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Abstract: Three-dimensional printing (3DP) technology has revolutionized the field of the use of
bioceramics for maxillofacial and periodontal applications, offering unprecedented control over the
shape, size, and structure of bioceramic implants. In addition, bioceramics have become attractive
materials for these applications due to their biocompatibility, biostability, and favorable mechanical
properties. However, despite their advantages, bioceramic implants are still associated with inferior
biological performance issues after implantation, such as slow osseointegration, inadequate tissue
response, and an increased risk of implant failure. To address these challenges, researchers have been
developing strategies to improve the biological performance of 3D-printed bioceramic implants. The
purpose of this review is to provide an overview of 3DP techniques and strategies for bioceramic
materials designed for bone regeneration. The review also addresses the use and incorporation of
active biomolecules in 3D-printed bioceramic constructs to stimulate bone regeneration. By control-
ling the surface roughness and chemical composition of the implant, the construct can be tailored
to promote osseointegration and reduce the risk of adverse tissue reactions. Additionally, growth
factors, such as bone morphogenic proteins (rhBMP-2) and pharmacologic agent (dipyridamole), can
be incorporated to promote the growth of new bone tissue. Incorporating porosity into bioceramic
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constructs can improve bone tissue formation and the overall biological response of the implant. As
such, employing surface modification, combining with other materials, and incorporating the 3DP
workflow can lead to better patient healing outcomes.

Keywords: bioceramics; 3D-printing; bone tissue engineering; scaffold fabrication

1. Introduction

Autogenous bone grafts (autografts) are widely recognized as the preeminent standard
for addressing bony defects [1]. These grafts, sourced from the patient, are acknowledged
for their non-immunogenic nature and possession of osteoinductive and osteoconductive
properties [2–4]. Nevertheless, the use of autografts is hampered by limited availability,
necessitating a secondary surgical site for harvesting, thereby heightening the risk associ-
ated with inflammation, infection, and donor site morbidity [1,2]. Conversely, allografts
consist of transplanted bone tissue obtained from the same species, typically harvested
from cadaveric bone sources [2]. As a result, the utilization of allografts is constrained
by the requirements for sterilization, processing, and the inherent potential risk of viral
disease transmission, bacterial infection, or the prospect of host rejection [5]. Moreover, due
to the requisite processing for sterilization, allografts exhibit diminished biocompatibility
in comparison to autografts, resulting in an unpredictable osteoinductive potential [2,4,6].

A range of synthetic scaffolds has emerged as viable alternatives to autografts and
allografts [2,6–8]. These porous constructs have a pivotal role within Bone Tissue Engi-
neering (BTE) strategies, aiming to restore damaged or missing tissue. Optimal scaffolds
are structures compatible with biological systems, acting as extracellular matrices (ECM),
supporting cellular activity, and facilitating the growth of recently formed tissue [5,9]. The
interconnected pores within scaffold structures facilitate nutrition, oxygen transport, cell
migration, and tissue formation [10–12].

Among the material options available for scaffold fabrication, bioceramics have been
explored for their biocompatibility and osteoconductivity. Certain bioceramics are sourced
from biological origins, such as demineralized bone matrix [7], while others are artifi-
cially manufactured, including hydroxyapatite (HA), bioactive glasses, and β-tricalcium
phosphate (β-TCP) [3,5,6,9]. Traditional methods for crafting bioceramic scaffolds involve
techniques like salt leaching, freeze-drying, gas foaming, and the polymer template [13–15].
However, these methods present inherent challenges, including a lack of reproducibility
and the absence of a structured, engineered internal pore network. This structural random-
ness resulting from these techniques has demonstrated implications for biological function,
causing heterogeneity in the distribution of cells in vitro and non-uniform tissue ingrowth
in vivo [13,16–18].

Three-dimensional printing (3DP) technology in BTE (workflow schematic presented
in Figure 1) is expected to play a crucial role in offering improved bone reconstruction,
rehabilitation and regeneration [19,20]. Three-dimensional printing as a technique was
initially introduced in 1986 by Charles W. Hull, known then as stereolithography [21].
Since then, various techniques have emerged with the aim of creating 3D constructions
that replicate both the external and internal structure of the bone at the implanted site [22].
seeking to provide a vital framework for cell migration and adhesion, thereby initiating
and strengthening the tissue regeneration process [23]. The use of 3DP in the craniofa-
cial region has focused on rehabilitation of the defect site and restoration of facial and
intraoral form and function, with the aim of preserving the existing bone and stimulating
osteogenesis [20,24].
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Figure 1. Schematic overview of the process workflow for 3DP in BTE Applications. Adapted from
Refs. [25,26]. Adapted with permission from Ref. [27]. 2024 Wolters Kluwer Health, Inc. (Philadelphia,
PA, USA) Ref. [28] 2024 John Wiley and Sons (Hoboken, NJ, USA) and Ref. [29] 2024 Wolters Kluwer
Health, Inc.

Three-dimensional printing technology in BTE has emerged with strong potential for
fabricating patient-specific scaffolds for bone repair and regeneration applications. Over
recent years, there has been an exponential growth in the research and application of 3DP
techniques for BTE [30]. For instance, enhanced bone tissue regeneration using printed
scaffolds has been achieved by tailoring them with surface modifications or incorporating
bioactive factors, creating a favorable environment for tissue formation [31]. Moreover,
incorporating growth factors has shown positive outcomes by promoting cell adhesion,
proliferation, osteogenic differentiation, and bone formation [32,33].

The selection of bioceramic materials for creating scaffolds plays an extremely impor-
tant part, as each material carries its own set of advantages and disadvantages. To achieve
an optimal scaffold, it is imperative that it possess the ability to promote cell migration
and proliferation, thereby stimulating the formation of bone tissue in the desired region.
Furthermore, several other parameters related to the material can influence the quality of
the printed structure. These factors encompass aspects such as the concentration, viscosity,
and volume of the binding agent employed, the density and size of powder particles, the
wettability between the powder and the binding agent, as well as the post-processing meth-
ods [34]. Furthermore, the scaffolds must also possess satisfactory mechanical properties.
Therefore, detailed knowledge of each technique and material to be used is essential for
proper planning and execution of the 3DP process. This review concentrates on the princi-
pal steps involved in producing 3DP scaffolds, various 3DP techniques, major bioceramic
materials, and vital biological molecules used in BTE.

2. Bioceramics

Ceramics constitute a class of materials comprising inorganic and non-metallic solid
components [32]. Upon exposure to high temperatures, these materials undergo a structural
transition, resulting in bone-like arrangements due to the development of ionic and covalent
bonds. Bioceramics, a subclass within this category, have gained significant attention
for their potential in fabricating resorbable and implantable devices [35]. This increased
interest is attributable to their ready availability, biocompatibility, bioactivity, hydrophilicity,
stoichiometric similarity to natural bone, and osteoconductivity [36].
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Bioceramics intended for BTE applications can be categorized as natural or synthetic.
Natural bioceramics are sourced from human, bovine, porcine and piscine origins [3,6,32].
Conversely, synthetic alloplastic ceramics have been developed in laboratory settings
through advancements in materials science research for BTE purposes. Synthetic bioceram-
ics exhibit promising biological responses and offer a microenvironment comparable to
natural bone [37]. For instance, the stoichiometry of tricalcium phosphate (TCP) and HA
ceramics closely resembles that of amorphous bone precursors and bone minerals [38].

