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ABSTRACT
We introduce a graphical diagnostic called the Torgegram for characterizing spatial dependence among
observations of a variable on a stream network. The Torgegram consists of four component empirical semi-
variograms, each one corresponding to a particular combination of flow-connectednesswithin the network
and model type (tail-up/tail-down). We show how an overall strategy for fluvial variography can be based
on a careful examination of the Torgegram. An analysis of water temperature data from a stream network
within the Columbia River basin of the northwest United States illustrates the diagnostic value of the Torge-
gram as well as its limitations. Additional uses and extensions of the Torgegram are discussed.

1. Introduction

Streams and rivers are an important environmental resource.
Consequently, major efforts are ongoing to characterize and
monitor streams and rivers throughout theworld (see, e.g., Bunn
et al. 2010; Chandler et al. 2016; Wang et al. 2011; McKay et al.
2012). As with most environmental monitoring studies, mon-
itoring a stream variable requires that a sample be taken from
a possibly infinite population of values on a stream network.
The sample could consist, for example, of water quality mea-
surements at discrete point sites on the network, or counts of fish
from short stream sections. The inferential goals for stream vari-
ables may vary, but often include predicting values of the vari-
able(s) at unsampled locations, predicting an average value or
total for a stream segment or the entire stream network, estimat-
ing the effects of covariate (fixed) effects on response variables
from streams, and estimating temporal trends.

Spatial statistical methods for achieving the inferential goals
just mentioned have been available for a long time for data
from Euclidean (rather than stream network) domains, and
are known collectively as geostatistics. In the geostatistical
paradigm, the observed data are regarded as a sample taken
from one realization of a stochastic process indexed by points
in Euclidean space, that is, as Y (·) ≡ {Y (s) : s ∈ D} where D
is a region in two-dimensional (usually) Euclidean space, and
s is a point location in that region. It is often assumed, unless
there is evidence to the contrary, that the stochastic process is
intrinsically stationary and isotropic, that is, that itsmean is con-
stant across space and its second-order dependence, as charac-
terized by the semivariogram γ (s, t) ≡ 1

2E[Y (s) −Y (t)]2, may
be expressed as a function of the Euclidean distance, h = ‖s −
t‖, between locations. Before the aforementioned inferential
goals can be achieved, the semivariogram must be estimated,
characterized, andmodeled—an exercise known as variography.
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The main tool of variography is the empirical semivariogram,
defined as

γ̂ (hk) = 1
2N(Hk)

∑
‖si−s j‖∈Hk

(Y (si) −Y (s j))2, k = 1, . . . ,K,

(1)
whereY (s1), . . . ,Y (sn) are the observed data, hk is a represen-
tative distance (often the average or midrange) for a distance
bin Hk, and N(Hk) is the number of distinct site-pairs in Hk.
From a plot of γ̂ (hk) versus hk, the analyst can often discern
important features of the semivariogram, including the follow-
ing: a sill (the limit of γ (h) as h → ∞, if this limit exists), which
is equivalent to the variance of Y (·); a range (the distance at
which the sill is reached, or equivalently the distance beyond
which the correlation is essentially zero, if such a distance
exists); a nugget (the limit of γ (h) as h → 0); and various
shape attributes (e.g., sigmoidicity, concavity, monotonicity, or
periodicity).

Furthermore, the empirical semivariogram and/or simple
extensions of it can be used to check the underlying assump-
tions of second-order stationarity and isotropy. For example,
an empirical semivariogram that appears to increase without
bound is evidence thatY (·) is not second-order stationary, pos-
sibly because its mean is not constant—a phenomenon known
as trend contamination. Another possible manifestation of non-
stationarity is a sill and/or range that varies over space. Region-
specific empirical semivariograms, computed from observa-
tions taken in disjoint subregions of the spatial domain, may
be compared to look for this type of nonstationarity. Similarly,
direction-specific empirical semivariograms may be compared
to assess the isotropy assumption. Formal tests for second-order
stationarity and isotropy can be based on these extended semi-
variograms; see Jun andGenton (2012) andGuan, Sherman, and
Calvin (2004).
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Because geostatistical methods have been so successful for
analyzing data in Euclidean spatial domains, there have recently
been several attempts to apply them to data from stream net-
works also, with stream distance (distance along the stream
network) replacing Euclidean distance in the semivariogram;
for examples of such applications see Legleiter et al. (2003),
Torgersen, Gresswell, and Bateman (2004), Yuan (2004), Ganio,
Torgersen, andGresswell (2005), Peterson andUrquhart (2006),
and Money, Carter, and Serre (2009). However, semivariogram
models that correspond to valid (positive definite) covariance
functions in two- and three-dimensional Euclidean space are
not necessarily valid when stream distance is substituted for
Euclidean distance, an issue that continues to be ignored by
some authors, for example,Okabe and Sugihara (2012, chap. 10).
Furthermore, because streams have flow, which is characterized
by direction and volume, for some stream variables it may not be
appropriate to model spatial correlation as a function of stream
distance alone. Within the past decade, positive definite covari-
ance models on stream networks that incorporate flow direc-
tion and volume have been introduced (Ver Hoef, Peterson, and
Theobald 2006; Cressie et al. 2006; VerHoef and Peterson 2010).
The models are based on unilateral moving average construc-
tions and can be categorized as either “tail-up” or “tail-down.”
Under a tail-up model, variables at sites that are not connected
by flow (e.g., sites on two branches upstream from their junc-
tion) are uncorrelated. In contrast, tail-down models allow for
correlation between variables at all sites on the same network,
regardless of whether they are flow-connected.

Although valid geostatistical models for stream variables
are now available, relatively little attention has been given to
the development of graphical tools analogous to the Euclidean
distance-based empirical semivariogram for variography on
stream networks, or fluvial variography. In this article, we
develop such a tool, which we call the Torgegram. The Torge-
gram is an assemblage of four empirical semivariograms, each
one relevant to a particular combination of flow-connectedness
and model type (tail-up/tail-down).

