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Abstract: The ever-increasing number of internet-connected devices, along with the continuous evo-
lution of cyber-attacks, in terms of volume and ingenuity, has led to a widened cyber-threat landscape,
rendering infrastructures prone to malicious attacks. Towards addressing systems’ vulnerabilities
and alleviating the impact of these threats, this paper presents a machine learning based situational
awareness framework that detects existing and newly introduced network-enabled entities, utiliz-
ing the real-time awareness feature provided by the SDN paradigm, assesses them against known
vulnerabilities, and assigns them to a connectivity-appropriate network slice. The assessed entities
are continuously monitored by an ML-based IDS, which is trained with an enhanced dataset. Our
endeavor aims to demonstrate that a neural network, trained with heterogeneous data stemming
from the operational environment (common vulnerability enumeration IDs that correlate attacks
with existing vulnerabilities), can achieve more accurate prediction rates than a conventional one,
thus addressing some aspects of the situational awareness paradigm. The proposed framework was
evaluated within a real-life environment and the results revealed an increase of more than 4% in the
overall prediction accuracy.

Keywords: situational awareness; intrusion detection systems; vulnerability assessment; machine
learning; SDN; software defined networking

1. Introduction

According to a recent European’s Union Agency for Cybersecurity (ENISA) report [1],
a 54% increase was reported in the total number of data breaches by midyear 2019, com-
pared to 2018. In addition, 71% of the reported data breaches were financially motivated.
Additionally, according to ENISA’s “Threat Landscape 2020—Information Leakage” re-
port [2], organizations experienced an 11% increase in disclosures compared with 2018,
while in 2019 there were 2.013 confirmed data disclosures [3].

One of the most common ways to handle cyber-attacks, as identified by ENISA, is
Intrusion Detection Systems (IDS) [4–6], but their limitations impair their effectiveness
against several malicious activities. One major limitation is that most of these systems
utilize only a certain type of data as input (e.g., NetFlow v5 data) to perform their pre-
dictions/detections. The complexity and heterogeneity of current infrastructures render
these systems obsolete since, to achieve a holistic operational environment awareness and
provide more accurate predictions, the ingestion of diverse data, gathered from various
sources, is required.

The situational awareness (SA) paradigm seems to be a very promising approach in
the cybersecurity domain since it dictates the collection, fusion, and assessment of hetero-
geneous information from the operational environment to make predictions about possible
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risks, such as cyber-attacks. In more detail, according to Endsley et al. [7], situational aware-
ness is the ability to gather data from the surrounding environment, capture temporal
and spatial incidents, assess their significance, and make predictions on their forthcoming
condition. While these processes were initially identified for military applications, Bass
Tim [8,9] first stated that the future of cybersecurity lies in the application of the situational
awareness theorem. He recommended that the next generation of intrusion detection sys-
tems should fuse data from heterogeneous sources for the creation of cyberspace situational
awareness.

In consideration of the above, situational awareness in cybersecurity allows network
administrators and security analysts to gather heterogeneous data, such as network traf-
fic data and discovered vulnerabilities, to gain a more thorough understanding of the
surrounding environment. On top of that, the interpretation of that information pro-
vides insight and knowledge of the network, while assisting in the predictions about the
foreseeable future [10].

Situational awareness within the cybersecurity domain has been approached in var-
ious ways in the literature [11]. Some authors propose novel data-fusion methods for
heterogeneous data, while others propose machine learning (ML) techniques, to automate
the SA assessment process.

Even though all those approaches propose novel exploitation methods for the situa-
tional awareness paradigm in the cybersecurity domain, they only address specific steps of
the SA process, such as data collection and analysis. Moreover, they offer semi-automated
or completely manual solutions, thus requiring human interaction to a great extent. Fi-
nally, towards addressing these issues, this paper introduces an automated situational
awareness for cybersecurity framework that collects and assesses hosts’ environmental
data (namely real-time network flows) along with discovered vulnerabilities (vulnerability
assessment results [12]), to predict imminent cyber-attacks on network-enabled assets
(entities). In more detail, the proposed framework monitors, detects, and assesses existing
and newly introduced network-enabled entities against tens of thousands of well-known
reported vulnerabilities. It produces a classification score based on the standardized Com-
mon Vulnerability Scoring System (CVSS V3.1) [13] and finally assigns each entity to a
connectivity-appropriate layer 3 network slice, by utilizing the SDN controller. Thereafter,
an ML-based IDS, trained with an enhanced dataset (network flows and common vulnera-
bilities and exposures—CVEs identifiers), continuously monitors the assessed entities, and
detects ongoing attacks, by fusing, in real-time, their network flows and the vulnerability
assessment results of each host.

