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Abstract: A prescriptive simulation model of a process operator’s decision making assisted with
an artificial intelligence (AI) algorithm in a technical system control loop is proposed. Situations
fraught with a catastrophic threat that may cause unacceptable damage were analyzed. The operators’
decision making was interpreted in terms of a subjectively admissible probability of disaster and
subjectively necessary reliability of its assessment, which reflect the individual psychological aspect
of operator’s trust in AI. Four extreme decision-making strategies corresponding to different ratios
between the above variables were distinguished. An experiment simulating a process facility, an AI
algorithm and operator’s decision making strategy was held. It showed that depending on the
properties of a controlled process (its dynamics and the hazard onset’s speed) and the AI algorithm
characteristics (Type I and II error rate), each of such strategies or some intermediate strategy may
prove to be more beneficial than others. The same approach is applicable to the identification and
analysis of sustainability of strategies applied in real-life operating conditions, as well as to the
development of a computer simulator to train operators to control hazardous technological processes
using AI-generated advice.

Keywords: human operator; trust in artificial intelligence; recommender systems; intelligent
decision-making systems; admissible probability of disaster; equipment predictive analytics

MSC: 91E45

1. Introduction

With the advent of modern IT tools, artificial intelligence has been steadily penetrating
industrial automation. So far, it has been in the form of advice, which can be accepted
or rejected by a human operator (HO), and which relates to both avoiding undesirable
operating modes of a facility as well as process equipment predictive analytics.

As an example, let us take a look at equipment predictive analytics when AI triggers an
alert that requires shutting down a complex manufacturing process. Suppose the shutdown
is very costly, but the potential accident AI warns about would lead to unacceptable damage
(say, a nuclear power plant disaster). The operator can reject the AI advice and accept the
corresponding risk or take the advice and shut down the process, but in the latter case if
the alarm is false, there is a risk of significant losses due to the unnecessary shutdown.

Despite the operator’s leading role in such a human–machine system (and possibly
due to that role), the presence of AI gives rise to serious challenges related to workforce
and production assets safety, staff motivation, ethics in industrial relations, etc. Along
with the variety of factors (transparency, explainability and ease-of-use of algorithms,
responsibility for and benefits of the use of AI, etc.), an operator’s own decision-making
strategy is determined by psychological factors, such as admissible probability of disaster
and doubts about the accuracy of hazard assessments. Achieving a sufficient level of trust
is a prerequisite for the survival and effective functioning of AI algorithms in a modern
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production environment. Thus, there is a growing urgency for psychological support in
human–machine interaction involving AI.

According to a review [1], the influence of personal characteristics on trust in AI
depends on the significance of the decisions made with its assistance. It is also shown that,
despite a large number of studies of the influence of an individual operator’s personal
characteristics on trust in AI, a comprehensive picture of this influence is currently missing.

The above problem was examined here in the context of human trust in technology
against the background of enhancing intellectualization of technological systems. Our
task was to test the hypothesis that there is a significant difference in the effectiveness of
possible decision-making strategies for different facilities and AI algorithms in situations
threatening unacceptable damage.

The structure of the work is as follows. Section 2 provides a brief overview of the
problem of trust in technology in the context of the ever-increasing intellectualization of
control systems for complex technical and technological objects. Section 3 discusses the
requirements for human–machine interaction introduced by the advent of AI and known
approaches to their implementation. The general task of preparing a HO for effective
interaction with AI, including computer-based operator training, is formulated. In Section 4,
a mathematical model of a human–machine system with an AI algorithm in the control
loop is proposed, taking into account both the characteristics of the technical system, which
are fundamental from the standpoint of trust in AI, and the strategies for a HO’s decision
making depending on their individual psychological characteristics (subjective anxiety).
Section 5 presents the results of a large-scale simulation experiment with the proposed
model, which allows for calculating the effectiveness of operator strategies depending
on the characteristics of the controlled object and AI algorithms’ parameters. Section 6
discusses the results of the experiment and its values for the development of a sound
methodology for computer-based operator training, which allows us to form and optimize
the skill of controlling a technical system in the presence of AI.

2. The Problem of Human Trust in Complex Machinery

The trust of a HO in AI cannot be dealt with in isolation from trust in machinery in
general, an issue that emerged at the turn of the XVIII–XIX centuries at the time of nascent
mechanization, when Luddites were destroying power looms that were making British
weavers’ jobs redundant [2].