The remainder of the article is organized as follows. In
Section 2, we review some elementary stream network topology
and covariance models on stream networks, in particular those
based on the unilateral moving average constructions of Ver
Hoef and Peterson (2010). Section 3 presents the Torgegram in
detail and describes a strategy for fluvial variography based upon
it. An example for a stream temperature dataset from within the
Columbia River basin is presented in Section 4, and Section 5 is
a discussion.

2. Spatial Models on StreamNetworks

2.1 StreamNetwork Topology and Notation

Ver Hoef, Peterson, and Theobald (2006) set forth a number
of topological concepts for stream networks. Here, we briefly
review those concepts that are necessary for our purposes.

A streamnetworkmay be conceptualized as a directed acyclic
graph with nodes defined by stream junctions (locations where
two or more streams join), edges defined by stream segments
between junctions, and the directions of the edges defined by
the direction that the water flows.We assume that the network is

strictly dendritic, that is, it includes no braided streams.We also
assume that the network has no river delta, in which case it has
a single furthest downstream point, the “outlet,” whose spatial
coordinate is set to 0. Any location in the network can be con-
nected to the outlet by a continuous curve along the network,
and the length of that curve is called the “upstream distance” of
that location. To uniquely define individual locations and keep
track of their upstream distances, each location is denoted by
si, where i indicates that the location is on the ith stream seg-
ment, and s is its upstream distance. Thus, two locations may
be distinct but nevertheless have the same upstream distance.
The “stream distance” between locations si and t j is the shortest
distance between them through the network, and is denoted by
d(si, t j).

For each si, let Ui denote the set of stream segments that lie
upstream of si, including the ith segment. Locations si and t j
are said to be “flow-unconnected” ifUi ∩Uj = ∅, and are “flow-
connected” otherwise. If locations si and t j are flow-connected,
then d(si, t j) = |s − t|. On the other hand, if si and t j are flow-
unconnected, then d(si, t j) = (s − qi j) + (t − qi j), where qi j is
the upstream distance of the “common junction” of segments i
and j, that is, the junction where flows from segments i and j
first combine. When si and t j are flow-unconnected, we refer to
d(si, t j) as the “total stream distance” between them.

2.2 CovarianceModels

The classical geostatistical model, adapted for use with a stream
variableY (·), is given by

Y (si) = μ + ε(si), (2)

where μ, the mean of Y (·), is assumed to be constant (though
this assumption can be relaxed with little difficulty) and ε(·) is
a zero-mean residual stochastic process on the stream network
whose distribution is a function of an unknown finite parameter
vector θ. For spatial analysis in general, and spatial prediction
via best linear unbiased prediction (kriging) in particular, the
second-order dependence (i.e., covariance) structure ofY (·), as
characterized by θ or functions thereof, plays a huge role. A
classical approach to the development of covariance functions
on the real line is to create model residuals as integrations of
a moving-average function over a white-noise random process,
that is,

ε(s|θ) =
∫ ∞

−∞
g(x − s|θ)dW (x),

where x and s are locations and g(x|θ) is a square-integrable
moving average function defined on the real line (Yaglom 1987).
The covariance between ε(s) and ε(s + h) so defined is given by

C(h|θ) =
∫ ∞

−∞
g(x|θ)g(x − h|θ)dx.

Appropriate choices of the moving average function yield
many of the covariance functions commonly used in Euclidean
geostatistics (spherical, exponential, etc.).

Cressie et al. (2006), Ver Hoef, Peterson, and Theobald
(2006), and Ver Hoef and Peterson (2010) obtained covariance
models for stream network variables by adapting this classical
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approach to the unique topology of stream networks. They
considered in particular only unilateral models, that is, those
models that arise by taking the moving-average function to be
positive in only one direction (either upstream or downstream)
and zero elsewhere. Considering those moving average func-
tions that are positive only upstream, and weighting at each
junction to achieve variance stationarity, we obtain the class of
“tail-up” covariance functions

Ctu(si, t j|{πi j}, θ)

=
{

πi jCuw(s − t|θ) if si ≥ t j are flow-connected,

0 if si and t j are flow-unconnected,
(3)

where the πi j ’s are spatial weights and Cuw(·), which we call
the unweighted flow-connected portion of a tail-up covariance
function, is a valid covariance function on the real line. The
spatial weights, more precisely, are given by πi j = ∏

k∈Bi j

√
ωk

where Bi j is the set of segments that lie between the ith and jth,
including the jth but excluding the ith (the jth being down-
stream of the ith), and ωk is any attribute of the kth segment
(e.g., watershed area, flow volume, stream order, stream slope)
expressed as a proportion. Often, it may be desirable to take
ωk to be the proportion of flow volume contributed by the kth
segment to the junction at its downstream terminus, but flow
volume is rarely available so watershed area, which is easily
obtained via a GIS, may be used as a surrogate. The lack of cor-
relation between observations on flow-unconnected segments
and the explicit account taken of flow volume (or a surrogate
for it) make tail-up models seem especially appropriate for
variables such as concentrations of point-source pollutants,
which generally move passively downstream.

On the other hand, moving average functions that are pos-
itive only in the downstream direction yield the class of “tail-
down” covariance functions

Ctd(si, t j|θ)

=
{
Cf c(s − t|θ) if si ≥ t j are flow-connected,

Cfu(s − qi j, t − qi j|θ) if si and t j are flow-unconnected,
(4)

where Cf c(·) and Cfu(·) are valid covariance functions of one
and two variables, respectively (and are related to each other
through their functional dependence on the same moving aver-
age function). Thus, the flow-connected portion of a tail-down
covariance function is a function of the stream distance between
locations, but the flow-unconnected portion is a function of the
two stream distances to the common junction. No weighting
by flow (or anything else) is associated with tail-down models.
Because they allow for positive correlation among both flow-
connected and flow-unconnected sites on the same network,
tail-downmodels would appear to bemore well-suited than tail-
up models for counts of fish and some insects, which can move
both upstream and downstream.