Despite the numerous favorable attributes associated with bioceramics, their inherent
stiffness and low flexibility render them brittle, posing a challenge when shaping them into
constructs [39]. Consequently, they exhibit inferior mechanical strength [40] and fracture
toughness [41] compared to metallic materials, which limits their applications to anatomic
areas that are not load-bearing. A detailed overview of bioceramics utilized in BTE is
presented in Table 1.

Table 1. Bioceramic materials used in BTE and their applications.

Ceramic Sintering
Temperature Characteristic Applications Ref.

Hydroxyapatite
Ca10(PO4)6(OH)2

1000–1250 ◦C
Capable of fostering cell growth,
possessing excellent biocompatibility
and good compression strength

Repair of bone defects [42–44]

β-Tricalcium Phosphate
β-Ca3(PO4)2

200–1400 ◦C
Minimal shrinkage, biodegradability,
appropriate porosity reduced cracking
and deformation

Hard tissue repair of
defects [45–47]

Silicon carbide
SiC 1860–1950 ◦C High strength and good

compressive strength
Light weight structural
ceramics [48–50]

Zirconium oxide
ZrO2

1000–1450 ◦C Biocompatibility, chemical stability,
and excellent mechanical properties

Bone repair and tissue
engineering [51,52]

Barium titanate
BaTiO3

900–1200 ◦C Biocompatible and good
tensile strength

Repair of extensive
bone defects [53,54]

Calcium Silicate
Bioceramics 1000 ◦C

Calcination temperature can influence
behavior of cells and bioactive
on release

Osteogenic differentiation and
promote bone regeneration [55–57]

2.1. Commonly Used Bioceramics

Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is a calcium phosphate-based bioceramic with
a calcium-to-phosphorus ratio between 1.50 and 1.67 [58]. HA is a major component of
natural bone and constitutes ~65% of bone mass and the bulk of the inorganic components
in bone tissue [8,59,60]. HA in bulk form demonstrates slow resorption in vivo, with a
rate of <1% per year, is weak under tensile and shear forces, but has good compressive
strength [61]. HA can be prepared using different methods depending on whether it is
naturally harvested and synthesized in the laboratory. Naturally sourced hydroxyapatite
can come from porcine [62], bovine [63], and piscine (scales) [64] sources and be converted
into osteoconductive scaffolds, facilitating bone cell growth [65]. Synthetic HA transforms
into a highly crystalline calcium phosphate when subjected to high temperatures (>1000 ◦C).
The mechanical properties of HA scaffolds have been optimized by heat treatment and
by varying the amount of ceramic material used for fabricating both load-bearing and
non-load-bearing scaffolds for bone repair and regeneration [66].

The use of CaP-based ceramics, particularly HA, is based on their resemblance to the
mineral phase found in bone [8,59,60]. When applied as a coating to titanium dental im-
plants, it promotes bone-implant contact and fixation due to its chemical similarity to bone
mineral and its ability to bond with bone [67]. The plasma-sprayed HA coating technique
demonstrate excellent biocompatibility when used to coat implants [68] and demonstrate
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the ability to regulate osteoclast activity [69]. CaP materials exhibit a constraint resulting
from weak chemical bonds when in contact with metallic surfaces [70]. Nevertheless, their
high crystallinity, morphology, roughness, and wettability enhance their cell adhesion
characteristics [71].

Tricalcium phosphate (TCP; Ca3(PO4)2) is another such bioceramic that has been
extensively investigated for use as a bone substitute, as it is known to induce osteoblastic
development of progenitor cells [47]. TCP is well known for its biocompatibility, bioactivity,
osteoconductivity, and resorbability [61,72]. TCP is produced in situ by the dissolution
precipitation process at 37 ◦C [47,73] and has two primary crystallographic forms, namely
α-TCP and β-TCP [16], with the latter exhibiting a more favorable biological response
and osteoconductivity [47,73]. To elaborate, β-TCP is a porous, osteoconductive ceramic
that is slow to resorb [74]. However, studies have demonstrated β-TCP to have a more
rapid resorption rate when compared to HA, maintaining osteoconductive properties—
features that are desirable for achieving rapid replacement of scaffold with bone [74,75].
In addition, β-TCP has shown promise for use in BTE due to its mechanical strength and
chemical stability. Its main mechanism of bioactivity is the partial dissolution and release of
calcium and phosphate ion products, forming a biological apatite precipitate on the scaffold
surface [76]. A previous study utilizing pH-controlled simulated body fluid reported
that β-TCP begins to dissolve below pH 6.0 at 37 ◦C [77]. β-TCP constructs are usually
sintered to high temperatures (~1100 ◦C) to facilitate densification and to render adequate
mechanical strength (compressive strength: 2.5–16 MPa), making them an appropriate
choice for low or medium load-bearing applications [47].

2.2. Other Ceramic Materials

Silicon carbide (SiC) bioceramics have been investigated for use as biomedical im-
plants due to their bio-inertness, biocompatibility, ease of handling, capacity to be molded
into any desired shape and physicochemical stability [78]. Research has shown that SiC has
been extensively used for hip implants and load-bearing anatomical locations as it demon-
strates high compressive strength, slow degradation and high biocompatibility [48,79].
SiC-based bioceramics constructs are typically sintered at high temperatures (between
1860 and 1950 ◦C) that yield high elastic modulus, a lower frictional coefficient, increased
hardness, and chemical inertness [80]. Furthermore, SiC also demonstrates high wear and
chemical resistance and low thermal expansion [81,82]. However, there are some notable
disadvantages associated with SiC for bone tissue regeneration. First, silicon carbide is not
naturally bioactive and lacks the inherent ability to promote osteogenesis, or bone tissue
growth [81]. This could potentially hinder the speed and efficiency of the bone regeneration
process compared to other bioceramics. Additionally, the cost of producing SiC can be
relatively high [83], potentially limiting its accessibility to certain patients and healthcare
institutions. Overcoming these challenges through ongoing research and development
efforts is crucial to fully unlocking the potential of SiC in the field of regenerative medicine.