Proper recognition of cases when trust in, or on the contrary distrust of, technology
devices is needed may have a fateful significance. A tragic precedent is the 1941 Japanese
air attack on Pearl Harbor, a United States naval base, when fuzzy signals from the then
imperfect radars were not perceived as a genuine threat, and an ill-conceived decision-
making protocol thwarted the response. In contrast, a prudent distrust of technology
saved the USSR and the United States from a nuclear clash at the height of the Cold War.
Indicatively, in the early 1980s, more than 10 false positive alarms per day were recorded
by the American side alone. All of them were the result of malfunctions, hardware and
software failures or natural interference [3].

With advances in technology, the problem of trust has become increasingly multidi-
mensional and philosophers, literary figures, sociologists, culturologists, psychologists, and
science fiction writers are becoming involved in it. The adoption of computer-integrated
manufacturing affects a new important category of users—industrial system operators.

The problem of trust in technology is a traditional topic for psychological research [4].
The fundamental provision is that the level of trust should match technological capabilities.
A mismatch may lead to overtrust or over-distrust, posing a threat of either a decrease in
safety or an unjustified rejection of the benefits of modern automation. At the same time, in
addition to the technical parameters of automation itself (reliability, safety, ease of use, etc.),
the level of trust is influenced by the HO profile: experience, professional competence,
self-esteem, and other personal traits [5].



Mathematics 2023, 11, 4956 3 of 15

Nowadays, HOs must increasingly embrace recommender systems and intelligent
decision support that have become indispensable for the high-quality control of complex
technological facilities. Notable practical applications of AI systems include laser sintering
of metal products, proactive recognition of conveyor belt wear and tear or burnout of
foundry ladles lining and predictive equipment maintenance, which radically mitigates
the risk of damage and the threat to health and life at work. There is no alternative to AI
methods in terms of equipment maintenance in case of exceptionally high breakdown costs
(e.g., steel pipe welding equipment or blast furnace compressors). While in some cases,
an operator has enough time (hours or days) to analyze AI advice, in other cases, a signal
may arrive immediately before a possible failure, giving an opportunity to save critical
equipment but also requiring a prompt and responsible decision from the HO.

3. Specifics of Trust In/Distrust of AI Systems

The fundamental problem of HO–AI interaction is that most AI algorithms are based
on machine learning (ML), and it is difficult for a HO to understand the logic of the solutions
they offer. At the same time, the most effective algorithms (for example, deep learning)
are often the least transparent, and vice versa (for example, decision trees) [6]. In modern
production, HO–AI cooperation is accompanied by uncertainty and risk, and the operator’s
distrust of AI is an attempt to reduce these factors [7]. A so-called explainable artificial
intelligence (XAI) should increase the trust of the end user by giving them explanations
contextual to the subject area, capabilities and the user’s expectations [6]. The relation of
AI’s clarity and predictability with trust in it (especially in potentially dangerous situations)
is emphasized by many researchers [8–13].

A pragmatic view of AI in industrial automation suggests that the user attributes
a human-like reasoning process to an AI [13]; therefore, it seems logical to apply theory
of mind (ToM) approaches to the HO–AI interaction, making the mental state of inter-
acting agents transparent, which is necessary for cognition and interaction [9]. An AI
should explain its decision considering a human’s understanding and intentions, as well as
a person’s understanding of AI [10].

With an abundance of works on the topic, specific models of trust in AI are rarely
discussed [13], and the traditional design of HO–AI interaction is based on the external
behavior of a HO, whose internal mental states are ignored, which potentially limits the
effectiveness of the created systems [14].

Another developed area of research on user–AI interaction is the technology accep-
tance model (TAM). Originally proposed in the 1990s, it operates with two basic factors:
perceived usability and perceived ease of use [15]. In the subsequent version (unified
theory of acceptance and use of technology—UTAUT) [16], the factors of social influence
(adjusting user’s behavior to meet the demands of a social environment) and facilitating
conditions (user believing in support of existing organizational and technical infrastructure)
were added [17]. Recently, there have been publications on AI acceptance (AI-UTAUT); see
review [18].

AI-UTAUT operates with some additional factors specific to AI and, at least indirectly,
related to the user’s trust in it—transparency (the AI decisions’ clarity and understanding),
explainability, anthropomorphism (attribution of human traits and intentions to AI) and
value alignment (aligning AI’s values and ethics with human values and social norms). It
is emphasized that the acceptance of AI also depends on the specific AI algorithm that is
being used [18].

With the obvious rationality of the AI-UTAUT approach, it should be noted that its
applications to the industrial AI domain are still unknown, as are attempts to consider
the user’s individual psychological characteristics in the HO–AI interaction model. It is
also wrong to neglect the accompanying, but no less important factors that aggravate the
problem of trust in the AI.

