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Abstract: In the Unmanned Aerial Vehicle (UAV) system, finding a flight planning path with low
cost and fast search speed is an important problem. However, in the complex three-dimensional
(3D) flight environment, the planning effect of many algorithms is not ideal. In order to improve its
performance, this paper proposes a UAV path planning algorithm based on improved Harris Hawks
Optimization (HHO). A 3D mission space model and a flight path cost function are first established
to transform the path planning problem into a multidimensional function optimization problem.
HHO is then improved for path planning, where the Cauchy mutation strategy and adaptive weight
are introduced in the exploration process in order to increase the population diversity, expand the
search space and improve the search ability. In addition, in order to reduce the possibility of falling
into local extremum, the Sine-cosine Algorithm (SCA) is used and its oscillation characteristics are
considered to gradually converge to the optimal solution. The simulation results show that the
proposed algorithm has high optimization accuracy, convergence speed and robustness, and it can
generate a more optimized path planning result for UAVs.

Keywords: flight path planning; Harris Hawks optimization; Cauchy mutation strategy; adaptive
weight; sine-cosine algorithm; unmanned aerial vehicle system

1. Introduction

With the rapid development of the communication technology, sensors, artificial
intelligence and 5G technology, the Unmanned Aerial Vehicle (UAV) plays a crucial role
in modern military war [1]. UAV path planning is a key problem in UAV systems [2],
and the quality of UAV path directly determines the success or failure of combat missions.
Therefore, it is of great significance to study UAV path planning algorithms in complex
combat environment.

Many experts and researchers have performed in-depth studies on UAV path planning.
According to the dimension of the planning space, it is mainly divided into two-dimensional
(2D) [3] and three-dimensional (3D) path planning [4]. The developed model for 3D path
planning is stereoscopic, and considers topography and threat factors, which is closer to
the actual environment. However, it increases the complexity of path planning. The UAV
3D path planning algorithms mainly include classical algorithms and swarm intelligence
algorithms [5]. The classical algorithms include the A-Star algorithm [6], Differential
Evolution (DE) [7], Dijkstra algorithm [8] and simulated annealing [9]. Although these
algorithms have their own advantages, they all have some disadvantages, such as the long
search time and large memory consumption. The swarm intelligence algorithm [10] forms
a self-organizing and adaptive stochastic optimization algorithm with bionic behavior by
observing the living habits, foraging behaviors and social characteristics of the biological
populations. Common swarm intelligence algorithms for path planning include the Particle
Swarm Optimization (PSO) [11], Firefly Algorithm (FA) [12], Ant Colony optimization
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(ACO) [13], Artificial Bee Colony (ABC) algorithm [14] and Whale Optimization Algorithm
(WOA) [15]. The swarm intelligence algorithm has become the most widely studied
approach in the UAV path planning field, due to its better robustness, flexibility and high
search accuracy.