The results of our evaluation experiments illustrated that the proposed ML-based
enhanced IDS is more efficient by more than 4% in terms of prediction accuracy, compared
to typical ML-based IDS, which is solely trained with network data.

The rest of this paper is structured as follows. Section 2 presents the state of the art
regarding vulnerability assessment, intrusion detection systems, and situational awareness
in the ICT domain. Section 3 presents the implementation details of the proposed frame-
work. Section 4 elaborates on the performance evaluation procedure and the experimental
results. Finally, Section 5 concludes this paper with a brief discussion on the outcomes of
this research and the presentation of the foreseen future steps.

2. State of the Art

Several research initiatives and studies have been conducted concerning the utilization
of the situational awareness paradigm within the cybersecurity domain. In this section, we
will present the most prevalent ones that outline the current landscape.

As described by NIST [14], the cybersecurity lifecycle consists of five discrete steps,
namely, Identify, Protect, Detect, Respond, and Recover. Most of the existing research
endeavors focus only on one of those steps, while the remaining four most of the time are
either not handled, or addressed in a non-automated manner.
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Within the context of risk identification, (first step—Identify), S. Lee et al. proposed
a security assessment framework, specifically designed for software defined networking
(SDN) [15]. The framework utilizes the SDN paradigm to identify entities within its in-
frastructure. Consequently, the framework produces attack scenarios and initiates security
assessment procedures at the discovered entities within the underlying network, using
penetration tests.

In addition, techniques of automated random data generation for input (fuzzing tech-
niques) are deployed to detect potential unknown attack scenarios. Similarly, Nikoloudakis
et al., in [16] leveraging the SDN paradigm, developed a vulnerability assessment frame-
work for private networks, wherein it automatically assesses newly introduced and exist-
ing network-enabled entities against known vulnerabilities. Furthermore, the proposed
framework, as a protection action assigns the network-enabled entities to a connectivity-
appropriate VLAN according to their vulnerability status (CVSS score). F. Loi et al. [17]
proposed a suite consisting of security tests. The security tests entail assessments on (i) Con-
fidentiality (whether the data is in plaintext, encoded, or encrypted), (ii) Integrity (checks
for replay attacks and DNS security), (iii) Access Control and Availability (DoS attacks), and
(iv) Reflection (malformed packets that send ICMP messages, SSDP broadcasts, and SNMP
requests). Furthermore, taking public networks into consideration, E. T. Tchao et al. [18]
presented an assessment framework that was evaluated on a University campus, using the
Bring Your Own Device (BYOD) paradigm. In their paper, they proposed a multi-faceted
authentication model to recognize patterns and usual threats to alert the network adminis-
trator. A solid contribution for security enforcement in the IoT domain, IoT Sentinel, was
proposed by M. Miettinen et al. in [19]. IoT Sentinel restricts communications between
vulnerable devices and attackers. It identifies the devices’ types and uses a vulnerability
database to discover their vulnerabilities. In contradiction to our proposed framework,
most of the aforementioned research endeavors focus only on the Identify section of the
cybersecurity lifecycle, and most of them even refrain from taking any action after the
assessment.

Some research initiatives have approached situational awareness with the use of
machine learning. A recurrent neural network (RNN) was developed for an anomaly-
based IDS from Li et al. [20]. The RNN is trained to identify network anomalies and
enforce control policies, which by utilizing the benefits of the SDN paradigm. X. Liu et al.
in [21,22] presented a prototype of a multiclass support vector machine (SVM)-based fusion
engine. Their outcomes suggest that the SVMs have potential in real-time IDS applications,
due to the faster results and reliability of the SVM approach. Additionally, Thaseen
et al. [23] proposed a random tree model, reaching an increase in prediction accuracy and
reducing the false alarm rate, whereas Zhang et al. [24] proposed data augmentation using
a generative adversarial network (GAN). The GAN model generated data similar to the
KDD99 dataset [25]. This dataset allowed the detection model to identify not only attacks,
but attack variants as well. These initiatives, apart from utilizing outdated datasets, also
refrain from fusing other kinds of data and only ingest and assess network data.