Motivational trap. If correct AI advice is rejected or the wrong advice is accepted, the
HO operator risks revealing a skills gap. If correct advice is accepted, then the AI will prove
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to be at least faster, or even “smarter” than the HO. Only rejecting the wrong advice would
benefit a HO. Given an operator’s formal and often informal responsibility and status as
a hired employee, such “asymmetrical” motivation does not boost trust towards AI.

Reluctance to use AI. The problem of reluctance to use technological innovations is
also eternal to a degree. An obvious tool to improve staff willingness is the training and
re-profiling of users and professionals, among other things, with reliance on a technological
facility with high-precision simulation. However, in case of AI, the situation is exacerbated
by a number of additional factors:

• AI tools are still quite “young”, not insured against “teething problems” and can
behave unpredictably in the case of situations that were not covered during the
algorithm’s learning stage;

• Staff fears of losing jobs are heightened at every critical point in the development
of automation: during the transition from analog to digital computerized control
systems, introduction of the first model-based predictive control systems (“industrial
autopilots”) and, finally, upon penetration of AI tools into automation;

• Operators’ AI-related concerns are often complemented by their reluctance to share
one of the principal human advantages—the ability to think—with a machine [19].
Now, automation claims not only fast routine tasks that are beyond human reach but
also optimization, planning and predictive analytics, i.e., it increasingly encroaches
on the “sancta sanctorum”, which is widely viewed as accessible to natural human
intelligence only.

The control skill of a technical system containing an AI adviser can be attributed
to the procedural skills of operators. The formatting, enhancing and improving of such
skills are implemented by operator computer-based training with high-fidelity modeling of
a technical system [20]. Similar examples of the inclusion of advanced automation systems
in computer simulators are already available [21], and interest in them will increase as more
and more intelligent control tools are transferred to the operator’s area of responsibility.
However, there is no comprehensive methodology for training operators to interact with AI,
so the general problem of training operational personnel to work with AI can be considered
as the implementation of the following multi-step plan:

1. Build a model of the operator’s decision making (strategies for accepting/rejecting AI
advice), considering, among other things, the individual psychological characteristics
of HO;

2. Verify (in a simulation experiment) the proposed model’s rationality from the point of
view of the significantly greater effectiveness of individual strategies in comparison
with others in different operating conditions (including technological objects and the
AI algorithm);

3. Study real subjects’ strategies in an engineering psychological experiment for their
compliance with the proposed model and adaptation to changing operating conditions
of the technical system;

4. Develop and verify the HO’s computer training methodology in the presence of AI in
the control loop;

5. Develop and implement AI adaptation tools to the characteristics of the trained
personnel (preferred strategies, the level of necessary information support, etc.);

6. Introduce the simulator at a large scale into the operator training process and analysis
of its results.

This work is devoted to solving the first two subtasks, which are mathematical in
nature and are a prerequisite for general problem solving.

4. Simulation Model of an AI-Based Human–Machine System

The “Big Five” personality factors [22] that may influence trust in AI recommenda-
tions include extraversion, agreeableness, conscientiousness, neuroticism and openness
to experience [1,23]. Thus, a positive influence on trust in AI has been shown for such
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traits as agreeableness [24,25], openness [26,27] and extraversion [28,29]. On the contrary,
some studies demonstrated that neuroticism and anxiety have a negative impact on trust
in AI [24,30–32]. We focused on the latter factor by the reason of strong influence of anxiety
on high-risk decision making. Empirical studies have found that an increase in the level
of anxiety corresponds with a tendency to avoid risk [33–36]. This corresponds to the
approach to the problem of trust in the mentioned studies [24,30–32], where trust appears
as a risky choice and distrust as a safer one. However, in the situation we are considering,
when making a decision is impossible without interaction with AI, the picture changes. In
this case, trusting the AI’s warning of a threat is safer than ignoring such a warning.

We already proposed a generalized description of decision making in situations charac-
terized by the risk of catastrophic consequences [37]. Psychological research predominantly
examines risk, which comes down to undesirable but not radical losses: “Risk is the poten-
tial that a decision will lead to a loss or an undesirable outcome” [38] (p. 3). In contrast,
we looked at the risk of an event leading to unacceptable damage. As is customary in
operator accident prevention training, the threats of such events are repeatedly simulated,
for example, on computer simulators.