Some examples of tail-up and tail-down models are listed
in Table 1. The tail-down exponential model is noteworthy for
being the only model for which the dependence on the two dis-
tances to common junction in the flow-unconnected portion
is additive. Two-tailed models (for which the moving average

function is bilateral, but not necessarily symmetric about 0) can
also be defined, but severe computational issues associated with
them have led researchers to consider mixed linear models with
tail-up and tail-down components as a more convenient alter-
native (Ver Hoef and Peterson 2010). A general mixed model of
this type is given by

ε(si) = εtu(si) + εtd(si) + ν(si), (5)

where εtu(·), εtd(·), and ν(·) are uncorrelated with each other
and have pure tail-up, pure tail-down, and pure nugget covari-
ance functions, respectively. Observations with errors that fol-
low this model have a covariance matrix given by

�(θ) = �((σ 2
tu, σ

2
td, σ

2
nu, ρ

′
tu, ρ

′
td )

′
)

= σ 2
tuRtu(ρtu) + σ 2

tdRtd(ρtd ) + σ 2
nuI, (6)

where Rtu(ρtu) is a matrix of autocorrelation values from the
tail-up component;Rtd(ρtd ) is amatrix of autocorrelation values
from the tail-down component; I is an identity matrix; σ 2

tu, σ 2
td ,

andσ 2
nu (the nugget effect) are variance components; andρtu and

ρtd are vectors of correlation parameters.
The preceding has focused on covariance models. For

various reasons, practitioners of Euclidean geostatistics have
preferred to characterize second-order dependence via the
semivariogram instead. For processes having stationary vari-
ances, however, there is a one-to-one correspondence between
the covariance function and semivariogram. Likewise, for every
mixed-model stream-network covariance function, there is a
corresponding semivariogram, given by the relationship

γ (si, t j) = σ 2
tu + σ 2

td + σ 2
nu −Ctu(si, t j) −Ctd(si, t j).

In what follows, we base our consideration of fluvial variog-
raphy on such semivariograms rather than the corresponding
covariance functions.

3. The Torgegram

From Section 2.2, it is clear that for tail-up and tail-down covari-
ance models (and mixtures thereof) on stream networks, the
correlation among responses may depend not only on total
stream distance but also on flow connectedness, flow volume,
and/or distances to a common junction. Thus, in contrast to
Euclidean geostatistics, one empirical semivariogram is not
adequate for characterizing spatial dependence on a stream net-
work. Instead, no less than four distinct empirical semivari-
ograms, each amodification of the Euclidean empirical semivar-
iogram, may be necessary. We call this quadripartite collection
of empirical semivariograms the Torgegram in honor of Chris-
tian Torgersen, a stream ecologist who was among the first to
study spatial dependence on streams.

3.1 Four Components

.. The Flow-Unconnected Stream-Distance (FUSD)
Semivariogram

As its name suggests, this empirical semivariogram is computed
from only those site-pairs that are flow-unconnected and, for
such pairs, is a function of total streamdistance only. It is defined
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Table . Examples of tail-up and tail-down covariance models. For the tail-up models, only the unweighted flow-connected portion is displayed; the complete model is
given by substitution in (). For all models, it is assumed that s ≥ t without loss of generality, and we write h = s − t .

Name Functional form

Tail-up linear with sill Cuw(h|θ1, θ2) = θ1

(
1 − h

θ2

)
I
(
h
θ2

≤ 1
)

Tail-up spherical Cuw(h|θ1, θ2) = θ1

(
1 − 3h

2θ2
+ h3

θ32

)
I
(

h
2θ2

≤ 1
)

Tail-up exponential Cuw(h|θ1, θ2) = θ1 exp(−h/θ2)

Tail-up Mariah Cuw(h|θ1, θ2) =
⎧⎨
⎩

θ1 if h = 0

θ1

(
log(1 + h/θ2)

h/θ2

)
if h > 0

Tail-down linear with sill Ctd (si, t j |θ1, θ2) =

⎧⎪⎪⎨
⎪⎪⎩

θ1

(
1 − h

θ2

)
I
(
h
θ2

≤ 1
)

if flow-connected

θ1

(
1 −

s − qi j
θ2

)
I
( s − qi j

θ2
≤ 1
)

if flow-unconnected

Tail-down spherical Ctd (si, t j |θ1, θ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ1

(
1 − 3h

2θ2
+ h3

2θ32

)
I
(
h
θ2

≤ 1
)

if flow-connected

θ1

(
1 −

3(t − qi j )

2θ2
+

s − qi j
2θ2

)(
1 −

s − qi j
θ2

)2

I
( s − qi j

θ2
≤ 1
)

if flow-unconnected

Tail-down exponential Ctd (si, t j |θ1, θ2) = θ1 exp(−h/θ2)

Tail-down Mariah Ctd (si, t j |θ1, θ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 if flow-connected and h = 0

θ1

(
log(1 + h/θ2)

h/θ2

)
if flow-connected and h > 0

θ1

(
1

1 + (t − qi j )/θ2

)
if flow-unconnected and s = t

θ1

(
log(1 + (s − qi j )/θ2) − log(1 + (t − qi j )/θ2)

(s − t )/θ2

)
if flow-unconnected and s = t

formally as

γ̂FUSD(hk) = 1
2N(Uk)

∑
(si,t j )∈Uk

(Y (si) −Y (t j))2, k = 1, . . . ,KU ,

(7)

where Uk = {(si, t j) : d(si, t j) ∈ Hk, Ui ∩Uj = ∅}, {Hk : k =
1, . . . ,K} is a partition of the total stream distances into bins,
hk is a representative distance within Uk,N(Uk) is the number of
distinct site-pairs inUk, andKU is the number of stream-distance
bins for those site-pairs. If Y (·) is pure tail-up, then γ̂FUSD(·) is
unbiased (apart from a “blurring” effect due to binning simi-
lar but unequal total stream distances) for the flow-unconnected
portion of its semivariogram, which in this case is “flat,” that is, a
constant function. Thus, in this case, a superior estimate of each
γ (hk) is given by the weighted average

γ FUSD =
∑KU

k=1 N(Uk)γ̂FUSD(hk)∑KU
k=1 N(Uk)

.