Zirconium oxide (ZrO2) has been extensively studied for biomedical applications
due to its biocompatibility, chemical stability, and excellent mechanical properties [84,85].
Zirconia can exist in three different crystallographic phases that are dependent on temper-
ature, namely monoclinic (up to 1170 ◦C), tetragonal (up to 2370 ◦C), and cubic (above
2370 ◦C) [86]. In its tetragonal phase, it offers the most advantageous mechanical proper-
ties, and therefore, dopants can be employed to stabilize this phase at room temperature.
Among the dopants used, yttrium oxide (Y2O3) is the most common, resulting in the
material known as yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) [87]. Previous
research indicates that the flexural strength of Y-TZP can surpass 1000 MPa, while its
fracture toughness can achieve levels of up to 10 MPa [88,89]. This outstanding mechani-
cal performance can be attributed to a transformation toughening mechanism, in which
tetragonal grains undergo a conversion to monoclinic (t-m) when the material experiences
tensile stresses. This t m transformation leads to a 4% volumetric expansion, hampering
crack propagation and thereby enhancing the ceramic’s resistance to damage [86–89].
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These characteristics render zirconia a promising choice for applications in bone re-
constructions. With a high melting point (2715 ◦C) and a sintering temperature range
spanning from 1000 to 1450 ◦C, ZrO2 has been explored in the literature as a material of
choice for 3DP scaffolds for bone tissue [87,90–94]. Nevertheless, the utilization of ZrO2 as
BTE scaffolds can present some challenges, including, but not limited to, its non-resorbable
characteristics [95]. Furthermore, the constraints of a non-reactive surface, low flexibility,
and absence of osteoinductive properties pose challenges for its use in BTE. Consequently,
researchers have prioritized the investigation of efficient techniques for altering the surface
of ZrO2 scaffolds and surfaces. These methods include sandblasting, acid etching, atomic
layer deposition, calcium phosphorus deposition, and laser treatment [96–100]. Sand-
blasting and acid etching procedures have been demonstrated to enhance the osteogenic
characteristics and osseointegration capability of zirconia implants [96,101,102].

Barium titanate (BaTiO3) is another bioceramic used in BTE. It induces the piezo-
electric effect, which is important for bone formation by maintaining a charged surface,
thereby improving cell adhesion and proliferation [103,104]. The presence of a charged
surface has been shown to enhance protein adsorption and improve cellular growth and
metabolic function [105]. Scaffolds fabricated using BaTiO3 are effective for BTE due to
their cytocompatibility and osteogenic differentiation, with high compressive strength and
Young’s modulus [106–108]. Blending BaTiO3 with other bioactive materials like HA has
further allowed for enhancement of bioactivity and implant stability by integrating with
host bone tissues [109]. Despite its potential, there are some notable disadvantages, such
as ensuring its long-term biocompatibility and safety for implantation in the human body,
which is an ongoing area of research. Moreover, the technology for synthesizing BaTiO3 is
still in its early stages, requiring further development and refinement to optimize its use
for BTE.

Silicate bioceramics have been applied in BTE due to their favorable characteristics
for bone regeneration [110]. Calcium silicate is a fast-degradable bioceramic that releases
ions (Si4+ and Ca2+) with bioactive properties to induce mineralization, angiogenesis, and
osteogenesis [55,56]. Calcium silicate induces an increased pH and demonstrates an ad-
verse effect on the behavior of cells because of its alkalinity [111]. However, the calcination
temperature has a crucial role in determining their ion release and the behavior of cells
on their surface [55]. Nanofibers of calcium silicate, subjected to a temperature of 1000 ◦C,
have demonstrated the highest strength in inducing the osteogenic differentiation of bone
marrow mesenchymal stem cells (BMSCs) [55]. However, in order to further enhance
mechanical stability and compressive strength, calcium silicate nanofibers have been fabri-
cated into three-dimensional microporous scaffolds and coated with gelatin [112]. Calcium
silicate-based ceramic enhances the attachment and proliferation of osteoblasts, promoting
bone ingrowth [57]. Additionally, calcium silicate fillers can be produced using the electro-
spray deposition technique on titanium [113], enabling a robust bond between the implant
and the surrounding bone tissue for clinical use. In addition, surface modification of tita-
nium with silica has been shown to enhance the mineralization behavior of osteoblast-like
cells, as indicated by an increase in mineral production [114]. Moreover, calcium silicate
biomaterials have been combined with natural polymers and collagen peptides due to their
gradual resorption properties and the subsequent formation of apatite. In the literature, it
has been reported that combinations such as gelatin methacryloyl (GelMA)/alginate/tri-
calcium silicate and natural polysaccharides (copolymers of sodium D-mannuronate and
L-guluronate)/natural polypeptides (gelatin)/calcium silicate/dicalcium phosphate dihy-
drate can be used to create an appropriate micro-environment for the regeneration and
healing of oral bone defects [115,116].
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2.3. Polymer-Ceramic Composite Materials

Scaffolds made of inorganic materials like HA, β-TCP, or other bioceramics display
remarkable biocompatibility but suffer from brittleness. One strategy to enhance the
mechanical properties of these brittle scaffolds involves the application of polymer coatings.
This ensures the filling of existing cracks within the bioceramic structure with a polymer
phase. It is hypothesized that this polymer phase not only fills the cracks but also acts to
bridge them during fractures, thus increasing the toughness of the bioceramic scaffold. In
addition, the polymer phase could be utilized as carriers for drugs and other biomolecules,
such as growth factors, which enhance the functionality and bioactivity of the scaffolds.

As mentioned in previous sections, calcium phosphates, including HA and β-TCP, play
an important role in the development of scaffolds for BTE. Polymers such as those derived
from lactic acid (LABPs) offer mechanisms for promoting healing and minimizing infections
while including controlled delivery of growth factors, antibiotics, and surface/chemical
modifications [117,118]. These properties are similar to those present in calcium phosphate-
based ceramic materials. Due to this, LABPs have been used in combination with ceramics
yielding mixtures such as Polycaprolactone/TCP, and Polylactic Acid/HA yielding en-
hanced biocompatibility and mechanical properties relative to their individual constituent
materials [119,120].

Considering the compositional organization of the polymer-ceramic composites, poly-
mer matrices and ceramic reinforcement particles would be ideal, as the low mechanical
strength of the polymer phase would be compensated by the ceramic phase. Additionally,
ceramic particles would promote self-healing in the polymer matrices [121,122]. Hence,
where the nature of the purely ceramic or polymeric scaffolds may not completely satisfy
all dimensional, mechanical, and biological requirements, composites have been utilized
and proven to be effective alternatives (Table 2) [123]. The fundamental procedure for
creating polymer-ceramic scaffolds with interconnected microstructures involves the in-
fusion of a sintered or partially sintered bioceramic scaffold with a polymer. Typically, a
biodegradable synthetic polymer is employed, taking inspiration from the composition of
bone, which comprises approximately 60% inorganic material (hydroxyapatite) and the
remainder organic material (collagen). As such, a defining characteristic of such materials
affecting their improved mechanical and biological properties are the interfaces between
their various phases.