We investigated the influence of trait anxiety, which determines decision making in
high-risk situations to a very large extent [1,33–35] determining the tendency to choose
less risky actions. According to our hypothesis, anxiety is represented by two independent
parameters, conventionally known as “apprehension” and “doubt”. Apprehension charac-
terizes the probability of a catastrophe that a person considers admissible for themselves.
“Doubt” is a subjectively assessed degree of reliability of one’s own assessment of such
probability, necessary for making a final decision.

When building the model, we relied on sequential decision theory [39], limiting
ourselves to choosing between two possible final decisions and an interim one:

• Dfrw—taking a risky action, continuing the process despite the existing probability of
an accident (move forward);

• Dstp—refusal to take a risky action, stopping the process, which has a fairly high price;
• Dtst—a significantly less costly interim decision: gathering additional information as

a basis for the final decision Dfrw or Dstp.

It was assumed that the choice of one or another option is determined by the assess-
ment of probability (subjective probability) of catastrophic consequences in relation to the
specified parameters of trait anxiety of the decision maker. With growing “apprehension”,
there is an increasing tendency to choose a Dstp decision (refusal to take a risky action).
A high level of “apprehension” helps avoid a disaster but reduces benefits (“gains”) that
a risky but successful action could generate.

With increasing “doubt”, there is a growing tendency to choose an interim Dtst decision
(to gather additional information). It also helps avoid a disaster, but given the high cost of
information-gathering, it significantly reduces the total gain. In addition, a Dtst decision
becomes meaningless if there are no sources of additional information, there is no time to
gather it or the information gathering process itself is fraught with a considerable risk.

In the proposed model, an operator observes a dynamic process. The process periodi-
cally falls into a state that may potentially lead to a catastrophic event, of which AI gives an
early warning to the operator. AI recommendations are not perfect: there are Type I (“false
alarms”) as well as Type II (“missed targets”) errors. The operator can stop the process
(Dstp) or keep it running (Dfrw) and can also make an interim decision to obtain additional
information (Dtst).

The model is based on singling out three zones:

1. Risk acceptance zone: according to subjective assessment, the risk is not higher than
admissible, and the subjective reliability of the assessment is sufficient. A risky
Dfrw decision to keep the process running is made (if AI recommended stopping the
process, then such recommendation is rejected.)
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2. Zone of uncertainty: according to subjective assessment, the risk is not higher than
admissible, but the subjective reliability of the assessment is insufficient. An interim
Dtst decision to collect additional information is made. If, as a result, sufficient
reliability of the initial assessment is achieved, then a Dfrw decision to keep the
process running is made. Otherwise, a Dstp decision to stop the process is made (AI
recommendation is accepted).

3. Excessive risk zone: according to subjective assessment, the risk is higher than admis-
sible. A Dstp decision to stop the process is made (AI recommendation is accepted
or a proactive decision is made based on operator’s own assessment of the state of
the process).

The model includes the following components:

I “Process”;
II “AI” observing the process and predicting its state at the next two timepoints; and
III “Operator” who has an opportunity to make one of the three decisions—Dfrw, Dstp, or

Dtst—at any given time.

Below is a detailed description of each block.

I The following time-discrete dynamic process {Xi} is modeled:

Xi = max{0; a × Xi−1 + b × zi};

X0 = 1/2∆,

where

∆ is the value, which if exceeded, is treated as a “catastrophe” resulting in unacceptable
damage;
zi~N (0, 1) is a standard normally distributed random variable;
a ∈ (0, 1], b > 0 are constants that determine the dynamics and the power of the process
(and as a result, the frequency and suddenness of the onset of a catastrophic risk);
i ∈ [1, n]; n—process duration (the total number of steps).

II. According to the model, in addition to the value of Xi, the AI also “knows” the
predicted values of X′i+1 and X′i+2; if X′i+1 > ∆ or X′i+2 > ∆, the AI triggers an alarm
(suggests that the process be stopped). “False alarms” (FA) and “missed targets”
(MT) are also possible. The probabilities of each of these scenarios are determined
by natural numbers predetermined by the researcher 0 ≤ MFA < MMT ≤ 1000, in
correlation with the values of the random variable gi evenly distributed over the
segment [1; 1000]:

• gi ≤MFA: the signal is given regardless of the values of X′i+1 and X′i+2, which
generates “false alarms”, but sometimes it can accidentally coincide with a correct
warning;

• MFA < gi ≤MMT: the signal is given if X′i+1 > ∆ or X′i+2 > ∆;
• gi > MMT: there is no signal, regardless of the values of X′i+1 and X′i+2, that can

generate a “missed target”.