On the other hand, if Y (·) is pure tail-down or a mixture of
tail-up and tail-down, then the flow-unconnected portion of its
semivariogram may be a function not of total stream distance
but of the two stream distances from sites within a site-pair to
their common junction, in which case γ̂FUSD(·)may not be fully
relevant, that is, what it purports to estimate does not exist. An
exception occurs if the tail-down component has an exponential

semivariogram; in this case the flow-unconnected portion of its
semivariogram is a function of total stream distance only (see
Table 1), hence γ̂FUSD(·) remains unbiased for it (apart from
blurring).

.. The Flow-Unconnected Distances-to-
Common-Junction (FUDJ) Semivariogram

The second component semivariogram of the Torgegram, like
the first, is computed using only those site-pairs that are flow-
unconnected, but it is not a function of total stream distance.
Rather, it is a function of the two stream distances from each site
in the pair to their common junction. Let {Jk : k = 1, . . . ,KJ }
be the bins of a partition of the stream distances to common
junction that occur among the flow-unconnected site-pairs,
let N(Jk,Jl) be the number of such site-pairs for which one
site’s distance to common junction lies in Jk and the other’s
lies in Jl , and let jk be a representative distance within Jk.
Without loss of generality, assume that jk ≤ jl . Then we define
the flow-unconnected distances-to-common-junction empiri-
cal semivariogram as

γ̂FUDJ( jk, jl ) = 1
2N(Jk,Jl )

∑
si∈Jk, t j∈Jl

(Y (si) −Y (t j))2,

k ≤ l = 1, . . . ,KJ .

Regardless of whether Y (·) is pure tail-down, pure tail-up, or
a mixture thereof, γ̂FUDJ(·, ·) is unbiased (apart from blurring)
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for the flow-unconnected portion of its semivariogram. This is
its advantage over γ̂FUSD(·), which (as noted previously) is not
fully relevant unless Y (·) is pure tail-up or its tail-down com-
ponent has an exponential semivariogram. However, because
γ̂FUDJ(·, ·) is a function of two distances rather than one, it must
be displayed in three dimensions (unless contour or gray-scale
plotting is used). Hence, it is a bit more cumbersome to plot
and examine than γ̂FUSD(·). Furthermore, due to a reduction
in sample sizes within bins it has greater uncertainty, as each
γ̂FUDJ( jk, jl ) is generally computed from a subset of the site-
pairs used to compute the corresponding γ̂FUSD(hk).

.. The Flow-Connected Stream-Distance (FCSD)
Semivariogram and Its Subsemivariograms

The FCSD semivariogram is based on stream distance only
but differs from the FUSD semivariogram by being com-
puted from site-pairs that are flow-connected rather than flow-
unconnected. Thus, it is defined as

γ̂FCSD(hk) = 1
2N(Ck)

∑
(si,t j )∈Ck

(Y (si) −Y (t j))2, k = 1, . . . ,KC,

where Ck = {(si, t j) : d(si, t j) ∈ Hk, Ui ∩Uj = ∅}, hk is a rep-
resentative distance within Ck, N(Ck) is the number of distinct
site-pairs in Ck, and KC is the number of stream-distance bins
for those site-pairs. If Y (·) is pure tail-down, then γ̂FCSD(·)
is unbiased (apart from blurring) for the flow-connected por-
tion of its semivariogram. If, however, Y (·) is pure tail-up or a
tail-up/tail-down mixture, γ̂FCSD(·) is not fully relevant because
in those cases the flow-connected semivariogram is a func-
tion of not merely stream distance, but stream distance and
the spatial weights. An empirical semivariogram that accounts
for the weights and can therefore estimate the unweighted
flow-connected semivariogram of a tail-up Y (·) unbiasedly is
described in the next subsection.

Although γ̂FCSD(·) may not be fully relevant unless Y (·) is
pure tail-down, it can be decomposed into empirical “subsemi-
variograms,” of which one is fully relevant regardless of the
nature of the dependence ofY (·). These subsemivariograms are
based on a partition {Ck0, Ck1, . . . , Ckqk} of each Ck into sets of
flow-connected site-pairs separated within the stream network
by 0, 1,…, or qk junctions, respectively. Thus, site-pairs belong-
ing to Ck0 lie within the same stream segment, site-pairs belong-
ing to Ck1 are situated such that one of the sites lies on the seg-
ment immediately downstream of the other site, and so on. We

define the FCSD Type-p subsemivariogram ofY (·), or FCSD-p
for short, as

γ̂FCSD,p(hk) = 1
2N(Ckp)

∑
(si,t j )∈Ckp

(Y (si) −Y (t j))2,

k = 1, . . . ,KC .

FCSD-0 is unbiased for the flow-connected portion of the semi-
variogram ofY (·), regardless of whetherY (·) is pure tail-down,
pure tail-up, or somemixture thereof. (This is not unlike theway
that a “pure error” mean square from the analysis of variance
(ANOVA)of a regressionmodel is unbiased for the residual vari-
ance regardless of whether the regression function is correctly
specified.) FCSD-1, FCSD-2, . . . do not share this nice prop-
erty. Note that for FCSD-0 to exist, some stream segments must
contain multiple observation sites. Also note that all of the sub-
semivariograms have greater uncertainty than the intact FCSD
semivariogram, due to reduced sample sizes within bins.

.. The Flow-ConnectedWeight-Adjusted (FCWA)
Semivariogram

The FCSD semivariogram described in Section 3.1.3 does not
account for the spatial weights, which causes no problems if
Y (·) is pure tail-down, but leads to a biased estimate of the
unweighted flow-connected semivariogramotherwise. This bias
may, in particular, adversely affect the analyst’s ability to deter-
mine the range of spatial dependence among flow-connected
sites from γ̂FCSD(·). To illustrate, consider an example based
on the idealized dyadic stream network depicted in Figure 1.
This network comprises seven segments of equal length 1.0,
with both segments at each junction weighted equally. Suppose
that five observations are taken on each segment (for a total
sample size of 35) at distances 0.1, 0.3, 0.5, 0.7, and 0.9 units
above its downstream terminus, and that Y (·) is pure tail-up
with unweighted flow-connected portion given by an exponen-
tial model having variance 1.0 and correlation at distance 1.0
equal to ρ = 0.25, 0.50, or 0.75. Table 2a displays the value of
this model and the expected value of the FCSD semivariogram
at selected distances. Comparison of these two values at each dis-
tance indicates that the FCSD semivariogram is positively biased
at all distances, and that at each fixed distance the bias gets worse
as the spatial correlation gets stronger. Note that the effects of

Figure . Stream network and sample locations for Example .
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Table . Bias, for the examples described in Section .., of (a) the empirical FCSD
semivariogram, and (b) the empirical FCWA semivariogram.

