2100
0.2059
0.202376
0.2444
0.2444
0.2455
0.2796
0.6600

1.73231
1.73148
1.74831
1.82420
1.87995
2.38154
2.38411
2.38594
2.53073
4.11856

Fig. 11. Design parameters of the gear train design problem.

Table 10
Comparison results for gear train design problem.

Algorithm Optimal values for variables 𝑓 (𝑥)

𝑛𝑎 𝑛𝑏 𝑛𝑐 𝑛𝑑
SFO 49 16 19 43 2.700857148886513e−12
CSA 49 19 16 43 2.70085714889e−12
MBA 43 16 19 49 2.700857e−12
MFO 43 19 16 49 2.7009e−12
GA 49 16 19 43 2.7019e−012
CS 19 16 43 49 2.701e−12
Kannan and
Kramer

33 15 13 41 2.1469e−08

Sandgren 18 22 45 60 5.712e−06

discrete, and integer variables. This problem simply stated is: given
a fix input drive and a number of fixed output drive spindles, how
can the spindles be driven by the input using the minimum number of
connecting gear in the train. Therefore, the objective of gear train design
problem is to minimize the cost of the gear ratio of the gear train in field
mechanical engineering problem as shown in Fig. 11. The parameters
in this problem are the number of teeth of the gears. 𝑛𝑎, 𝑛𝑏, 𝑛𝑐 and 𝑛𝑑
are the variables in gear train problem and this problem is formulated
as follow:

Min. 𝑓 (𝑥) =
(

1
6.931

−
𝑥3𝑥2
𝑥1𝑥4

)2
(16)

S.t.
12 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 60

Table 10 compares the performance of the SFO with Mine blast
algorithm (MBA) (Sadollah et al., 2013), Crow search algorithm (CSA)
(Askarzadeh, 2016), Moth-flame optimization algorithm (MFO) (Mir-
jalili, 2015a,b), genetic algorithms (GA) (Deb and Goyal, 1996), Cuckoo
search algorithm (CS) (Gandomi et al., 2013), Kannan and Kramer
(1994) and Sandgren (1990) in the literature. As seen in these results,
SFO has the same result with MBA and CSA and outperforms other
algorithms. Since the gear train is a discrete problem, these results prove
that SFO has a good ability for solving discrete problems as well.

Fig. 12. Schematic of three-bar truss design problem.

Table 11
Comparison results for three-bar truss problem.

Algorithm Optimal values for variables 𝑓 (𝑥)

𝑥1 𝑥2
SFO
PSO-DE
MBA
MFO
CS
Ray and Saini

0.7884562
0.7886751
0.7885650
0.78824477
0.78867
0.795

0.40886831
0.4082482
0.4085597
0.40946690
0.40902
0.395

263.89592128
263.8958433
263.8958522
263.89597968
263.9716
264.3

5.4. Three-bar truss design problem

This problem is one of optimization problem in the field of civil
engineering. Due to This problem difficult constrained search space, this
problem has been mostly utilized to evaluate the optimization power of
proposed algorithms. Fig. 12 illustrate the schematic of three-bar truss
design problem. The objective of this problem is to find the optimal
values of the cross-sectional areas of the bars, which minimize the
weight of the structure, subject to maximize stress constraints on the
three bars. In this problem, there is a nonlinear fitness function with
three nonlinear inequality constraints and there are two continuous
variables for decision. The formulation of this problem is as follows:

Min.𝑓 (𝑥) =
(

2
√

2𝑥1 + 𝑥2
)

∗ 𝑙 (17)

S.t.

𝑔1 (𝑥) =

√

2𝑥1 + 𝑥2
√

2𝑥21 + 2𝑥1𝑥2
𝑃 − 𝜎 ≤ 0

𝑔2 (𝑥) =
𝑥2

√

2𝑥21 + 2𝑥1𝑥2
𝑃 − 𝜎 ≤ 0

𝑔1 (𝑥) =
1

√

2𝑥2 + 𝑥1
𝑃 − 𝜎 ≤ 0

0 ≤ 𝑥1, 𝑥2 ≤ 1

Table 11 presents the best weights obtained and the optimal values
for the decision variables by SFO and several algorithms. As shown in
Table 11, SFO compared to PSO-DE (Liu et al., 2010), MBA (Sadollah
et al., 2013), MFO (Mirjalili, 2015a,b), Ray and Saini (2001) and CS
(Gandomi et al., 2013) algorithms in the literature. The results show
that SFO outperforms three of the algorithms and outperforms by PSO-
DE and MBA.

5.5. Circular antenna array design problem

Circular antenna array design problem is one example of the CEC
2011 competition which consider of real world optimization problems
(Das and Suganthan, 2010). This problem has various applications in
sonar, radar, mobile and commercial satellite communication systems
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Table 12
Comparison results for Circular antenna array design problem.

Algorithm Optimal values for variables 𝑓 (𝑥)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12
SFO
SBO
WCA
GA

0.0097
1.4918
1
1.2378

0.0097
1.5010
0.5498
0.5828

0.0091
0.2718
0.3167
0.4172

0.0038
0.6113
0.3563
0.3880

0.0068
0.6145
0.2387
0.4023

0.0093
0.5705
0.8040
0.5573

1.7028
−15.234
0.2
−23.724

−1.7708
5.3373
0.9715
−7.9299

1.7503
−23.373
0.2
−40.292

−1.7595
38.0860
0.7601
0.1474

−1.7081
6.8295
0.9987
53.6568

1.7660
−11.864
0.2001
5.9731

−13.916
−11.227
−10.370
−11.942

Fig. 13. (a), (b), (c), and (d) are the shapes for 38, 75, 102 and 104 atoms.