Thus, at MFA = 0 there are no “false alarms” and at MMT = 1000 there are no “missed
targets” (Figure 1). If a signal is given at the i-th step, then at the next (i + 1) step there is
no signal.

III. The model assumes that the operator is guided by both AI signals and their own
assessment of the state of the process. They, however, are not able to determine the
exact value of Xi but only the boundaries of the range [Ybtm

i, Ytop
i] in which it is

located. The boundaries are set as follows:

Ybtm
i = Xi + k × (wi − 2.5);

Ytop
i = Xi + k × (wi + 2.5),
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where
k > 0 is a constant and wi is a random variable with truncated standard normal

distribution with truncation levels at [−2.5, +2.5].
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The value of Yi = 1/2 (Ybtm
i + Ytop

i) is a subjective assessment of the state of the Xi
process; and the constant k determines the degree of accuracy of such assessment.

It is assumed that when an AI alarm signal arrives, the operator follows the algorithm
using the constants 0 < δfrw ≤ δstp, which characterize the individual strategy (the higher
the level of “apprehension”, the lower δstp is; the higher the level of “doubt”, the lower
δfrw is):

• If Yi ≤ δfrw, then a Dfrw decision is made, i.e., the [0, δfrw] segment is the risk
acceptance zone;

• If δfrw < Yi ≤ δstp, then a Dtst decision is made, i.e., the (δfrw, δstp] interval is the zone
of uncertainty (in case of δstp = δfrw it is absent);

• If Yi > δstp, then a Dstp decision is made, i.e., any value higher than δstp is the excessive
risk zone.

A Dfrw decision is based on the belief that the AI signal was a “false alarm”. If the
signal was indeed false, then the process moves one step forward. If the signal was correct,
i.e., X′i+1 > ∆ or X′i+2 > ∆, then a “catastrophe” occurs.

A Dstp decision is based on the notion that the probability of a potential catastrophe
is excessively high. It means stopping the process and then bringing it back to the initial
level: Xi+1 = 0; Xi+2 = 1/2∆.

A Dtst interim decision means taking an “exploratory step”: Xi => Xi+1 = X′i+1. The
final decision is determined by the value of Yi+1 (see Figure 2):

• If Yi+1 ≤ δfrw, then a Dfrw decision is made; Xi+1 => Xi+2 = X′i+2;
• If Yi+1 > δfrw, then a Dstp decision is made; Xi+2 = 0; Xi+3 = 1/2∆.

Two “exploratory steps” in a row are impossible.
A possible way to set such differences between Dtst and Dfrw decisions on a simulator

is to slow down the process when a Dtst decision is made to allow the operator to stop the
process at the next step if necessary; if AI advice is rejected (a Dfrw decision), the speed of
the process is too fast to stop it at the next step.

In the absence of an alarm, the operator is guided only by their own assessment of the
state of the process. The algorithm of their actions is similar to the previous one, but instead
of the constants δfrw, the constants δstp are used:

δh
frw = δfrw + h × (∆ − δfrw);
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δh
stp = δstp + h × (∆ − δstp),

where
h ∈ [0, 1] is a parameter that reflects the level of trust of the AI operator (the degree of

their confidence that there are no “missed targets”).
If h = 0, then δh

frw = δfrw; δh
stp = δstp.

If h = 1, then δh
frw = δh

stp = ∆.
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step #7; Ybtm

7 = 51.1; Ytop
7 = 76.1; Y7 = 1/2 (Ybtm

7 + Ytop
7) = 63.6; δfrw < Y7 < δstp => Dtst decision;

Ybtm
8 = 61.5; Ytop

8 = 86.5; Y8 = 1/2 (Ybtm
8 + Ytop

8) = 74.0; Y8 > δfrw => Dstp final decision.

With full confidence that the AI has no “missed targets” (h = 1), the operator does not
stop the process or take “exploratory steps” without an AI signal. With complete distrust
of the AI (h = 0), the operator’s actions are the same whether there is a signal or not. At
intermediate values of h, the zone of risk acceptance is wider, and the zone of excessive risk
is narrower compared to the respective zones in case of an AI alarm (Figure 3). In other
words, subject to an operator’s trust in AI reliability in determining the target, the absence
of a signal is used by the operator as additional information that enables them to make
bolder decisions.