As in the case of any composite material, binders enhance interface properties. Shuai
et al. described such interfaces as small regions in which the chemical composition of the
two phases in the composite material has a significant change, forms a bond (Vanderwaal’s
forces, chemical bonds, mechanical interlocks or electrostatic attraction) with each other,
and can play a role in transferring load [124–126]. Considering polymer-ceramic com-
posites, the literature also indicates self-healing due to the interface formed between the
various phases. Techniques to achieve better interface bonding comprised polymer-ceramic
composites include coupling agent modification that is described in detail further in this sec-
tion; surface treatment such as polymer grafting [127,128] that can initiate polymerization
of the monomer on the surface of the ceramic particles; and esterification, whereby ester
bonds can be formed through a reaction between an acid and a hydroxyl group leading
to the formation of an active group that can react with a biopolymer on the bioceramic
surface [128,129]. Presently, coupling agent modification is the most frequently utilized
method to improve interface bonding [124]. This operates by improving the degree of
interface bonding between the two phases, imparting higher strength and superior proper-
ties when compared to the other techniques described above for use in load bearing BTE
applications [130].
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Table 2. A few polymer-ceramic composite materials used in BTE.

Polymer-Ceramic Composite Improved Characteristics Applications Ref.

Poly(ε-caprolactone) (PCL)/
β-tricalcium phosphate (β-TCP)

Biocompatibility, mechanical properties,
and antibacterial activity Repair of bone defects [131]

Poly(ε-caprolactone) (PCL)/
Hydroxyapatite (HA)

Hydrophilicity, cytocompatibility,
mechanical behavior and elastic modulus Repair of bone tissue [131]

Poly(lactide-co-glycolide) (PLGA)/
Nano-hydroxyapatite (nano-HAP) Mechanical properties Repair of bone tissue [132]

Poly(ε-caprolactone) (PCL)/
Hydroxyapatite (HA)/
Calcium sulphate (CaSO4)

Compressive strength of the scaffolds Bone tissue engineered
scaffolds [133]

3. DP Methods for Fabrication of BTE Scaffolds

Investigations into granular bioceramic materials reveal that their random nucleation
sites and the absence of spatial coordination pose obstacles to the organized directional
growth of bone. This challenge is pivotal, as it impedes the complete restoration of both
the form and function of recently regenerated bone tissue [94]. In addition, while conven-
tional natural and synthetic bone grafting materials offer favorable healing outcomes and
serve as supporting structures during bone formation, they have several disadvantages,
including poor mechanical properties and poor resorption capabilities [3,5,7–9,134]. As
such, the fabrication of complex geometries and interconnecting porous frameworks using
bioceramics poses significant difficulties. Drawbacks associated with granular ceramics
have spurred investigations into the creation of geometrically robust devices through 3D
printing. Three-dimensional printing, alternatively referred to as additive manufacturing
(AM), facilitates the incremental assembly of scaffolds based on bioceramics, forming elab-
orate and accurate constructs. The physical characteristics of the structures, encompassing
factors like pore dimensions and configuration, the linkage between pores, and the overall
geometry of the scaffold, can be specified through a three-dimensional model and produced
by the machine [96,97]. The engineered 3D architectures achievable through 3DP enable
the creation of scaffolds featuring interconnected pores and multiscale porosity, enhancing
the integration between the scaffold and host tissue, facilitating the delivery of oxygen and
nutrients to the scaffold’s core, and thereby fostering proper vascularization, cell prolifera-
tion, adhesion, differentiation, and overall bone tissue formation [135,136]. Consequently,
the field of craniomaxillofacial (CMF) surgery has undergone a recent transformation,
embracing individualized treatment approaches. The emergence of 3DP technology has
been instrumental in the field of regenerative medicine, opening new avenues for creating
customized scaffolds designed for site-specific defects while conserving space. Besides
ensuring enhanced mechanical stability and preventing immediate failures, the incorpora-
tion of biological factors and/or bioactive molecules into these scaffolds further stimulates
the promotion of osteogenesis and angiogenesis, endowing the structure with osteogenic,
osteoinductive, and osteoconductive properties [135].

Advancements in Computer-Aided Design (CAD), Magnetic Resonance Imaging
(MRI), and computed tomography (CT) have facilitated the reconstruction of regions of
interest (ROIs). CT and MRI imaging enable the acquisition of a series of high-resolution
images of the ROI, which can then be segmented for digital reconstruction. Subsequently,
scaffold macro-geometric features are delineated to ensure adequate stabilization of the
defect site and confer the necessary mechanical integrity at the site [137–139]. In sub-
sequent stages, the reconstruction process involves converting the isolated ROI into a
stereolithography (STL) file format to generate high-fidelity templates of the defect through
discretization [140–142]. Upon determining the scaffold’s macro-geometric parameters,
suitable slicing software is employed to slice objects, generating a multilayered, three-
dimensional (3D) object composed of a sequence of parallel surfaces or planes with a
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specific interplanar spacing. Slicing converts the STL file into machine-level .gcode, contain-
ing essential coordinate-related instructions and auxiliary commands. These commands
play a crucial role in customizing scaffold lattice parameters, such as pore spacing, layer
height, and rod size, both prior to and during the printing process. The .gcode further
details the scaffold’s printing orientation, offers virtual representations of the scaffold
for ease of visualization, and allows print time optimization during rapid prototyping.
Following this, scaffolds of varying sizes, shapes, and pore structures are manufactured
to address the identified defect site through diverse 3DP methodologies. According to a
pre-established standard (ISO/ASTM 52900:2021), additive manufacturing has been classi-
fied into seven different categories, namely binder jetting (BJT), directed energy deposition
(DED), material extrusion (MEX), material jetting (MJT), powder bed fusion (PBF), sheet
lamination (SHL), and vat polymerization (VPP) [143]. Of these categories, VPP and MEX
workflows have been extensively studied to produce bioceramic scaffolds and will serve
as the highlight of this review. Laser-assisted methods like selective laser sintering (SLS)
and stereolithography (SLA), as well as light-assisted methods like digital light processing
(DLP), are subclasses of VPP, while micro-extrusion techniques such as fused deposition
modeling (FDM) and direct inkjet writing (DIW) are encompassed by the MEX workflow
(Table 3) [28,75,137,144,145].

Table 3. Summary of commonly used AM methods to produce ceramic based bone replacement
scaffolds, and constructs.

AM Method/
Printing Resolution

Ceramic Slurry/Filament/Ink/
Preparation

Commonly Used
Materials Advantages Disadvantages Ref.

Fused Deposition
Modelling
(FDM)/
100 µm–1 mm

Filaments are produced
through a blend of ceramic
powders and thermoplastic
polymers for 3D printing
of structures.

β-TCP, HA, PCL and
PLA

Compatible with other
materials, reproducibility,
low-cost and ease
of operation.

Limited resolution and
uneven adhesion
between layers.

[146,147]

Stereolithography
(SLA)/
20 µm–100 µm

The printing process involves
combining ceramics with a
photopolymerizable resin.

HA, β-TCP, alumina,
ZrO2, and bioactive
glasses

Low wastage of ceramic
materials, high resolution,
and printing speed.

Requirement for
photopolymers, and the need
for subsequent
post-processing steps.