Ji et al. [16] propose a new double-dynamic biogeography-based learning particle
swarm optimization that use the double-dynamic biogeography-based learning strategy
replacing the traditional learning mechanism from the personal and global best particles to
select the learning particles in order to learn from better objects and maintain the ability
of jumping out of local optimality. He et al. [17] propose a novel hybrid algorithm called
HIPSO-MSOS by combining improved particle swarm optimization (IPSO) and modified
symbiotic organisms search (MSOS) and adopt the time stamp segmentation (TSS) model to
simplify the handling of coordination cost of UAVs. The exploration and exploitation abili-
ties are improved efficiently, which brings good performance to the proposed algorithm.
Xia et al. [18] propose a novel multi-objective PSO algorithm (GMOPSO-QL) that adopt
the Gaussian distribution-based updating operator to generate new particles, introduce
the exploration and exploitation modes to enhance population diversity and convergence
speed, respectively and introduce the Q-Learning based mode selection logic to balance the
global search with the local search in the evolution process. Yu et al. [19] propose a sparrow
PSO algorithm that selects a suitable model for path initialization, changes the discoverer
position update and reinforces the influence of start-end line on path search, which can
significantly reduce blind search and increase the number of target points reached by
adaptive variable speed escapes in areas of deadlock. Liu et al. [20] propose an optimal
mission assignment and path planning method of multi-UAV for disaster rescue which
build three threat sources and a cost-revenue function, then design an adaptive genetic
algorithm (AGA) to solve the mission allocation task and propose a fitness function which
considers the current and maximum iteration numbers to improve the AGA convergence
performance. Zhang et al. [21] propose an improved adaptive grey wolf optimization
algorithm that propose an adaptive convergence factor adjustment strategy and an adap-
tive weight factor to update the individual’s position, establish the environmental map
model by integrating digital elevation map and equivalent mountain threat model, and
the performance evaluation function is established by fitting the calculated track length.
Liu et al. [22] propose a fusion of Sparrow Search Algorithm (SSA) and Bioinspired Neural
Network that use SSA to find a series of nodes with the lowest comprehensive cost on the
safe surface and when the dynamic obstacle is detected in the predetermined trajectory,
the improved BINN method is used to carry out local path re-planning to achieve the
purpose of dynamic obstacle avoidance. Tong et al. [23] propose an improved method of
path planning and autonomous formation for UAVs that devise the mathematical model
for UAV path planning as a multi-objective optimization with three indices and develop the
method integrated by pigeon-inspired optimization and mutation strategies of differential
evolution to optimize feasible paths. Huo et al. [24] propose a hybrid differential symbiotic
organisms search (HDSOS) algorithm that the concept of traction function is put forward
and used to improve the efficiency and a perturbation strategy is adopted to further en-
hance the robustness of the algorithm. Based on the characteristics of the standard BA
and the artificial bee colony algorithm (ABC), Zhou et al. [25] propose a new modification
of the BA algorithm that the improved bat algorithm integrated into the ABC algorithm
and use ABC to modify the BA and solve the problem of poor local search ability of the
BA. However, these swarm intelligence algorithms still have some defects, such as slow
convergence speed, falling easily into local optimal solution, high dependence on excellent
individuals and complex parameter settings.

Harris Hawks Optimization (HHO) is a new swarm intelligence algorithm proposed
by Heidari et al. [26]. This algorithm is inspired by Harris Hawks’ predation behavior, and
includes two stages of search and development. Compared with other swarm intelligence
algorithms, HHO has simpler principle, fewer parameters and stronger global exploration
ability. However, similar to other swarm intelligence algorithms, HHO has slow conver-
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gence speed, low optimization accuracy and it can easily fall into local optimization when
solving complex optimization problems. Therefore, Guo et al. [27] improve HHO using
the good point set and nonlinear convergence equation. Zhang et al. [28] introduce the
exponential decline strategy to update the energy factor. Kamboj et al. [29] propose the
hybrid sine-cosine and HHO to increase the global exploration ability of the algorithm.
Fan et al. [30] combine HHO and the quasi-reflection-based learning mechanism (QRBL)
together in order to improve the convergence speed and solution accuracy. Zou et al. [31]
propose an adaptive relative reflection HHO (ARHHO), which increases the diversity of
the standard HHO, alleviates the problem of stagnation of local optimal solutions, and
improves the search accuracy of the algorithm. Hussien et al. [32] enhance the performance
of HHO by combining HHO with opposition-based learning (OBL), Chaotic Local Search
(CLS) and a self-adaptive technique.

In order to further improve the quality and efficiency of UAV path planning, this study
proposes a path planning algorithm based on Sine-cosine and Cauchy combined HHO
(SCHHO). The Cauchy mutation strategy [33] is used to improve the global exploration
ability, and the adaptive weight [34] is introduced to improve the exploitation capacity of
the proposed algorithm. In order to reduce the possibility of falling into local extremum,
the Sine–cosine Algorithm (SCA) [35] is added, and its oscillation characteristics are used
to gradually converge to the optimal solution. In addition, this study develops a complex
real terrain model, uses terrain and threat information to cut the path planning space, and
introduces the maximum range constraint to reduce the search range, so as to achieve fast
and accurate planning of feasible paths. Since the fixed wing generally needs a runway or
catapult to launch, has no vertical take-off capability, and this UAV system cannot hover,
the UAV in this paper is assumed to be a multi-rotor UAV, and its speed and altitude are
adjusted according to the terrain and nodes.