The model envisages a fine charged for stopping the process ustp and for performing
a verification utst. There is a reward przFA for false alarm identification (continuing the
process, despite an erroneous AI signal) and a reward przMT for proactive shutdown of
the process in the event of an actual threat of an accident in the absence of an AI signal. In
addition to minimization of the probability of an accident, there is an integral indicator U,
which serves as a criterion of operator’s actions success and is the sum total of fines and
bonuses accrued by the end of the process (n-th step):

U = ∑(przFA + przMT − ustp − utst),

which, generally speaking, can be negative.
As appears from the above description, simultaneously high values of δstp and δfrw are

characteristic of an extreme risk strategy. High values of δstp with moderate values of δfrw

represent a moderate risk strategy. Moderate values of δstp and low values of δfrw evidence a
moderate risk avoidance strategy. Simultaneously low values of δstp and δfrw are an extreme
risk avoidance strategy.
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In operators’ daily activities, one may expect intermediate, rather than extreme, strate-
gies more or less similar to the above options.

5. Outcomes

The model was tested to compare the predicted effectiveness of different operator
strategies. Therefore, parameters δfrw and δstp characterizing such strategies were varied.

In accordance with the research objective, when implementing the model, process
options with varying degrees of risk were tested, i.e., frequency of emergency situations
(parameter b). The presence/absence of AI “missing the target” (MMT), the accuracy of the
subjective assessment of the process state (k) and the cost of verification (utst) also varied.
The remaining parameters were represented by two contrasting values of b (with a low
and high objective probability of process emergency states), two different values of MMT
(presence/absence of AI “missed targets”) and two different values of k (the accuracy of
the subjective assessment of the process state). During the testing process, the following
parameters did not change:

1. n = 1000 (i.e., the overall duration of the process was 1000 steps);
2. ∆ = 100 (respectively, the initial value of X0 = 50; it was reset each time after the

process was shut down);
3. a = 0.99 (high process inertia);
4. MFA = 300, i.e., in 30% of cases, an AI signal was given regardless of either the

current or the predicted state of the process. (A high frequency of “false alarms” is
important when training operators to recognize them and is, therefore, typical in
process simulations.)

5. ustp = 200 (process shutdown cost);
6. przFA = 100 (reward for “false alarm” detection by the operator);
7. przMT = 300 (reward for proactive shutdown of the process if there is a treat of an

accident without an AI signal).

The average frequency of accidents Crsh and the integral indicator U were checked.
Two scenarios were simulated:

1. Allowing, as we assumed, a risk strategy with rare real threats of an accident (b = 7;
the average number of threats per 1000 steps M = 1.41 while the frequency of “false
alarms” was much higher), with a high accuracy of subjective assessment of the state
of the process (k = 1), without AI Type II errors (“missed target”) (MMT = 1000) and
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with operator’s confidence in the absence of such errors (h = 1), we predicted a low
cost of verification (utst = 1).

2. Requiring much more caution were more frequent accident threats (b = 10; average
number of threats per 1000 steps M = 2.64), reduced accuracy of subjective assessment
of the state of the process (k = 5) and the possibility of AI Type II errors (MMT = 800).
Cases with a low verification cost (utst = 1; the integral indicator was designated as
U1) and a high cost (utst = 50; the integral indicator U2) were tested.

With each combination of parameters, we ran a series of 200 samples of 1000 steps
each. The values of the individual parameters δfrw and δstp changed in 5-unit increments.
The minimum reasonable value of δfrw was δfrw = 55 since the initial state of the process
was X0 = 50. The values of δfrw = 55 and δfrw = 60 were considered low (risk avoidance
strategies), δfrw = 65 and δfrw = 70 were considered medium, and δfrw = 75 and above were
considered high (risk strategies).

Q = 0.05 was assumed to be the maximum permissible frequency (probability) of an
accident. Under normal circumstances, such a high probability of a catastrophic accident
would be unacceptable. For example, in construction in most countries, the maximum
allowable annual individual risk associated with natural disasters is from 10−2 to 10−3 [40].
When a group (social) risk rather than an individual risk is considered, its permissible
probability is sharply reduced. However, in a pre-emergency situation simulated by us,
which was repeatedly run on simulators, we considered the probability of q = 0.05 to be
acceptable.

In the first (“encouraging” risk) scenario, the optimal value of δfrw proved to be
δfrw = 75. At higher values of δfrw, the average frequency of “accidents” exceeded the
maximum permissible level. So, already at δfrw = δstp = 80, it was 0.080 per 1000 steps. At
δfrw < 75, the integral indicator U significantly decreased. Thus, at δfrw = 70, the maximum
result reaches 19,759 (at δstp = 85), which is significantly lower than the result in the pair
(δfrw = 75, δstp = 85), which is 20,242 (p < 0.001; hereinafter, the significance of the differences
was checked using Student’s t-test).