(a) Distance (h)

ρ Semivariogram . . . .

. γuw(h) . . . .

. E(γ̂FCSD(h)) . . . .

. γuw(h) . . . .
. E(γ̂FCSD(h)) . . . .
. γuw(h) . . . .
. E(γ̂FCSD(h)) . . . .

(b) Distance (h)

ρ Semivariogram . . . .

. γf c(h) . . . .

. E(γ̂FCWA(h)) . . . .

. γf c(h) . . . .
. E(γ̂FCWA(h)) . . . .
. γf c(h) . . . .
. E(γ̂FCWA(h)) . . . .

this on the characterization of the nugget and sill would be min-
imal; however, it could cause the effective range to be underes-
timated somewhat. Incidentally, the case of equal weights con-
sidered in this example is a best-case scenario; the bias is slightly
larger if the weights are unequal.

If theweights are known, it is possible tomodify the empirical
semivariogram to yield an unbiased estimator of the unweighted
flow-connected semivariogram, as follows. Define

γ̂FCWA(hk) = γ FUSD − 1
2N(Ck)

×
∑

(si,t j )∈Ck

2γ FUSD − [Y (si) −Y (t j)]2

πi j
,

k = 1, . . . ,KC .

It can be verified that γ̂FCWA(·) estimates unbiasedly (apart from
blurring) the unweighted flow-connected portion of the semi-
variogram of a pure tail-up Y (·). Of course, if Y (·) is not pure

tail-up, then γ̂FCWA(·) is biased. Table 2(b) lists the expectations
of γ̂FCWA(·) for an example identical to that described in the pre-
vious paragraph except that Y (·) is pure tail-down rather than
pure tail-up. These indicate that the FCWA semivariogram is
negatively biased under a pure tail-down model.

Although the FCWAsemivariogram is unbiased under a pure
tail-up model, its variability can be unacceptably high. To illus-
trate, we simulated a stream network with 500 segments, each
of length 1, and generated 400 samples completely randomly
placed on the network (left side of Figure 2) using the SSN pack-
age (Ver Hoef et al. 2014) in R (R Core Team 2015). For the 400
samples, we simulated autocorrelated data from a linear-with-
sill tail-up model (Table 1), with a partial sill of 1, a range of 10,
and a nugget of 0.01. We created 5000 realizations on the fixed
set of locations. Figure 2 (right side) displays boxplots of the val-
ues of γ̂FCWA(hk) compared to γ̂FCSD(hk) for distances in bins of
width 2, up to a maximum distance of 20. Although the results
verify that γ̂FCWA is unbiased, they also indicate that it can vary
wildly. In fact, the empirical mean squared error of γ̂FCWA(hk)
is much larger (by a factor of more than 100 at some lags)
than that of γ̂FCSD(hk), and the medians for reasonable lag dis-
tances (13 < h < 22) are less than 0, for this example. The high
variance is caused by dividing by small values of πi j when com-
puting γ̂FCWA(hk). Further research is needed on alternative esti-
mators of the unweighted flow-connected portion of the semi-
variogram of a pure tail-upmodel that balance bias and variance
better than γ̂FCWA(·) does. Pending the results of this research,
at the present time we recommend using γ̂FCSD(·)without mod-
ification to characterize flow-connected dependence, despite its
bias. Furthermore, in the graphical display of the Torgegram, we
use the position that would otherwise be occupied by the FCWA
semivariogram to display the FCSD-0 and FCSD-1 subsemivar-
iograms.

3.2 Trend Contamination

All claims we have made to this point regarding the bias of var-
ious Torgegram components are based on a model in which the
mean ofY (·) is constant. Suppose now that the mean is actually

Figure . Boxplots of FCWA and FCSD for simulated data. The simulated stream network is shown on the left with black circles indicating the random sample locations.
Boxplots on the right use a solid horizontal line to show the median, and a solid circle for the mean.

https://www.researchgate.net/publication/259913670_SSN_An_R_Package_for_Spatial_Statistical_Modeling_on_Stream_Networks?el=1_x_8&enrichId=rgreq-2e7ef4f1f3b58aa5d8369ed9f770e8fe-XXX&enrichSource=Y292ZXJQYWdlOzMwOTQ2NTc2MztBUzo0OTk0MTczMTI5MDcyNjRAMTQ5NjA4MTc3NDM4Mw==
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a linear function of upstream distance, but that this is unknown
to the analyst. That is, suppose the analyst acts as though Y (·)
follows the model given by (2) and (5), that is,

Y (si) = μ + εtu(si) + εtd(si) + ν(si),

when actually

Y (si) = μ + βs + εtu(si) + εtd(si) + ν(si).

Then the expected value of a generic term, (Y (si) −Y (t j))2, in
any of the Torgegram’s component empirical semivariograms is
given by

2γ (si, t j) = E{[μ + βs + εtu(si) + εtd(si) + ν(si) − μ

−βt − εtu(t j) − εtd(t j) − ν(t j)]2}
= β2(s − t )2 + E[(εtu(si) − εtu(t j))2]

+E[(εtd(si) − εtd(t j))2]

+E[(ν(si) − ν(t j))2].