[148–150]

Selective Laser
Sintering (SLS)/
20 µm–100 µm

The powder bed is prepared
with ceramic particles of equal
size to withstand laser power
and temperature, ensuring a
defect-free construct.

PLLA, PCL, HA, and
β-TCP

High resolution,
fabrication of complex
structures using powder as
support, and high
mechanical strength of
printed constructs.

Demand of materials capable
of enduring laser heat,
managing scaffold shrinkage,
and pre- and post-heating
treatments.

[151,152]

Direct Inkjet Writing
(DIW)/
100 µm–1 mm

A homogeneous ceramic slurry
is created by blending ceramic
materials with polymer binders
and viscosifiers into
the solutions.

β-TCP, HA, and ZrO2

Low cost, scalability,
capability for fabrication of
complex and larger
structures.

High pressure, low
resolution, needle clogging. [153–156]

Digital Light
Processing (DLP)/
25 µm–100 µm

Ceramic powder with liquid
photopolymer is exposed to
digital light arrays.

HA, β-TCP, and
BaTiO3

High resolution,
cost-effectiveness, and
accuracy of print.

Limited availability of
materials, requirement for
photo reactivity, and
restricted build volume.

[148,157,158]

3.1. Vat Polymerization Techniques (VPP)
3.1.1. Selective Laser Sintering (SLS)

Introduced by Deckard and Beaman in 1986, SLS is a technique extensively utilized
for the printing of custom implants, surgical planning guides, and constructs applied
in orthopedics and dental tissue engineering [159,160]. In this method, a high-powered
CO2 laser selectively and continuously fuses the surface of the powders, forming layers
and resulting in the creation of the 3D construct [161]. Loose particles surrounding the
sintered particles provide support, and with each layer scan, the powder bed descends
as a roller spreads the subsequent layer of powder over the prior one. The application
of SLS to ceramic-based materials can be achieved through either a direct or indirect
method (Figure 2) [162,163]. The major concerns of utilizing SLS to 3D print ceramic-based
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tissue engineering devices are the presence of porosities and defects induced through
shrinkage [164].
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The direct SLS approach can be either slurry-based or powder-based. Slurry-based
direct SLS has the advantage of starting from more homogenous and highly packed powder
layers [163]. Thus, to ensure the dimensional accuracy of the structure, the powder or
slurry is heated and sintered in situ [165]. However, the use of ceramics in the direct SLS
method becomes challenging due to the need for high melting temperatures. Such high
temperature requirements for ceramic-based materials and associated machine limitations
to process such materials serve as disadvantages of this technique [166]. Nonetheless, an
advantage is that these materials are more tolerant to temperature gradients [164].

Although the laser has the potential to reach the sintering temperature, achieving ideal
densification of the ceramic powder within the brief laser exposure time is impractical.
Moreover, extending the exposure time may lead to significant dimensional changes [166].
Additionally, factors such as laser energy consumption, extended cooling times, and laser
scattering among ceramic particles can make this technique inefficient and costly to produce
large and complex bioceramic scaffolds [34]. However, it is possible to enhance print
quality by optimizing various factors, including particle size, particle shape, binder content,
scanning speed, and laser energy [167].

On the other hand, the indirect SLS technique involves coating the chosen powder with
a sacrificial organic polymer, which melts upon exposure to the laser, binding the ceramic
particles together [162,168]. This indirect method comprises a three-step process: three-
dimensional printing, thermal debinding and sintering [168]. However, the disadvantages
of indirect ceramic-SLS are low resolution, poor surface finish, and porous microstructures
within the fabricated parts [164]. While the indirect SLS technique allows the production
of crack-free polymer-ceramic composite parts, there is a disadvantage associated with
semi-crystalline polymers demonstrating between 4 and 5% of volume shrinkage upon
solidification, which can cause component distortion [163]. Subsequent high-temperature
sintering of the green constructs is then carried out to produce the final scaffold [163].

3.1.2. Stereolithography Apparatus (SLA)

SLA, depicted in Figure 3, is a 3DP technique that allows the creation of highly precise
and complex constructs with control over fine internal architectures (at the micrometer
scale) and offers a high-quality surface topography [169,170]. Chuck Hull developed SLA
in 1986 for manufacturing polymeric structures [21]. SLA involves a UV-curable photopoly-
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mer, a laser unit, galvanometric mirrors, support structures, an elevator, and a recoater
blade [171,172]. The ultraviolet (UV) laser in SLA selectively crosslinks a photosensitive
liquid resin in a layer-by-layer manner to construct a 3D object. Once a layer is completed,
the resin bed moves upward and then descends back into the vat. This process continues
until the final print is completed, achieving the intended scaffold [173]. The same prin-
ciple can be applied to the use of SLA for printing ceramic materials. However, in this
case, ceramic particles suspended in a slurry system replace the resin-based system with
micro/nanometer-sized, light-sensitive monomers and a photo initiator that solidifies via
photo-polymerization mechanism once exposed to a UV laser [174,175]. To obtain a smooth
flow for printing and homogeneity in the print, the ceramic resin is required to have a long
shelf life and appropriate rheological behavior [176].
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SLA is used to fabricate scaffolds for bone regenerative applications using materials
such as HA, β-TCP, alumina, ZrO2, and bioactive glasses [175]. A primary difference
between the traditional SLA and ceramic SLA methods is the contribution of scatter-
ing phenomena due to the addition of ceramic particles relative to the light-sensitive
monomer [174]. To elaborate, the ceramic particles scatter UV light, which reduces curing
depth, resolution, and increases the printing time [177]. Hence, smaller particle sizes lower
the occurrence of scattering and are hence preferable for the SLA technique, coupled with
the fact that the cure depth can be controlled by adjusting the power of the laser, exposure
time and scan speed [178,179]. Organic components have to be calcined to be removed and
eventually sintered at high temperatures to fuse/densify the ceramic particles [180].