(Dessouky et al., 2006a; Gurel and Ergul, 2008; Dessouky et al., 2006b).
Fig. 13 is shown N antenna elements spaced on a circle in the x-y
plane and the antenna elements constitute a circular antenna array, as
it is illustrated in the Fig. 14. The array factor for the circular array is
formulated as follows:

𝐴𝐹 (𝜑) =
𝑁
∑

𝑛=1
𝐼𝑛𝑒𝑥𝑝

[

𝑗𝑘𝑟
(

𝑐𝑜𝑠
(

𝜑 − 𝜑𝑛
𝑎𝑛𝑔

)

− 𝑐𝑜𝑠
(

𝜑0 − 𝜑𝑛
𝑎𝑛𝑔

))

+ 𝛽𝑛
]

(18)

𝜑𝑛
𝑎𝑛𝑔 =

2𝜋 (𝑛 − 1)
𝑁

, 𝑘𝑟 = 𝑁𝑑,

where 𝜑𝑛
𝑎𝑛𝑔 is the angular position and 𝑘𝑟 is the wave-number, 𝑑 is the

angular spacing between elements, 𝜑0 is the direction of maximum, 𝜑
is the angle of incidence of the plane wave, 𝐼0 is the current excitation
and 𝛽 is the phase excitation of the 𝑛th element. In the circular antenna
array design problem, the current excitations of the antenna elements
vary and try to suppress side-lobes, minimize beamwidth and achieve
null control at desired directions. The objective function is taken as,

𝑂𝐹 =
|

|

𝐴𝑅(𝜑𝑠𝑙𝑙 , 𝐼, 𝛽, 𝜑0)||
|

|

𝐴𝑅(𝜑𝑚𝑎𝑥, 𝐼, 𝛽, 𝜑0)||

+ 1
𝐷𝐼𝑅

(

𝜑0, 𝐼, 𝛽
)

+ |

|

𝜑0 − 𝜑𝑑𝑒𝑠
|

|

+
∑𝑛𝑢𝑚

𝑘=1
|

|

𝐴𝑅(𝜑𝑠𝑙𝑙 , 𝐼, 𝛽, 𝜑0)||
(19)

As illustrated in Fig. 14, for considering a symmetrical excitation of
the circular antenna array the relations given below will hold,

𝐼 𝑛
2+1

∠𝛽 𝑛
2+1

= 𝑐𝑜𝑛𝑗(𝐼1∠𝛽1),

𝐼 𝑛
2+2

∠𝛽 𝑛
2+2

= 𝑐𝑜𝑛𝑗
(

𝐼1∠𝛽1
)

,…

𝐼𝑛∠𝛽𝑛 = 𝑐𝑜𝑛𝑗(𝐼 𝑛
2
∠𝛽 𝑛

2
) (20)

This problem mimics another characteristic of real world optimiza-
tion problems and is different with other employed problems in this
section. To provide the instantiation of the design problem for this com-
petition, the number of elements in circular array is 12, 𝑥𝑙 is any string
within bounds, null is equal to [50,120] in radians (no null control),
phi_desired is 180◦ and distance parameter is equal to 0.5. As shown in

Fig. 14. Geometry of circular antenna array.

Table 12, SFO compared to SBO (Moosavi and Khatibi Bardsiri, 2017),
WCA (Eskandar and Bahreininejad, 2012) and GA (Holland, 1992)
algorithms in the literature. The results show that SFO outperforms these
algorithms and the results in Table 12 evidence that the SFO algorithm
has ability to solve these types of problems efficiently as well.

6. Conclusion

This paper proposed a novel swarm intelligence optimization algo-
rithm and is inspired by the group hunting behavior of sailfish. The
proposed algorithm that is called SFO (SailFish Optimizer) simulated the
search for prey, attack-alternation strategy, and hunting and catching
prey. The SFO algorithm evaluated with 24 mathematical benchmark
functions for analyzing exploration and exploitation phases, local op-
tima avoidance, and convergence behavior of the proposed algorithm.
The superior results reported that the proposed algorithm achieved
high exploration, exploitation and convergence speed on the majority
of test functions. In addition, since SFO employed two populations
of prey and predator, the local optima stagnation become very low.
Based on the amount of maneuverability of sardines and every dimen-
sions of problem, the SFO algorithm provided the diverse movement
behaviors for sardines inside the encircled area and guarantees the
variety of position explored around the hunter. However, this movement
is decreased adaptively and leads the SFO algorithm to convergence
during the optimization. According to the severity of the attack by
sailfish, when the iteration counter increases, the SFO algorithm defines
the boundaries of maneuverability of sardines which promote the
exploitation phase during optimization. Also since the position of the
best sailfish is saved in each iteration and considered as the elite, the
position of sardines will be updated toward the best solution according
to amount of sailfish’s attack power. With this strategy, the promising
area of search space will be saved at each course of iteration. And the
last point is to reduce the number of sardines after hunting that provides
the dynamic balance between exploration and exploitation phases in
the search space. The SFO algorithm also showed significant results for
non-convex, non-separable and scalable test functions. Eventually, the
results of the proposed algorithm were compared with several state-of-
the-art metaheuristic algorithms in literature and it was found to be
enough competitive and superior over conventional techniques.
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The proposed SFO may contribute to several research directions
for future works. The first direction can be applying this method to
solve various optimization problems in different domains. Another
direction can be developing a version with the parallelization process
to demonstrate more functionality and efficiency of the SFO algorithm.
In addition, to solve multi objective problems with this algorithm can
be considered as a good contribution.
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