For the sake of simplicity, suppose that the semivariogram of
the tail-down component is exponential, so that both its flow-
connected and flow-unconnected portions are functions of total
stream distance only. Now recall that if sites si and t j are flow-
connected, then d(si, t j) = |s − t|. However, if si and t j are flow-
unconnected, then d(si, t j) = s + t − 2qi j > |s − t| and the dif-
ference between the two can be large, particularly if the network
is strongly dendritic (in which case |s − t| can be as small as 0,
even when s + t − 2qi j is large). Writing σ 2 = σ 2

tu + σ 2
td + σ 2

nu,
we may therefore rewrite 2γ (si, t j) as follows:

2γ (si, t j)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if si = t j,

β2[d(si, t j)]2 + 2σ 2 − 2Ctu(d(si, t j)|{πi j})
−2Ctd(d(si, t j)) if si = t j are flow-connected,

αi jβ
2[d(si, t j)]2 + 2σ 2

−2Ctd(d(si, t j)) if si, t j are flow-unconnected,

where αi j = (s − t )2/[d(si, t j)]2 ∈ (0, 1) for all flow-
unconnected segments i and j. Thus, in this scenario, smooth
curves drawn through the FUSD and FCSD components of
the Torgegram will increase without bound. Moreover, FUSD
will tend to have a larger nugget, but less curvature, than
FCSD, so that at some point the two curves will cross (see
Figure 3). This manner of unboundedness and crossing of these
two components of the Torgegram may therefore be taken as
evidence of an unmodeled trend in upstream distance, just as
an empirical Euclidean semivariogram that increases without
bound is often taken as evidence of an unmodeled planar trend;
see, for example, Starks and Fang (1982).

What if the trend is related instead to covariates that do not
change in an upstream direction? For example, what if there
are differences in water chemistry due to gradual changes in
bedrock formations that lie orthogonal to the general direc-
tion of flow? In this scenario, a similar analysis indicates that
2γ (si, t j) is given by an expression almost identical to that in
the first scenario; the only difference is that the term β2(s − t )2
is replaced by β2[x(si) − x(t j)]2, where x(si) and x(t j) are the
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Figure . Effects of aligned-with-flow trend contamination on the FUSD and FCSD
components of the Torgegram.

coordinates of sites si and t j, within a Euclidean coordinate sys-
tem, in the direction orthogonal to flow. Thus, FUSD will again
have larger nugget, and both of FUSD and FCSD will increase
without bound, as in the previous scenario. However, the degree
of curvature in this case will be no less for FUSD than for FCSD,
so there will be no crossing of curves as there is when the trend
is aligned with flow.

3.3 A Strategy for Fluvial Variography

Each of the four component semivariograms of the Torgegram
is relevant for unbiasedly estimating (apart fromblurring) either
the flow-connected or flow-unconnected portion of the semi-
variogram of some, but not all, cases of the mixed tail-up/tail-
down family of models. In particular, γ̂FUSD(·) and γ̂FCWA are
unbiased for the corresponding portions of the semivariogram
when Y (·) is pure tail-up, and γ̂FUDJ(·, ·) and γ̂FCSD(·) are
unbiased for the corresponding portions of the semivariogram
whenY (·) is pure tail-down. In practice, of course, the make-up
of the covariance structure of Y (·) is unknown to the analyst,
and a strategy is needed for using the Torgegram to sort it all
out. We propose that this be accomplished along the following
lines.

1. Examine the FUSD semivariogram. If it appears to
increase without bound, add a trend term (in upstream
distance if FUSD crosses FCSD, or in the coordinate
aligned orthogonally to flow otherwise) to the model
and recompute this semivariogram from the fitted resid-
uals. If it appears to be relatively flat, adopt a pure tail-
up model and determine its attributes using the FUSD
and FCSD semivariograms. Rough estimates of the sills
may be determined from both semivariograms, while
rough estimates of a nugget and range (or effective range)
for Cuw(·) may be determined from the latter (keeping
in mind that the range as determined from γ̂FCSD may
be underestimated), essentially completing the informal
stage of the variographic exercise. If the FUSD semivari-
ogram appears to be bounded but not flat, conclude that
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a pure tail-up model is not adequate and proceed to the
next step.

2. Examine the FCSD semivariogram and, if possible, its
subsemivariograms; in practice, only some of the sub-
semivariograms might be reliable enough to be worth
examining. If the subsemivariograms appear to be rel-
atively similar, then adopt a pure tail-down model
and use the FCSD semivariogram unambiguously to
roughly determine a sill, range, and nugget for the flow-
connected portion of the semivariogram. Otherwise,
conclude that the model is a mixture of tail-up and tail-
down components and proceed (after the next step) with
a formal model fitting and selection exercise to deter-
mine an appropriate mixture and estimate parameters
associated with each component.

3. Examine the FUDJ semivariogram, using the manner
in which it varies across bins ( jk, jl ) corresponding to
the same total stream distance jk + jl to guide model
choice for the tail-down component in the mixedmodel.
For example, if it appears to be similar across all such
bins, then adopt an exponential model for the tail-down
component.

Effective implementation of this strategy requires that the
component semivariograms of the Torgegram are estimated reli-
ably. Here, as in Euclidean geostatistics, the reliability of an esti-
mated semivariance corresponding to a certain lag distance bin
depends on (1) the lag distance itself, (2) the number of site-
pairs in the bin, and (3) the strength of the spatial dependence
in the processY (·). (The reliability is inversely related to the first
and third of these, and directly related to the second.) Although
the analyst generally has no control over the strength of spatial
dependence, (s)he does have some control over the other two
factors. Within Euclidean geostatistics, a long-standing rule of
thumb is to estimate the semivariogram at only those lag dis-
tances whose bins contain at least 25 site-pairs and that are less
than half the maximum distance between sites; see, for exam-
ple, Journel and Huijbregts (1978). We recommend following
the same rule for theminimumnumber of site-pairs for all com-
ponent semivariograms of the Torgegram. For the subsemivari-
ograms of FCSD, however, this will generally be muchmore dif-
ficult to attain unless some stream segments are sampled inten-
sively, which is not common in practice (but perhaps it should
be!). Consequently, we recommend relaxing this standard to
perhaps 5–10 site-pairs (within a concomitant weakening of the
force of conclusions) for FCSD-0 and other subsemivariograms.
As for the maximum lag distance at which to estimate the semi-
variograms, our recommendation varies across the component
semivariograms of the Torgegram. For FCSD and its subsemi-
variograms, we see no reason not to adapt the Euclidean recom-
mendation straightforwardly, that is, to one-half the maximum
stream distance between flow-connected sites, say d̆FC/2. For
FUSD and FUDJ, we would not argue with a similar recommen-
dation of one-half the maximum total stream distance between
flow-unconnected sites, which will tend to be somewhat larger
than d̆FC/2.However, in the example presented later, for the sake
of consistency and an easier graphical comparison, we will use a
maximum lag total stream distance of d̆FC/2 for these two com-
ponents also.