3.1.3. Digital Light Processing (DLP)

Digital light processing (DLP) employs resins made of photopolymers to create three-
dimensional structures under an illumination source [181,182]. The key components of
this 3DP technique are a projector screen made up of pixels with digital light, a digital
mirror device made of numerous micro-mirrors that navigate light from the projector, a
conveyor and a resin tank that contains the feedstock (Figure 4) [157]. Speed and printing
efficiency with great dimensional accuracy are the main advantages of using the digital
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light processing method [183]. Digital Light Processing (DLP) is an advanced AM tech-
nology that is increasingly being explored and adapted for use in BTE, with a focus on
the fabrication of ceramic-based scaffolds [184–187]. This innovative process leverages a
digital micromirror device (DMD) or a liquid crystal display (LCD) to precisely control and
modulate light exposure patterns in a layer-by-layer fashion. In the context of BTE, DLP
employs photosensitive ceramic resins as the starting material. These resins are formulated
to include ceramic particles or precursors, which respond to photopolymerization upon
exposure to ultraviolet (UV) light or other suitable light sources [183]. The DLP apparatus
projects digital images, dictated by a computer-aided design (CAD) model, onto the ceramic
resin. As the light interacts with the resin, it triggers the photopolymerization reaction,
leading to the solidification of the material in the desired pattern. This highly controlled,
layer-by-layer process enables the creation of intricate and precise ceramic scaffolds that
closely mimic the structure and properties required for effective BTE [186].
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The advantages of DLP for ceramic-based BTE are manifold. Foremost, it offers
the capability for patient-specific customization, allowing the creation of implants that
match an individual’s anatomical characteristics [188]. This personalization enhances the
likelihood of implant integration, minimizes the risk of rejection, and promotes optimal
bone healing. Moreover, DLP allows for meticulous control over the architecture of the
scaffold, including the size, shape, and distribution of pores, which are critical factors
influencing cell infiltration, nutrient diffusion, and vascularization within the scaffold.
These parameters are vital for supporting bone tissue regeneration. Furthermore, DLP-
printed ceramic structures typically demonstrate excellent mechanical properties, making
them suitable for load-bearing applications in bone reconstruction [182]. However, post-
processing steps like sintering may be required to enhance the mechanical strength and
biocompatibility of the printed ceramic structures. As the field of DLP for ceramic BTE
continues to advance, it holds immense potential for revolutionizing the field by delivering
customized, high-quality ceramic scaffolds that foster efficient bone regeneration, leading
to improved patient outcomes.
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3.2. Material Extrusion Techniques (MEX)
3.2.1. Direct Inkjet Writing (DIW)

The DIW technique, showcased in Figure 5, originated with Cesarano in 1997 and
is also commonly referred to as micro-robotic deposition or robocasting. This approach
involves the layer-by-layer creation of objects by extruding and depositing a water-based
colloidal suspension (referred to as ink), which comprises a substantial amount of ceramic
powder (usually exceeding 40%), employing a movable nozzle managed by a robotic
deposition arm or gantry [189–191]. In contrast to alternative methods, DIW presents
superior speed and cost-efficiency, enabling the entire procedure, encompassing production,
drying, and sintering, to conclude within a relatively short period, typically between 24
and 48 h. Compared to other techniques, DIW offers greater speed and cost-effectiveness,
enabling the entire process, including fabrication, drying, and sintering, to be completed
within a relatively short timeframe, typically ranging from 24 to 48 h [192].
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A DIW printer achieves three-axis motion by inputting a tool path (.gcode) to a
computer numerical controller. These printers generally include a fixed platform equipped
with a mobile gantry. The controller governs the gantry’s movements and manages the
downward motion of the syringe pumps containing the colloidal gels [27,193]. Multiple
extrusion nozzles permit the simultaneous deposition of diverse colloidal gels, comprising
the primary printing material (such as β-TCP) and fugitive support material (like Carbon
Black) [28]. This support material is typically introduced during the printing process and
subsequently eliminated through dissolution or melting once the printing operation is
finalized [74]. The use of fugitive support material facilitates the creation of elements
with internal voids or overhangs that would otherwise be challenging to produce without
such support.

During the DIW procedure, the printer’s extruders adhere to the Cartesian coordinate
pathway specified in the .gcode file while placing the gel or slurry onto a substrate [194]. The
time required to build periodic structures, such as lattices or scaffolds, depends on various
factors, including the nozzle diameter, extrusion rate from the nozzle, overall scaffold
volume, and printing speed. Challenges linked with the DIW method involve recurrent
nozzle clogging, sensitivity of ink to processing parameters, requirements for optimizing
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colloidal ink, and ‘filter pressing’ caused by constant ink extrusion pressure and particle
separation from the liquid phase [195]. In addition, developing a colloidal gel (or ceramic
ink) that is suitable for the deposition process with a shear-thinning property and yet is able
to retain its shape after extrusion is a major challenge with the DIW technique [196,197]. As
such, there is usually a high solid content, which prevents crack formation during the drying
process and enables the deposited ink to retain its shape or volume after drying [198].

3.2.2. Fused Deposition Modeling (FDM)

Thermoplastic polymer filaments are used to fabricate 3D constructs by fusion depo-
sition modeling, an extrusion-based 3DP technique. FDM functions on the principle of
AM, systematically depositing material in a layered manner onto the surface [199]. The
essential components of the FDM process include material feeding, gantry, print head,
and the forming surface [200]. In this printing method, thermoplastic filaments undergo a
melting process between rollers and are subsequently extruded through a nozzle onto the
construction surface (Figure 6). FDM offers the advantages of enabling multi-material print-
ing, ensuring high design quality, and enhancing mechanical properties [201]. Although
this method is conventionally linked with thermoplastic materials [147], its application has
extended to ceramics, presenting new opportunities for crafting ceramic components with
intricate geometries [202,203]. In FDM for ceramics, a ceramic-filled filament is extruded
layer-by-layer, following a computer-aided design (CAD) model. Once the ceramic fila-
ment is deposited, it is heated to fuse the particles together, creating a solid structure [204].
This process enables the production of ceramic parts with intricate shapes that would be
challenging to achieve through traditional ceramic forming methods.
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Despite its advantages, FDM for ceramics comes with some challenges and limitations.
The high-temperature requirements for sintering or post-processing ceramic FDM parts
can pose difficulties in terms of energy consumption and equipment costs [164]. Moreover,
achieving high levels of detail and surface finish in ceramic FDM parts can be challenging,
as the process may result in a rougher texture compared to conventionally manufactured
ceramics. Generally, the limitations of processing ceramic materials with FDM demon-
strate an inferior print resolution, poor surface finish, low density, and poor mechanical
performance. In addition, the printed parts would, in some cases, require infiltration with
isostatic pressing for greater quality improvements [164].
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The technique’s primary benefit is its ability to enable rapid prototyping and on-
demand manufacturing at low costs. However, the choice of ceramic materials available
for FDM is limited compared to traditional ceramic processing techniques, or DIW. FDM is
a slow process and can thereby hinder mass production relative to other techniques like
DLP. As research and development in the field of ceramic FDM continue to advance, it is
likely that many of these challenges will be addressed, further expanding the utility of this
technology in various industries.

3.3. Process Optimization and Post Processing

The effective and precise application of 3D printing processes relies on an extensive
optimization of various parameters. These parameters include the size of the powder, the
density of the powder bed, the surface characteristics, and the properties of the binder,
especially in micro-extrusion techniques. In resin-based printing, parameters involve laser
power source attributes, resin optical characteristics, and the size of ceramic particles within
the resin [181,205,206].

Some of the advantages of 3DP are its scalability to large sizes, relatively low cost, con-
trol over the pore geometry and pore size, and interconnectivity of constructs [136,207,208].
Nevertheless, a significant challenge of this technique lies in the extensive optimization
required to create a construct with a precisely porous structure [34]. Optimizing the powder
size plays a crucial role in enabling the smooth flow of particles in DIW and in achieving a
tightly packed powder bed using the laser-assisted 3DP method. This optimization facili-
tates the creation of intricate details within the printed scaffold [209]. Generally, the use of
finer powder particles enables more accurate and delicate microscale features, leading to a
smoother surface finish in the printed constructs. In contrast, larger-sized particles spread
more easily over the powder bed and allow for efficient binder penetration. However,
utilizing excessively large particles with high flowability results in reduced stability and
powder density in the printing bed. The roundness of the particles significantly enhances
powder flowability during printing [210].