The remainder of this paper is organized as follows. Section 2 presents the modeling
and constraints of path planning. Section 3 details the proposed UAV path planning
algorithm based on improved HHO. Section 4 shows the experimental results and analysis.
Finally, the conclusion and future work are drawn in Section 5.

2. Modeling and Constraints
2.1. Environmental Modeling

In order to study the UAV path planning problem, it is necessary to develop a model
similar to the real combat environment, that is, a 3D digital map containing reference
terrain, obstacle and threat area information. The terrain is simulated by numerical coding,
and the peaks and valleys are presented in a matrix form. More precisely, the matrix values
represent the terrain elevation under the current coordinate position. Finally, the terrain is
smoothly simulated using the interpolation method.

In the UAV combat environment, many dangerous zones, that are referred to as
threat areas, exist. This study considers the enemy’s radar detection [20] and takes its
detection range as the threat area. The calculation of the radar detection area is expressed
in Equation (1), and the blue hemispherical model (cf. Figure 1) is used to model these
threat areas.

Wi(x, y, z) =

{
∑
i
(x− xi)

2 + (y− yi)
2 + (z− zi)

2 = R2
i

z ≥ 0
(1)

where Wi(x,y,z) represents the detection area of the i-th radar, (xi, yi, zi) is the location of the
radar, and Ri denotes the detection radius of the radar.

Figure 1 is a simulated modeling of the drone’s flight environment, where the blue
hemispheric model represents the modeling of the threat area.
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Figure 1. 3D digital map.

2.2. Path Cost Function

In order to measure the quality of the UAV planned path, it is necessary to establish a
path cost function. The path cost function used in this study is given by:

F =
n

∑
i=1

(ω1li + ω2hi + ω3 fi) (2)

where n is the number of flight path segments, li (i = 1, 2, . . . , n) is the path length of
segment i, hi is the average flight height of segment i, fi is the comprehensive threat index of
segment i, ω1, ω2 and ω3 are the corresponding weight coefficients of path length, average
flight height and comprehensive threat index, respectively.

The comprehensive threat index fi can be calculated as:

fi =

m
∑

j=1
Qij

(Dij)
4 (3)

where m is the number of threat points, Qij (j = 1, 2, . . . , m) represents the threat index of
segment i relative to threat point j which can be collected by the control center, and Dij
represents the distance between the UAV and the threat point j in segment i.

In the calculation of individual fitness, it is necessary to first normalize the values of
each part in the path cost function to avoid the calculation error caused by the order of
magnitude difference of each value.

2.3. Path Constraints

Considering the performance limitations and practical factors, the path planning of
the UAV should meet certain constraints [36].

• Constraint on Minimum Path

The minimum path is defined as the minimum distance that the UAV should keep
steady forward flight before changing the flight attitude. The frequent attitude changes
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during flight affect the stability of the UAV, and even lead to crash. Therefore, frequent
attitude changes should be avoided as much as possible. The constraint is then given by:

li > lmin (4)

where lmin is the length of the shortest path.

• Constraint on Maximum Path

The maximum path is defined as a preset maximum length that the total flight path
length should be less than or equal to, due to the fuel restriction or special mission require-
ments. The constraint is then given by:

n

∑
i=1
|li| ≤ Lmax (5)

where Lmax is the maximum path length

• Constraint on Minimum Ground Clearance

The minimum ground clearance is defined as the minimum flight height that the
UAV should meet during flight to avoid collision with the ground. The constraint is then
given by:

hi ≥ hmin (6)

where hmin is the minimum ground clearance.

• Constraint on Maximum Turning Angle

The maximum turning angle is defined as the maximum range of continuous course
change of the UAV making circular motion in horizontal plane. In a complex environment,
when making large angle turns, the UAV is very vulnerable to wind and other factors.
Therefore, it is necessary to limit its continuous turning angle. The constraint is then
given by:

ϕi < ∆ϕmax (7)

where ∆ϕmax is the maximum turning angle and ϕi (i = 1, 2, . . . , n − 1) is the i-th turn
angle of the UAV.