Finally, several studies have tried to approach cyber-situational awareness by fus-
ing information from the operational environment. More specifically. M. L. Matthews
et al. in [26] presented a cooperative procedure to achieve situational awareness in a
cybersecurity context. Their system comprised a collaborative situation-aware intrusion
detection system (IDS) that collects data from separate sensors. The data aggregation
is performed with the help of a custom ontology, specifically designed for the fusion of
heterogeneous data, resulting in a knowledge base. A recent approach from Y. Zhang
et al. [27] presented a visual analysis framework that provides cyber-situational awareness.
Their proposed framework provides visual analysis of the network topology. Moreover,
with dynamic queries, the security analyst can filter out specific network features that are
shown. In addition to those approaches, H. Park et al. [28] suggested an alternative course
of action for cyber-situational awareness by combining regular expressions and their own
proposed evaluation methodology to overcome the limited string-based matching that
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most signature-pattern matching algorithms use. The collection of the regular expressions
that create detection rules is expandable and coordinated by each security analyst who
utilizes the framework.

E. Dynikova et al. [29] addressed cyber-situational awareness with a mathemati-
cal/probabilistic approach. They applied risk assessment techniques to calculate attack
risk levels for a specific entity and offer some countermeasures for individual attack se-
quences. Similarly, H. Wang et al. in [30] utilized a quantification method to enhance
cyber-situational awareness. Analytic hierarchy process [31,32], along with D-S evidence
theory [33], was utilized to fuse multi-source data, and eventually streamline the cyber-
situational assessment process. Finally, T. Jirsik et al. in [34,35] approached situational
awareness in a more traditional manner. They introduced a new and enhanced way to
analyze network flows by taking advantage of the integrated meta-data that IPFIX [36]
provides, resulting in a more detailed understanding of the network while eliminating the
need for extra parsers, like syslog, due to the extra, non-network data from IPFIX.

The aforementioned initiatives approach situational awareness by fusing data from
heterogeneous sources. Nevertheless, all of them refrain from utilizing machine learning
techniques to assist in the assessment and prediction process.

As our literature review revealed, some case studies, even though they suggest ap-
proaches that include the use of machine learning algorithms, utilize outdated and possibly
obsolete training datasets to identify malicious traffic, while others that fuse heterogeneous
data to achieve situational awareness abstain from utilizing machine learning techniques,
thus limiting the potential of their framework. Furthermore, to the best of our knowledge,
the aforementioned initiatives require human intervention to a great extent, thus limiting
the responsiveness of their systems.

To address these issues, we present a framework that builds upon the notion of
situational awareness, and provides automation in several steps of the cybersecurity
lifecycle, thus diminishing human interaction. In more detail, the proposed framework:

• Discover existing and newly introduced network-enabled entities in real-time by
utilizing the SDN paradigm.

• Performs vulnerability assessment on discovered network-enabled entities using a
Vulnerability Assessment as a Service (VAaaS) component.

• Assigns the assessed entities to a connectivity-appropriate network slice through an
SDN controller application, depending on their risk level (vulnerability assessment).

• Leverages an enhanced dataset, which combines heterogeneous data to train an ML-
based IDS, thus achieving more fine-grained classification, and therefore more robust
training results.

• Produce intrusion detection predictions, by utilizing real-time data (Netflow data and
system vulnerabilities—CVEs).

3. System Architecture

This section presents the high-level architecture of the proposed framework and
elaborates on all internal components and their functionalities (Figure 1). Moreover, the
framework’s overall functionality is described by two basic use cases, which relate to steps
1, 2 and 3 of NIST’s cybersecurity lifecycle [37], namely Identify, Protect and Detect, which
are also presented in the following subsections.
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3.1. Logic Component