In the post-processing of bioceramic scaffolds, sintering is a critical step in the var-
ious 3D printing techniques detailed in this review. It serves to enhance the mechanical
properties and eliminate the organic binder, burn off fugitive support material, remove
undesirable polymeric impurities (employed in the ink formulation step in DIW), and/or
fuse the individual ceramic particles together. Sintering results in both physical and chem-
ical changes in the printed constructs, whereby high interconnectivity between particles
is achieved, making the printed constructs stronger and more resilient to fracture by me-
chanical loading [34]. Although sintering is an essential step, it results in volumetric
shrinkage [136], which can lead to dimensional inaccuracy. In addition, the shrinkage may
not be uniform, leading to the incorporation of residual stresses and crack formation in the
printed construct, which requires a good understanding of feedstock preparation, geomet-
ric dimensioning, and tolerance prior to ink, filament, or slurry (feedstock) preparation. To
replace sintering, acid-based binders are now being utilized and explored and could serve
as a viable option in some cases where sintering is not possible [205,211].

Sterilizing 3D-printed (3DP) devices is a critical aspect of their medical applicability.
The primary sterilization methods include steam, ethylene oxide (EtO), or γ-radiation.
Steam sterilization employs high temperatures (up to 135 ◦C, but generally between 121
and 135 ◦C) and is cost-effective and non-toxic. It exposes the devices to high-temperature
steam under pressure for a calculated duration to eliminate microorganisms [212]. EtO
operates at lower temperatures within the range of 37–63 ◦C. Ethylene oxide functions
by alkylating proteins and DNA in microorganisms [213]. EtO sterilization is a longer
process than steam sterilization and requires aeration to eliminate residue [214]. However,
as EtO sterilization is performed at lower operating temperatures, it is compatible with
a wider range of materials, especially those sensitive to heat or moisture. γ-radiation
sterilizes through irradiation, typically at levels exceeding 25 kGy, and does not necessitate
an extended aeration process [214]. When considering devices meant for implantation
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versus those used as intraoperative models for reference, distinct factors come into play. For
3DP devices designed for implantation, it is crucial that the sterilization process does not
compromise the device’s structural and mechanical integrity. Consequently, it is essential
to consider the ability of the material to withstand these different sterilization methods
while also considering factors such as the availability of the aforementioned techniques.

3.4. Latest Technological Improvements and Applications

To fulfill the functional prerequisites of the 3DP technique for bone scaffolds, each step
of the process plays a crucial role. The pre-processing stage begins with the acquisition
of images of the defect site, which can be conducted through scanning the region via
computerized tomography and magnetic resonance imaging [32]. The obtained data is then
transferred to computer-aided design (CAD) software for the planning phase and design
of the scaffold. Subsequently, the information is exported to the 3D printer. In this phase,
parameters such as printing speed, layer thickness, alignment, printing temperature, and
filling density are defined, depending on the chosen technique and material [215]. Consid-
ering this, emerging technologies such as machine learning and artificial intelligence (AI)
are being applied to assist in the quality control of AM processes. Studies have highlighted
the benefits of machine learning for optimizing 3DP techniques [216–219]. ML, a subfield
of AI, primarily focuses on creating analytical models capable of identifying patterns in
data and making predictions of future outcomes based on prior information [218]. ML has
been shown to assist in determining ideal printing methods that result in faster printing
of structures with higher shape fidelity and superior mechanical properties while also
providing insights into the impact of different parameters on the printing process [219].

4. Biological Factors and Bioactive Molecules

With the emergence of tissue engineering methodologies, such as the utilization of
3D scaffolds that provide conducive environments for cell migration and proliferation,
there has been a focus on enhancing the rate of bone formation and regeneration by in-
corporating exogenous osteogenic cells, especially through the application of stem cells
(SCs) [139,220–222]. Therefore, a clear understanding of the selection of cell sources and the
strategies employed to enhance osteogenic differentiation is essential. Osteoblasts possess
strong osteogenic potential and can synthesize and secrete bone matrix, thereby promoting
mineralization and bone formation. However, their main disadvantages include the low
availability of donor sites, low proliferative capacity, and longer incubation times [139].
Consequently, stem cells (SCs) have been extensively investigated in BTE [139,223–225].
SCs are undifferentiated cells with the capacity for self-renewal, proliferation, and, with
appropriate signaling, differentiation into different lineages of specialized cells. These
cells can be categorized as embryonic stem cells (ESCs), induced pluripotent stem cells
(iPSCs), and postnatal adult stem cells based on their source [139]. Considerable efforts
have been made towards ESC differentiation into an osteogenic lineage for BTE; however,
there is currently no consensus regarding their tumorigenicity, immunogenicity, and eth-
ical or safety issues [139,225]. Similarly, with the use of iPSCs, although some attempts
have been made towards their differentiation in osteogenic lineages, further study and
improvements are needed for the optimization of induction approaches and control of
cellular differentiation [139]. On the other hand, adult stem cells have been the most inves-
tigated in BTE research, including bone marrow mesenchymal stem cells (BMSCs), human
periapical cyst mesenchymal stem cells (hPCy-MSCs), dental pulp stem cells (DPSCs), and
adipose-derived stem cells (ASCs), among others.

Adult stem cells have demonstrated a potential to differentiate into osteoblasts, with
BMSCs specifically recognized for their ability to differentiate into osteoblasts, chondro-
cytes, or adipocytes [139,225]. Using autologous BMSCs has yielded optimal outcomes in
repairing mandible defects, showcasing promising potential for bone regeneration in the
CMF region [226]. Clinical data has also shown an enhanced rate of bone formation with
BMSCs [38–43]. However, the procedure for aspirating BMSCs is invasive and painful for
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patients. Moreover, their retrieval is challenging due to the low frequency of BMSCs in
human bone marrow (0.001%–0.01%) [227]. This scarcity worsens with age, further limiting
the attainment of a significant osteogenic effect [225]. An additional category of dental stem
cells, hPCy-MSCs, collected from pathological tissue, have been reported to exhibit MSC-
like properties, such as plasticity, a high proliferation rate, and the potential to develop into
osteoblasts, neurogenic-like cells, and adipocyte-like cells [228]. However, the utilization of
hPCy-MSCs is limited due to the lack of evaluation of their immunomodulatory properties,
and the results are predominantly derived from in vitro experiments [229]. Another source
of stem cells is DPSCs, obtained from extracted third molars and premolars frequently
removed for orthodontic reasons. They are more accessible than BMSCs and have been
recognized as a cellular source for regenerative medicine [230]. Studies have demonstrated
positive outcomes with the incorporation of DPSCs in the context of BTE [231]. However,
there are cases where stem cells fail to be recruited or lack adherence to the scaffolds. In
these situations, a notable challenge emerges due to the difficulty in securing a sufficient cell
population, consequently jeopardizing the potential for top-tier tissue regeneration [232].