• Constraint on Maximum Climb Angle

The maximum climb angle is defined as the angle of climb and descent that the UAV
requires to be limited during flight. The constraint is then given by:

|zi − zi−1|
ai

≤ tan θmax (8)

where θmax is the maximum angle of climb for the UAV, |zi − zi−1| is the height difference
of path segment i, and ai is the horizontal projection length of path segment i.

3. UAV Path Planning Algorithm Based on SCHHO
3.1. Overview of Basic HHO

HHO uses a mathematical formula to simulate the strategy of Harris Hawks catching
prey under different mechanisms according to the real situation. In HHO, the Harris Hawk
is the candidate solution, and the prey approaches the optimal solution by iteration. The
HHO algorithm includes two phases: global exploration and local exploitation. HHO
realizes the transition from global exploration to local exploitation through the energy
equation of prey. The corresponding mathematical expression is as given by:

E = 2E0

(
1− t

T

)
(9)
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E0 = 2 ∗ rand− 1 (10)

where E represents the escape energy of prey, E0 denotes the initial state of prey energy, T is
the maximum number of iterations, and rand is a random number within the range of (0,1).

Note that, when |E| ≥ 1, HHO enters the global exploration phase, while when
|E| < 1, it enters the local exploitation phase.

3.1.1. Global Exploration

During the global exploration phase, Harris Hawks inspect and monitor the search
space [lb,ub], and randomly search for prey randomly according to two strategies. The
position is updated with probability q during iteration:

Xt+1 =

{
Xrand − r1|Xrand − 2r2Xt|, q ≥ 0.5(

Xprey,t − Xaverage,t
)
− r3(lb + r4(ub− lb)), q < 0.5

(11)

where Xt+1 and Xt are, respectively, the positions of Harris Hawks in the (t + 1)-th and
t-th iterations; Xprey,t represents the positions of prey in the t-th iteration; r1, r2, r3, r4 and
q are random numbers between 0 and 1; lb and ub are, respectively, the lower and upper
bounds of the search space; Xrand,t represents the random position of Harris Hawks in the
t-th iteration; and Xavergae,t denotes the average position of Harris Hawks with population
N in the t-th iteration:

Xaverage,t =
1
N

N

∑
i=1

Xi,t (12)

3.1.2. Local Exploitation

During the local exploitation phase, Parameter E is used to select the besiege strategy
of the Harris Hawks. When |E| ≥ 0.5, soft besiege is executed, while when |E| < 0.5,
hard besiege is performed. The probability of prey escaping is expressed by the random
parameter u generated during initialization. When u ≥ 0.5, the prey escapes successfully.
According to the chase strategy of Harris Hawks and the escape behavior of prey, HHO
includes four strategies to simulate the chase attack behavior.

A. Soft besiege

When |E| ≥ 0.5 and u ≥ 0.5, the escape energy E of prey is sufficient. At this point,
Harris Hawks choose to gradually consume the prey’s energy and then make a surprise
dive in the best position to arrest the prey. The position update strategy is given by:

Xt+1 = ∆Xt − E
∣∣JXprey,t − Xt

∣∣ (13)

∆Xt = Xprey,t − Xt (14)

J = 2(1− r5) (15)

where, ∆Xt is the difference between the position of Harris Hawks and prey during iteration,
J is the random jump of prey when escaping, and r5 is a random number ranging between
0 and 1.

B. Hard besiege

When |E| < 0.5 and u ≥ 0.5, the prey is exhausted and the escape energy E is very
low. At this time, Harris Hawks will quickly raid the prey, and the strategy of position
update is expressed as:

Xt+1 = Xprey,t − E|∆Xt| (16)

C. Soft besiege with progressive rapid dives

When |E| ≥ 0.5 and u < 0.5, the escape energy E of prey is sufficient, and Harris
Hawks will establish a soft besiege before striking. Levy function (LF) [37] is integrated into
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HHO to simulate the jumping action and escape mode of prey. The strategy of updating
position is expressed as:

Xt+1 =

{
Y : Xprey,t − E

∣∣JXprey,t − Xt
∣∣, if F(Y) < F(Xt)

Z : Y + S× LF(D), if F(Z) < F(Xt)
(17)

LF(x) = 0.01× u× σ

|v|
1
β

(18)

σ =

 Γ(1 + β)× sin(πβ
2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

 1
β

(19)

where D is the dimension of the problem and S is a random vector of size 1 × D, u and v
are random values ranging between 0 and 1, and β is a default constant set to 1.5.