The logic component is an over-the-top SDN controller application that facilitates the
overall functionalities of the presented framework. Inherently, the logic component is aware
of its underlying network topology, in real-time. It instructs the VAaaS component to per-
form vulnerability assessments on newly introduced entities upon discovery (discovery is
performed in real-time). Moreover, previously assessed entities are periodically reassessed
in a preconfigured ad hoc manner. Based on the risk level that derives from the vulnerabil-
ity assessment report (CVSS score), each entity is assigned to a connectivity-appropriate
network slice. There are three distinct network slices that represent the entities’ risk-
levels. Namely, the “full connectivity” slice, for low risk level (CVSS between 0.1–3.9), the
“internet-only” slice for medium risk level (CVSS between 4.0–6.9), and “no-connectivity”
slice for high and critical risk level CVSS between 7.0–10.0). Thus, entities with high-risk
levels (CVSS score above 7.0 [38]), posing a potential threat to the network, will not be
granted network access. The slicing is dynamically enforced by applying all the necessary
flow-rules for the target entity on the SDN controller, by the logic component.

Moreover, the logic component also facilitates the fusion and propagation of the
appropriate data to the ML-IDS. In more detail, it collects the NetFlow data from the
entities, fuses them with the discovered vulnerabilities, if any, for each entity, and sends
them to the ML-IDS. In this way, the ML-IDS can perform its prediction. More structured
details concerning the functionalities of the component will be presented in the following
subsections.

3.2. Vulnerability Assessment as a Service (VAaaS) Component

The VAaaS component exposes a RESTful API, allowing for the programmatic manip-
ulation of its internal functionalities. Therefore, as explained above, the VAaaS component
performs vulnerability assessments on each entity the Logic component dictates, and
produces an assessment report, containing the discovered vulnerabilities and the overall
risk level (CVSS score [39]) of the assessed entity. This report will be used by the Logic
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component to assign each entity to a connectivity-appropriate network slice. Additionally,
the discovered vulnerabilities will be fused with the real-time NetFlow data to be fed to
the ML-IDS.

3.3. ML-IDS
3.3.1. Dataset

For the purposes of the evaluation of this research we created two (2) datasets, plain
and enhanced, using the features comprised by the CIC-IDS2017 dataset [40] and the data
captured from real-life network traffic, within our evaluation environment. In more detail,
the plain dataset is similar to the CIC-IDS2017 format, while the enhanced dataset also
contains common vulnerabilities and exposures (CVEs) definitions as extra features. Finally,
each entry in both datasets were labeled with the name of the specific attack.

3.3.2. ML-Model

The continuous monitoring of the underlying network is performed by the ML-IDS.
The ML-IDS component is an intrusion detection system that utilizes a neural network
(NN) to accurately detect imminent cyber-attacks. The component’s ML model has been
trained with our enhanced dataset. Based on the fact that we have a multiclass classification
problem, and according to the literature [41–44], for the creation of our neural model, we
initiated a trial and error procedure, using the Rectified Linear Unit (ReLU) activation
function in the hidden layers of our model. However, during the testing procedure, we
observed that the Hyperbolic Tangent activation function (Tanh) illustrated a consider-
able increase in both training and test accuracy compared to ReLU. Therefore, the Tanh
activation function was selected. For the output layer of the model, we used the SoftMax
function. For the purposes of this study, and since this is a proof-of-concept framework,
the dataset only included five easily reproducible attacks. The attacks that were used
were Elasticsearch Remote File Inclusion Attack, Manage Engine Remote Desktop Attack,
WordPress Ninja Forms Attack, OpenSSH Server Service Brute Force Attack, and Denial
of Service Slow Loris Attack. The ML-IDS’s neural network is exposed through the Ten-
sorFlow Serving [45] component, by exposing a RESTful API, allowing for programmatic
manipulation of the neural model.

3.4. Use Cases

The presented framework’s overall functionality is described by two fundamental
use cases. The first use case concerns the first and second steps of the cybersecurity
lifecycle, i.e., “Identify” and “Protect”. The second one concerns the third step of the
cybersecurity lifecycle, “Detect”. In the second use case, we try to approach the notion
of situational awareness within the cybersecurity domain by fusing heterogeneous and
seemingly uncorrelated data from various sources, to gain awareness of the operational
environment in real-time, and produce predictions, as accurate as possible, concerning the
immediate future, e.g., predict an imminent attack on a specific entity.