The average frequency of accidents Crsh and the integral indicator U (M is the mean
value, S is standard deviation) at δfrw = 75 and variable values of δstp are set out in Table 1.

Table 1. Accident frequency and integral indicator at b = 7, k = 1, δfrw = 75.

δstp

75 80 85 90 95

Crsh 0.015 0.030 0.050 0.045 0.050

U
M 19,903 20,036 20,242 20,159 20,132

S 1035 1027 1002 975 1037

As it appears from the Table, the optimal combination was (δfrw = 75, δstp = 85). The
difference between the integral indicator U in pairs (δfrw = 75, δstp = 85) and (δfrw = 75,
δstp = 75) is statistically significant at p < 0.001.

In other words, under given conditions, the optimal strategy is intermediate between
the strategies of extreme risk and moderate risk: a combination of a fairly wide zone of risk
acceptance (a low level of “doubt”) with an average width of the zone of uncertainty
(an average level of “apprehension”) and, accordingly, a narrow zone of excessive risk.
Further narrowing of the zone of excessive risk did not lead to an increase in the integral
indicator (Figure 4).
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Figure 4. Integral indicator U at δfrw = 75 depending on δstp.

With more stringent requirements to the permissible probability of an accident, a more
cautious strategy should be chosen, i.e., the value of δfrw is decreased (the risk acceptance
zone is narrowed). Thus, at δfrw = δstp = 70, the frequency of accidents per 1000 steps with
400 samples was q = 0.005. When checking the pair (δfrw = 65, δstp = 90), there was not
a single accident in a series of 400 samples of 1000 steps each. It is a strategy, intermediate
between the strategies of moderate risk and moderate risk avoidance.

In the second scenario of the parameter values (with a significantly higher risk of
process emergencies and, in particular “missed targets”), high confidence in AI (h = 1) did
not result in the required minimum of accidents even at minimum values of δfrw and δstp.
So, at δfrw = δstp = 55 the average number of accidents per 1000 steps was 0.11. Successful
completion of the process by the operator was observed at a significantly lower confidence
level of h = 0.40. The maximum allowable pair values of δfrw and δstp in this case were
(δfrw = 60, δstp = 70) and δfrw = δstp = 65. At higher values, there was an excessive frequency
of accidents of 0.065 at (δfrw = 55, δstp = 75), and of 0.105 at (δfrw = 65, δstp = 70).

The frequency of accidents and the integral indicator for different permissible combi-
nations of parameters are set out in Table 2.

Table 2. Accident frequency and integral indicator at b = 10, k = 5, h = 0.40.

δfrw 55 60 65

δstp 55 60 65 70 60 65 70 65

Crsh 0.000 0.010 0.010 0.015 0.015 0.020 0.030 0.020

U1
M 11,293 13,333 14,285 14,628 13,914 15,391 15,955 15,678

S 2436 2082 2202 1893 2182 1693 1648 1880

U2
M 11,293 12,627 13,152 13,151 13,914 14,867 15,017 15,678

S 2436 2186 2452 2169 2182 1781 1832 1880

As appears from the Table, with a low cost of verification, a moderate risk avoidance
strategy is optimal: δfrw = 60, δstp = 70 (Figure 5).

In this scenario, the integral indicator statistically significantly (at p < 0.001) exceeds
the cumulative sums in each of the other scenarios with accident frequency not exceeding
0.05. It is a scenario with a narrow risk acceptance zone and an average width of the
uncertainty zone (an average level of “apprehension” and a high level of “doubt”).
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Figure 5. Integral indicator U1 at different values of δfrw and δstp.

With growing verification cost, the optimal frequency of verification predictably
decreases, i.e., as here, the zone of uncertainty becomes narrower or disappears altogether.
The optimal solution is (δfrw = δstp = 65), which provides a significantly higher U2 than
each of the other reviewed scenarios (p < 0.001) (Figure 6).
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6. Discussion

As expected, the model predicts a pronounced dependence of the effectiveness of a
particular operator’s strategy on the process dynamics (frequency of accident threats) and
the characteristics of AI signals (frequency of “missed targets”). The optimal strategies
under certain conditions were relatively pure strategies of moderate risk avoidance (with
a high level of “doubt” and an average or low level of “apprehension”) and extreme risk
avoidance (with high levels of both parameters).