Figure . Data locations for the Lewis and Willamette watersheds stream temper-
ature data. These watersheds lie within the Columbia River basin in the northwest
United States; the thickest line indicates the Columbia River. The Lewis river is to
the north (up) and the Willamette river is to the south (down). Data locations for
 temperature loggers from  are shown by solid circles.

4. Example: Stream Temperature in the Lewis
andWillametteWatersheds

To illustrate the use of the Torgegram in a real example, stream
temperature data were downloaded from the NorWeST website,
http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html,
which hosts >150 million hourly stream temperature record-
ings from >100 natural resource agencies in the western U.S.
These data were collected using digital sensors that recorded
>10 water temperature measurements per day and have
passed through a consistent set of quality-assurance proce-
dures as described in metadata descriptions at the project
website. We used data taken in 2002 from 286 locations on
two watersheds, the Lewis and Willamette, connected to
the Columbia River, USA, which forms the border between the
states of Washington and Oregon (Figure 4). Raw temperature
measurements (in degrees Celsius) were averaged over the

http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html
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Figure . Torgegrams for the Lewis andWillamette watersheds stream temperature data. Upper left panel is FUSD where the dashed horizontal line is the weightedmean
FUSD value; upper right is FUDJ where diagonal dashed lines show equal total stream distance and the legend strip partitions the range of observed semivariances; lower
left is FCSD; and lower right is FCSD- compared to FCSD-. In all panels, diameters of the circles are proportional to the number of pairs of points in each bin, which range
from  to  for FUSD,  to  for FUDJ, and  to  for FCSD. In the lower right panel, actual number of pairs of points are printed, with Type- given to the right
of the circle, and Type- to the left of the circle.

period 1–31 August, which is the warmest part of the annual
cycle and provides a good metric of overall thermal suitabil-
ity for fish (Isaak et al. 2010). The 1:100,000-scale National
Hydrography Dataset-Plus (NHD-Plus) geospatial layer (http://
www.horizon-systems.com/NHDPlus/index.php) has been
reconditioned with STARS software (Peterson and Ver Hoef
2014) to create theNational Stream Internet (NSI, http://www.fs.
fed.us/rm/boise/AWAE/projects/NationalStreamInternet.html).
The temperature data were snapped to NSI streams, and the
πi j in (3) used watershed proportions (Peterson and Ver Hoef
2014).

For the temperature data, we created 12 total stream distance
classes for the Torgegram with bins of equal size up to a max-
imum distance of 230,000 m, which was approximately one-
half the maximum distance among flow-connected sites. FUSD
(Figure 5, upper left) shows clear indication of autocorrelation,
with a sill appearing at approximately 17◦C2 and a range near
150,000 m. FCSD (Figure 5, lower left) increases linearly with-
out bound and crosses both FUSD and its apparent sill. FCSD-0
(Figure 5, lower right) shows nearly zero nugget effect as semi-
variances within stream segments are nearly zero at short dis-
tances, but there does appear to be a small jump in semivariances
when crossing junctions (FCSD-1) for those same distances.
FUDJ (Figure 5, upper right) also shows semivariances generally

increasingwith total streamdistance. Interestingly, the semivari-
ances also appear to increase when moving up and to the left
along the diagonal lines, especially for smaller distances. This
indicates that semivariances are higher for equal total stream
distances when there is more asymmetry in the distances to
the common junction. This is also a feature of many tail-down
model constructions (Garreta, Monestiez, and Ver Hoef 2010),
although, until now, no one has checked to see if data actually
adhere to the model.

Following our fluvial variography strategy outlined earlier, it
is clear that the FCSD curve is unbounded and crosses the FUSD
curve (Figure 5), indicating trend contamination aligned with
flow. Consequently, we fit a model (by ordinary least squares)
that included both distance upstream and elevation as regres-
sors. From the residuals of this fit, we recomputed the vari-
ous components of the Torgegram (Figure 6). FUSD (Figure 6,
upper left) still indicates autocorrelation, but the sill and range
are smaller (approximately 7◦C2 and 100,000 m, respectively)
than they were for the raw data (compare to Figure 5). FCSD
(Figure 6, lower left) is no longer unbounded but increases
asymptotically toward what should be the same sill as in FUSD.
FCSD-0 (Figure 6, lower right) again shows nearly zero nugget
effect as semivariances within stream segments are nearly zero
at short distances, but there does again appear to be a small jump

http://www.horizon-systems.com/NHDPlus/index.php
http://www.fs.fed.us/rm/boise/AWAE/projects/NationalStreamInternet.html
https://www.researchgate.net/publication/45404640_Effects_of_Climate_Change_and_Wildfire_on_Stream_Temperatures_and_Salmonid_Thermal_Habitat_in_a_Mountain_River_Network?el=1_x_8&enrichId=rgreq-2e7ef4f1f3b58aa5d8369ed9f770e8fe-XXX&enrichSource=Y292ZXJQYWdlOzMwOTQ2NTc2MztBUzo0OTk0MTczMTI5MDcyNjRAMTQ5NjA4MTc3NDM4Mw==
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Figure . Torgegrams for residuals, after removing effects for distance upstream and elevation, of the Lewis and Willamette watersheds stream temperature data. The
description is exactly as for Figure .

when crossing junctions for those same distances. However,
the subsemivariograms’ sample sizes are so small, especially for
FSCD-0, that a jump of this magnitude might be attributable
to chance. FUDJ (Figure 6, upper right) again shows semivari-
ances generally increasing with total stream distance. However,
they no longer appear to increase when moving up and to the
left along the diagonal lines; in fact, for medium distance classes
they appear to do the opposite.