D. Hard besiege with progressive rapid dives

When |E| < 0.5 and u < 0.5, the prey’s escape energy E is insufficient, and Harris
Hawks capture the prey by constructing a hard besiege before striking, so as to reduce the
average position distance between it and the escaping prey. The position update strategy is
given by:

Xt+1 =

{
Y : Xprey,t − E

∣∣JXprey,t − Xm,t
∣∣, i f F(Y) < F(Xt)

Z : Y + S× LF(D), i f F(Z) < F(Xt)
(20)

In summary, HHO uses energy E and factor u to regulate the four kinds of hunting
mechanisms between Harris Hawks and prey, so as to perform the optimal solution of
the problem.

3.2. Improved Sine-Cosine and Cauchy Combined HHO

Since the traditional HHO has some defects in its structure, the search process is prone
to fall into local optimum and it has a low convergence accuracy. Therefore, the Cauchy
mutation strategy, adaptive weight and SCA function are added, so as to increase the
diversity of Harris Hawk population, improve the search speed and enhance the search
ability of the HHO algorithm.

3.2.1. Cauchy Mutation Strategy

In the global exploration stage, the Cauchy distribution function is used to increase
the diversity of Harris Hawk population, increase the search space and improve the global
exploration ability of the algorithm. Combined with Cauchy operator, the mutation effect
at both ends of the Cauchy distribution function is fully used in order to optimize the global
optimal object. The standard the Cauchy distribution function is expressed as:

f (x) =
1
π

(
1

x2 + 1

)
(21)

Since the peak value of Cauchy function is relatively small, Harris Hawks will search
a more global optimal value after Cauchy mutation, and use less time to explore local
interval. In addition, since the Cauchy function gently declines from the peak to the
sides, after updating the position by Cauchy variation, the Harris Hawk becomes less
constrained by the local extreme point, and it can jump out of the local extreme point.
Using the mathematical model of Cauchy variation, the current global optimal solution
Xbest is updated as:

X′best = Xbest + Xbest × Cauchy(0, 1) (22)

3.2.2. Adaptive Weight

In the local exploitation stage, an adaptive weight method is introduced to update
the neighborhood of prey location, so as to improve the local exploitation ability. In this
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study, the adaptive weight set belongs to an inertial weighting factor. When the inertial
weighting factor is large, the algorithm spends more time on global exploration. When
the inertia weighting factor is small, the local exploitation time is relatively long, and the
optimal solution can be better determined.

The adaptive weight ω and prey position update are expressed as:

ω = sin
(

π × t
2T

+ π

)
+ 1 (23)

X′prey = ω× Xprey (24)

where T is the maximum number of iterations, and t is the current number of iterations.
In the four besiege mechanisms, the position of prey is updated with smaller adaptive

weight, in order to improve the local optimization ability of the proposed algorithm.

3.2.3. Sine-Cosine Algorithm

In the process of Harris Hawk predation, the location of prey plays a crucial role,
which affects the forward direction of the entire Harris Hawk population. However,
when the prey searched by Harris Hawks is located in the local optimal position, a large
number of followers will flock to this position. At this time, the discoverer and the whole
population will stagnate, which results in the loss of population location diversity, and then
the possibility of falling into the local extreme value is increased. To solve this problem,
this study introduces the SCA in the location update of HHO. SCA consists in using the
oscillation characteristics of sine and cosine function to gradually converge to the optimal
solution, so as to obtain the overall optimal value.