3.4.1. Identification and Protection Use Case

As briefly described in the previous subsections, the first use case involves the identi-
fication of vulnerabilities on entities and the proactive measures to protect the system from
possible implications imposed by vulnerable entities, which is a rather straightforward
procedure. The Logic component, since it is developed as an SDN controller application,
detects newly introduced entities in real-time. Thus, upon detection, it probes the VAaaS
component with the discovered entities’ IPs to initiate a vulnerability assessment on each
one of them. Consequently, the VAaaS component performs the assessments, a somewhat
time-consuming procedure, produces detailed reports, and sends them back to the Logic
component. These reports contain a list of the discovered vulnerabilities on each entity, and
the overall score of the assessment, which is based on the standardized CVSS V3.0 score and
classifies the entity into one of the specified risk levels: “Critical” (9.0–10), “High” (7.0–8.9),
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“Medium” (4.0–6.9), and “Low” (0.1–3.9). Consequently, the Logic component receives the
reports and depending on the assessment results (CVSS V3.0 score), assigns each entity
to a connectivity appropriate network slice, by applying the appropriate flow-rules on
the SDN controller. Three self-explanatory network slices have been developed, slice#1,
no-connectivity, slice#2, internet-only, and slice#3, full-connectivity. As one can infer, the
ML-IDS component does not partake in this use case. A conceptual representation of the
use case is depicted in Figure 2.
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3.4.2. Detection Use Case

In this use case, the VAaaS component does not partake, since the vulnerability
assessment procedure has already been completed and has provided the Logic component
with the vulnerability assessment reports. Consequently, the Logic component starts
collecting the network flows from each entity, through the OpenFlow protocol (packet-in).
It then fuses the network data with the corresponding vulnerabilities and sends it to the
ML-IDS component. Finally, the ML-IDS component produces a prediction on whether
an attack is taking place on an entity, and what is the name of that attack. A conceptual
representation of the use case is depicted in Figure 3.
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4. Evaluation

To evaluate the presented framework, we performed several measurements within a
real-life environment to assess the overall prediction precision (Equation (1)) of the ML-IDS,
i.e., the precision of the internal neural network, which is the outcome of the enhanced
custom-made dataset. In more detail, the situational awareness framework was deployed
on our Lab’s premises, wherein the internal network is managed by an SDN controller.
Therein, we also deployed a virtual machine with the appropriate vulnerabilities, so that
we can reproduce the specific cyber-attacks, which our framework was trained to detect.
The following subsections present the results of this evaluation process.

4.1. Aim

The scope of this evaluation is to assess the overall precision of the neural network of
our proposed ML-IDS. Precision is defined as the number of correctly predicted attacks
out of all the performed attacks, which can be estimated by dividing the sum of correct
predictions by the sum of total predictions, as demonstrated in Equation (1).

Precision =
Correct Predictions

All Predictions
(1)

4.2. Method

The evaluation process is a two-fold procedure. For the first phase, we assess the
precision of the ML model, trained with the enhanced dataset, hereafter called “enhanced
model”. For the second phase, we assess the same values for the ML model, which was
trained with a typical dataset, hereafter called “plain model”.

For each phase, the Logic component gathers and fuses the real-time network traffic
(network flows) for each discovered entity and its discovered vulnerabilities, into a format
that the trained model accepts (NumPy array). Then, the ML-IDS produces a prediction
based on the input, whether an attack is in progress, and which attack. For the purposes of
demonstration, and since this is a proof-of-concept implementation, the neural network
was trained for five (5) specific attacks. More specifically, an Elasticsearch-specific Remote
File Inclusion (RFI) attack (CVE-2014-3120) [46] (Attack #1), a ManageEngine Desktop
Central 9-specific RFI attack (CVE-2015-8249) [47] (Attack #2), a WordPress-specific RFI
attack (CVE-2016-1209) [48] (Attack #3), an SSH Brute-Force attack (CVE-2001-0553) [49]
(Attack #4), and finally a Slow Loris DoS attack (CVE-2007-6750) [50] (Attack #5).
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4.3. Variables
4.3.1. Dependent

The dependent variable for this evaluation experiment is the precision of each predic-
tion. The values collected for each model were assessed and compared with each other.
This allowed us to gain a more detailed assessment, of the effectiveness of each respective
model.

4.3.2. Independent

For this evaluation experiment, we required only one independent variable, which
was the type of the attack. During the experiment, we performed all the attacks the models
were trained, mentioned in the Section 4.2.

4.3.3. Fixed

The fixed variables for this experiment were the total duration for each respective
attack. In more detail, each attack was performed for thirty seconds.