Informed by our Torgegram-based exploratory fluvial vari-
ography, we fitted two models to the data. For the first model,
we used fixed effects for distance upstream and elevation and a
pure spherical tail-up model for the second-order dependence.
Although FUSD does not appear to be very flat, indicating some
autocorrelation (Figure 6, upper left) among flow-unconnected
sites, this model provides a null model to compare to the second
model. Histograms of residuals appeared to be approximately
normal, so we fitted the model by restricted maximum likeli-
hood (REML, Patterson and Thompson 1971) using the SSN
package. As predicted by the Torgegram (FCSD-0, Figure 6,
lower right) the estimated nugget effect was small (0.797), with
an overall sill of 6.885 and a range of 228,557 m. The Akaike
Information Criterion value (AIC, Akaike 1973) was 1237.2.
We fitted a second model, again using REML, which included
the same fixed effects but characterized the second-order
dependence by a mixed model of the form specified by (5) and
(6), with a spherical tail-up component and a linear-with-sill
tail-down component. We chose these models because it is easy
to interpret their range parameters, which estimate the distance

at which the autocorrelation vanishes; we did not find better fits
usingmodels inwhich the sill is approached asymptotically, such
as the exponential and Mariah models. The estimated nugget
effect was 0.732, with an overall sill of 8.075. The partial sill for
the tail-up spherical model was 3.077 with a range of 599,772 m
and the partial sill for the tail-down linear-with-sill model was
4.266 with a range of 99,970 m. The AIC value was 1198.4, indi-
cating a substantially better fit than the first model. The second
fitted model seems reasonable given the Torgegram in Figure 6.

5. Discussion

We have developed a graphical diagnostic, called the Torgegram,
for characterizing spatial dependence among observations of a
variable on a stream network. The Torgegram consists of four
component empirical semivariograms, each one corresponding
to a particular combination of flow-connectedness and model
type (tail-up/tail-down). We have shown how an overall strat-
egy for fluvial variography can be based on careful study of
the Torgegram, and we carried this out for a stream temper-
ature dataset from two watersheds within the Columbia River
basin. A Torgegram consisting of FUSD, FUDJ, and FCSD and
its two lowest-level subsemivariograms (FCSD-0 and FCSD-1)
has been incorporated, and will be released, in the next version
of the R package SSN.

Networks other than stream networks exist, of course. For
example, there are neural networks in many animals; vascular
networks inmany animals and plants; street, highway, and other
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transportation networks; municipal water and sewer networks;
and communication and social networks. To the extent that
these other networks are dendritic and have unidirectional,
cumulative flow (e.g., a network of sewer pipes), the Torgegram
may be an appropriate tool for describing spatial dependence on
them. However, many of these networks are not dendritic (e.g.,
street networks), and on some of them flow occurs in multiple
directions or from a single source to the extremities rather than
vice versa (e.g., from the heart to the capillary bed). Further
research is needed to develop appropriate graphical tools for
characterizing dependence of a spatially continuous process on
those types of networks.

We fitted our models using REML, which is standard
nowadays. Historically, however, semivariogram models were
most often fitted directly to empirical semivariograms using
(weighted) least squares (Cressie 1985). REML requires invert-
ing a covariance matrix that has dimensions equal to the sam-
ple size, which is a computational limitation. Fitting Torge-
grams directly could allow model fits to massive datasets as
no matrix inverses are required. We do not fully develop
the topic here, however, because more research is needed
on appropriate weighting among FUSD, FUDJ, and FCSD
values.

Although the Torgegram is focused on spatial dependence
within the unique topology of a stream network, the Euclidean
semivariogram may, on occasion, still be a useful tool for flu-
vial variography. For example, suppose that the spatial corre-
lation among values of the stream variable was caused by an
unmeasured covariate related to underlying bedrock character-
istics. In such a case, a Euclidean distance-based semivariogram
may bemore informative than the Torgegram for characterizing
the variable’s spatial dependence. In any case, a comprehensive
characterization of spatial dependence in a stream network may
be facilitated by using both of them.

Formal hypothesis testing procedures to accompany the
Torgegram are needed and are currently under development.
For example, we have adapted the Diblasi–Bowman test for
spatial independence in Euclidean geostatistics (Diblasi and
Bowman 2001) to test for pure tail-up dependence based on a
measure of “flatness” of the FUSD semivariogram; details of this
test will be reported elsewhere. We are also developing a test for
the hypothesis of pure tail-down dependence using a statistic
that measures the discrepancy between the FCSD-0 subsemi-
variogram and the remaining FCSD subsemivariograms. More
specifically, we are considering the test statistic

T = (γ̂FCSD,0 − γ̂FCSD,>0)
′
Ĝ−1(γ̂FCSD,0 − γ̂FCSD,>0),

where γ̂FCSD,0 is the vector of FCSD-0 semivariances, γ̂FCSD,>0
is the vector of semivariances (at the same distances as those
in γ̂FCSD,0) obtained by pooling all FCSD subsemivariograms
except Type 0, G is the asymptotic covariance matrix of
γ̂FCSD,0 − γ̂FCSD,>0, and Ĝ is an estimate ofG obtained by replac-
ing its elements with the corresponding components of the
Torgegram. (In practice, FCSD-1 will often be the only subsemi-
variogram whose semivariances correspond to distances short
enough to match those in γ̂FCSD,0). Under appropriate condi-
tions, the asymptotic distribution of T under the null hypothe-
sis of pure tail-down dependence is chi-square with degrees of

freedom equal to the dimension of γ̂FCSD,0.Work is underway to
determine G and the appropriate asymptotic conditions. Other
hypotheses of interest for which Torgegram-based tests may be
constructed include exponentiality of the tail-down component
(using a statistic that measures the discrepancies in FUDJ semi-
variances corresponding to the same total stream distance), and
variance stationarity across the stream network.

Future workwill also include extensions of the Torgegram for
use with multivariate and spatio-temporal data on stream net-
works. An extension to multivariate data would consist of not
only Torgegrams to describe the spatial dependence of each vari-
able, but also cross-Torgegrams comprising flow-connected and
flow-unconnected cross-semivariograms to describe the spatial
dependence between each pair of variables.
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Software
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been incorporated into the SSN R package, available on CRAN. An
R package containing additional functions, scripts, and data support-
ing the simulations, analyses, and figures in this article can be found at
https://github.com/jayverhoef/fluvgrm.
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