The strategy of moderate risk avoidance (low δfrw and medium δstp) proved to be optimal
with a relatively high frequency of threats of accidents, the presence of AI “missed targets”,
inaccurate subjective assessment of the process state by the operator, a not-too-high cost
of gathering additional information and pretty low safety level requirements (when maxi-
mum permissible probability of an accident was q = 0.05 per 1000 steps). The strategy of



Mathematics 2023, 11, 4956 13 of 15

extreme risk avoidance (low values of both δfrw and δstp) becomes optimal with higher safety
requirements, i.e., when the value q goes down (e.g., to q = 0.01).

The strategy of extreme risk with low levels of both “apprehension” and “doubt” (high
values of δfrw and δstp) in its pure form did not turn out to be optimal for any of the tested
parameters. An intermediate strategy between extreme risk and moderate risk strategies with
a low level of “apprehension” (high values of δstp) and a slightly higher level of “doubt”
(lower value of δfrw) proved to be optimal in case of a rare threat of accidents, absence of
AI “missed targets”, high accuracy of subjective assessment of the state of the process by
the operator and low requirements to the safety level (q = 0.05). As safety requirements
increase, a more cautious strategy, intermediate between moderate risk and moderate risk
avoidance strategies becomes optimal.

Thus, the model predicts that the optimal level of operator trait anxiety with respect
to each of the two parameters identified by us is different depending on the dynamics and
capacity of the simulated process and existence/absence of AI “missed targets”. At the
same time, some studies have shown that there is an individual level of anxiety that ensures
top performance by an individual, in particular highest achievements in sports [41]. It can
be assumed that the highest efficiency would be achieved by an operator when this level is
adequate to the process dynamics and the specific features of the AI recommendations.

The described model represents a simple random dynamic process at risk of a critical
regime violation. It is assumed that the AI sometimes signals to a human operator that
such a deviation is approaching and recommends stopping the process. According to the
model, the operator accepts/checks/rejects AI advice in accordance with the values of
two key characteristics of anxiety. It is shown that for different process parameters and AI
algorithms, the effectiveness of decision-making strategies varies significantly. This result
is a necessary, but insufficient premise for transferring such an approach to an operator’s
training to effectively manage the industrial process with AI assistance.

The next stage of the experiment will involve human subjects to decide how to use AI
advice in dangerous situations based on their individual decision-making strategies. The
anxiety parameters and, consequently, the subjects’ strategies, will be evaluated according
to whether real decision-making points belong to “risk acceptance”, “uncertainty” or
“excessive risk” zones. The limitations of this approach relate to the stability of strategies
and their adaptability through special training when conditions change. This training
could be implemented using computer-based simulators, based on high-fidelity process
modeling, and providing a high-level psychological similarity of the operator’s activity in
the training and at the workplace [20]. Such simulators already include intelligent process
control systems, for example, based on predictive models [21]. The value of the proposed
model also lies in the fact that it can be used to adapt AI algorithms to the individual
characteristics of operators’ anxiety (choosing the necessary level of transparency and
explainability of AI advice), which is also vitally important for increasing operator’s trust
in artificial intelligence.

7. Conclusions

There is no alternative to artificial intelligence in an increasingly wide range of tasks,
including industrial automation. AI tools affecting the safety of people, production assets
and infrastructure are proactively introduced. Operator reluctance to use AI is largely
driven by an insufficient level of trust in AI, which cannot be improved unless subjective
factors and individual psychological profiles are considered.

Our simulation experiment validated the hypothesis that the degree of operator’s
success may depend on various combinations of parameters of admissible probability of
disaster and the subjectively necessary reliability of its assessment. These findings unlock
opportunities for future research going beyond the mathematical modeling of decision-
making per se. Thus, the proposed model can be used in a psychological experiment to
determine the propensity of operators to a particular strategy. It would make it possible to
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trace possible changes in the strategy of operators based on their work with the simulation
model under different human–machine system conditions.

The findings also open up prospects for the development and reinforcement of op-
erator AI system skills through training and re-training on the basis of proven computer
simulators, including a high-fidelity model of a technological system (an actual process fa-
cility and a control system) and an advice-generating AI algorithm. Based on a field-proven
decision-making simulation model, such training could consider individual operators’
personality traits to identify preferred strategies, the level of required information support
(awareness of AI advice generation mechanisms and accuracy boundaries, and the conse-
quences of their acceptance or rejection), the format of offered advice, the level of detail,
explanation and justification. All the above would enhance operators’ trust in AI systems,
ensure their mutual adaptation and harmonization of human–machine interaction.
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