4.4. Prediction

The assumption that we are trying to prove is that the enhanced model will generate
a greater precision rate on an identical cyber-threat incident than the plain model.

4.5. Results

Table 1 depicts the correlation between the attacks and their attack number. Both Table
2 and Figure 4 illustrate the difference in prediction precision between the two models,
while Table 3 illustrates the confusion matrix for the enhanced dataset.

Table 1. Attack–attack Number Correlation.

Attack Attack Number

Remote File Inclusion (RFI) attack Attack #1
ManageEngine Desktop Central 9-specific RFI attack Attack #2

WordPress-specific RFI attack Attack #3
SSH Brute-Force attack Attack #4
Slow Loris DoS attack Attack #5

Table 2. Models’ predictions’ precision on live attacks.

Precision Attack #1 Attack #2 Attack #3 Attack #4 Attack #5 Standard Deviation Mean

Plain model 86.42 66.80 75.92 95.01 90.86 10.29 83.00
Enhanced Model 95.55 68.96 79.19 98.06 94.82 11.33 87.32

Delta 9.13 2.15 3.27 3.05 3.96 1.04 4.31

Table 3. Confusion matrix for enhanced dataset.

True/Predicted Elastic Manage Engine Wordpress SSH Slowloris

Elastic 387 0 0 0 18
ManageEngine 0 164 0 0 20

Wordpress 0 0 288 34 0
SSH 0 0 4 1819 10

Slowloris 18 74 72 2 877
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4.6. Discussion

Both models are compared in Table 1, regarding their precision in predicting each of
the attacks mentioned in the previous subsection. The first row represents the precision
scores of the plain model, while the second row represents the precision values of the
enhanced model.

Results signify that the enhanced model produces higher prediction accuracy results
on all of the attacks. The mean precision for the plain model is ~83%, and for the enhanced
model it is ~87%. The enhanced model demonstrates an increased precision of more than
4%. The graphical comparison of the two models is depicted in Figure 4.

To summarize, the enhanced model outperformed the plain model in all the attacks.
Nevertheless, during the second and third attacks, even though the enhanced model
correctly predicted the attack, the prediction rates for both models were rather low. This
phenomenon is somewhat expected since the premise which upon both models were
trained, was to classify and detect attacks based on their network footprint, meaning the
deviations in network “behavior” during specific attacks. Thus, when an attack produces a
small footprint, it makes it even harder for such kinds of neural models to achieve high
prediction precisions.

4.7. Evaluation

The presented evaluation showcases and compares the variable efficiency a neural
network model has on two different occasions. Firstly, when it is trained with a plain
network traffic dataset, and then when it is trained with an enhanced dataset. The results
were decisive for that comparison. Even so, the experiment’s variables could be modified
further for even better results. From our perspective, concerning the neural network
model, more algorithms could be tested, to produce even higher prediction precision.
Furthermore, the enhanced model produces higher prediction precision on all of the attacks,
in comparison with the plain model. However, the method utilized for the creation of that
dataset could be revised, since it now allows the model to perform better, but if the number
of attacks increases, it might not perform as well, since the dimensionality of the dataset
will change, leading to an increase in false positives/false negatives. Further investigation
is required to efficiently fuse such kind of heterogeneous data to offer scalability to the
framework.

5. Conclusions

In this paper, we presented an automated framework that addresses the first three
steps of the cybersecurity lifecycle, as defined by NIST (Identify, Protect and Detect). The
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presented framework performs vulnerability assessment on network-enabled entities in the
network (Identify), assigns each entity to a connectivity-appropriate network slice (Protect),
and finally continuously monitors the underlying infrastructure with an ML-based IDS,
utilizing the situational awareness paradigm (Detect). The ML-IDS has been trained with a
custom enhanced dataset that contains network data (NetFlow) and CVEs.

The framework was evaluated through a series of experiments, within a real-world
environment comprising a minimum set of CVEs for proof of concept purposes. The
evaluation results indicated the increased prediction performance of the presented ML-
IDS in comparison with a normal ML-based IDS. Although the results look promising,
we aim at testing alternative algorithms for the enhancement of our neural model, and
further research and examine the dataset creation procedure. Our goal is to create a dataset
containing as many attacks as possible.
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