Therefore, the proposal for in vitro culture expansion aims to acquire an adequate
quantity of cells for clinical application. Nevertheless, cell expansion needs to be carried
out in facilities that follow good laboratory practices, which are laborious, expensive, and
time-consuming. Moreover, issues such as loss of proliferative and differentiation capability
during cell expansion, along with heightened risks of pathogen contamination and genetic
transformation, are associated with these expansion procedures [225]. Considering this,
numerous strategies and methods have been developed to enable clinicians to utilize growth
factors, such as platelet concentrates (platelet-rich plasma—PRP and platelet-rich fibrin—
PRF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), bone
morphogenetic protein (BMP), platelet-derived growth factor (PDGF), and dipyridamole
(DIPY), for regenerative purposes [220,221,233]. Growth factors transmit signals to target
cells through receptor binding, leading to the activation of specific genes. Therefore, a site-
specific dosage relationship and sequence of biomolecules determine the cellular response
as well as the quality and quantity of tissue regeneration [234]. However, the multiplicity
of applied factors, carriers, and methods utilized in the literature makes it challenging to
evaluate the most predictable therapy [235].

The most widely used osseoinductive growth factor is BMP, which is a member of the
transforming growth factor superfamily—β, isolated and purified from bone extracts [223].
BMP displays chemoattraction toward osteoprogenitor cells and SCs, promoting their
proliferation and differentiation into mature osteoblasts. It also up-regulates VEGF to
enhance angiogenesis [236]. In large bone defects, BMP-2 delivered locally via scaffolds
has been shown to result in increased osteogenesis compared to BTE devices (scaffolds)
alone [237–239]. BMP-2 application has resulted in an increase in the both quantity of bone
formation and its quality, with an increase in the rate of bone-forming markers such as
osteocalcin [235]. Reported side effects of using BMPs include severe inflammation, ectopic
bone formation, and premature suture fusion [138]. An additional biological side effect
pertains to the development of antibodies against these growth factors, which not only pose
risks for future BMP use but may also lead to cross-reactions against naturally occurring
growth factors [138,240]. Moreover, the short biological half-lives and localized action of
BMP-2 contribute to the associated drawbacks [235]. Thus, the responsible clinical use
of BMPs will necessitate further research in developing more sophisticated carriers with
biologically suitable release characteristics for growth factors, enabling dose reduction and
a more controlled bone formation process [234].

Recently, a promising alternative growth factor has emerged, displaying favorable
potential for bone regeneration while avoiding the adverse side effects commonly as-
sociated with BMP-2 [144,241–246]. Adenosine, known as a protective metabolite, has
attracted attention for its osteogenic properties. Traditionally recognized as a cellular-level
metabolic marker, adenosine attenuates activity across various cell types as a protective
mechanism [245]. However, alterations in bone homeostasis via adenosine receptor ac-
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tivity occur at concentrations above normal physiological levels [241]. In non-stressed
cellular conditions, achieving sufficient extracellular adenosine concentrations to trigger
receptor activation remains challenging, even with continuous inhibition of the adenosine
deaminase enzyme [247]. Consequently, alternative approaches exploring pharmacological
manipulation to activate adenosine receptors have been investigated. This manipula-
tion has demonstrated the potential to attain the requisite adenosine concentrations to
influence its receptors without inducing stressful cellular conditions. Consequently, alter-
native approaches exploring pharmacological manipulation to activate adenosine receptors
have been investigated. This manipulation has demonstrated the potential to attain the
requisite adenosine concentrations to influence its receptors without inducing stressful
cellular conditions.

The primary pharmacological agent of note is Dipyridamole (DIPY), an indirect agonist
of the adenosine A2A receptor. DIPY operates through the Type 1 equilibrative nucleoside
transporter, ENT1, hindering adenosine reuptake into the cell, leading to its extracellular
accumulation [248–250]. Recent studies have indicated that DIPY not only enhances
osteoblast function but also curtails osteoclast formation [251]. Meanwhile, the safety
profile of DIPY has been well established after decades-long clinical use in cardiac stress
testing and anti-platelet therapy and has been shown to preserve suture patency without
indications of ectopic bone formation [248–250]. Three-dimensional-printed bioceramic (β-
TCP) scaffolds coated with DIPY (3DPBC-DIPY) in various animal models have previously
been shown to be effective in bone regeneration for a range of clinical scenarios, including
defects induced in the calvaria, ramus, mandible, and alveolus, suggesting adenosine as a
promising therapeutic target for rapid bone formation.

A primary objective of regenerative medicine is to create cellular therapies that are free
from side effects and devoid of ethical concerns. The utilization of ESCs and IPCSs in thera-
peutic settings raises several ethical and safety considerations and poses as significant ob-
stacles in clinical applications due to the potential danger of tumor formation [225,252,253].
Alternatively, studies have examined the use of MSCs in surgical procedures for oral and
maxillofacial applications. These studies have shown that MSCs can be effectively used
for BTE with improved clinical outcomes [225]. MSCs have also been proven to be a more
suitable option due to their enhanced biosafety profile and reduced risk of tumorigenic-
ity [254]. However, the ethical and safety issues related to the use of MSC-based treatment
are still being discussed, which highlights the need for long-term follow-up research [252].

5. Future Outlook and Challenges

Biomaterials and equipment employed in 3DP scaffolds are continuously evolving,
becoming increasingly specialized to meet the demands of regenerative medicine and
yielding more promising results. However, as discussed in previous sections, there is room
for significant improvement. To achieve even more refined outcomes, it is essential to foster
collaboration among professionals from diverse fields, including engineers, healthcare
practitioners, experts in artificial intelligence, and biomaterial specialists, among others.
Teamwork and knowledge sharing facilitate the identification of existing gaps in techniques
and promote discussions on potential solutions. With the advancement of various AM
technologies, it becomes imperative to establish clear guidelines and standards for the
development of 3D-printed scaffolds and their clinical applications. The results of studies
already conducted and those currently in progress will play a crucial role in defining these
guidelines and will contribute towards more predictable and personalized medical and
dental care.

On the other hand, obtaining regulatory clearance for patient-specific 3D-printed
medical equipment is challenging. Consequently, incorporating stem cells, growth factors,
and other biologics adds more scrutiny and complexity to the approval procedures. It
is therefore crucial for researchers to closely follow the rules and guidelines set forth by
the regulatory bodies, as this will establish the specific laws they need to adhere to while
synthesizing the scaffold/graft or product. Moreover, acquiring a profound comprehension
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of these demanding procedures will enable craniomaxillofacial surgeons and dentists to
render safer and more effective treatment to their patients and will minimize any potential
risks while utilizing 3D-printed devices.
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