SCA divides the optimization process into two stages: exploration and exploitation.
The global optimal solution is approached continuously approached through these two
stages. The position update equations of the two stages of SCA are given by:

xt+1
i,j = xt

i,j + r6 × sin(r7)×
∣∣∣r8 · xbest − xt

i,j

∣∣∣, r9 < 0.5 (25)

xt+1
i,j = xt

i,j + r6 × cos(r7)×
∣∣∣r8 · xbest − xt

i,j

∣∣∣, r9 ≥ 0.5 (26)

where, xbest is the global extremum on the i-dimension of the t-th iteration, xt
i,j is the position

of the j-th solution on the i-dimension of the t-th iteration, r7 is a random number in the
range [0, 2π], r8 is a random number in the range [−2, 2], r9 is a random number in the
range [0, 1] and r6 is a linearly decreasing function expressed as:

r6 = a− t
a
T

(27)

where, t is the current iteration number, T is the maximum number of iterations and a is a
constant, usually equal to 2.

According to Equations (25) and (26), SCA mainly includes four parameters: r6, r7, r8,
and r9. r6 determines the direction in which Harris Hawks will move next and controls
the transformation from exploration stage to exploitation stage. r7 determines how far
Harris Hawks travel. r8 enhances or weakens the influence of the move direction. r9 makes
Equations (25) and (26) randomly switch when the position is updated.

Based on these procedures and analyses, the pseudo-code of SCHHO is presented in
Algorithm 1.
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Algorithm 1 SCHHO

Inputs: Population size N and maximum number of iterations T
Outputs: Location of prey and its value of fitness
Initialize the random population Xi (i = 1; 2; . . . ; N)
While (t < T)

Calculate the fitness value of Harris hawks;
Set the parameter Xprey as the best position of the prey;
for (each Harris hawks (Xi)) do
Update the initial energy E0 and jump strength J using Equations (10) and (15);
Update E using Equation (9);
if (|E| ≥ 1) then // Exploration phase
Update the location vector using Equations (11) and (22);
if (|E| < 1) then // Exploitation phase
if (u ≥ 0.5 and |E| ≥ 0.5) then // Soft besiege
Update the location vector using Equation (13);
if (u ≥ 0.5 and |E| < 0.5) then // Hard besiege
Update the location vector using Equation (16);

if (u < 0.5 and |E| ≥ 0.5) then // Soft besiege with progressive rapid dives
Update the location vector using Equation (17);

if (u < 0.5 and |E| < 0.5) then // Hard besiege with progressive rapid dives
Update the location vector using Equation (20);
end
Update the location vector using Equation (24);
end
end

end
Initialize the starting position of the search agents using the final position obtained by the Harris
Hawks optimizer;
Do

Evaluate each of the search agents using objective functions;
Update the best fitness obtained so far;
Update the random numbers r6, r7, r8 and r9;

if (r9 < 0.5)
Update the position of search agents using Equation (25);
else
Update the position of search agents using Equation (26);

end
While (t < T)
Return the best optimal solution;

Record the mean, best optimal solution and standard deviation.

3.3. Path Planning Based on Improved SCHHO

The flowchart of the proposed path planning algorithm based on SCHHO are shown
in Figure 2, respectively.

The implementation steps of the proposed path planning algorithm based on SCHHO
are summarized as follows.

Step 1: preliminary modeling of a three-dimensional mountain environment.
Step 2: initialize the population and parameters r1, r2, r3 and r4, and calculate the fitness
value of each solution.
Step 3: calculate the prey energy according to Equation (10). If |E| < 1, perform an
exploration according to Equation (11) and perform Cauchy variation according to Equation
(22) for the global optimal solution produced by Equation (11). If |E| ≥ 1, enter local
exploitation and judge the besiege mechanisms according to the prey energy E and the
prey escape probability u. In addition, update the prey position and perform local search
according to the adaptive weight of Equation (24) and the corresponding besiege formula;
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Step 4: save the optimal position, perform SCA operation on the position according to
Equations (25) and (26), and then change the global optimal position;
Step 5: determine whether the number of iterations or iteration precision has been reached.
If the number of iterations or iteration precision is not reached, the population and parame-
ters are re-initialized, and the fitness value of each solution is calculated. If it is reached,
the optimal path is output.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 24 
 

 

Start

Initialize of random location of the search agent

|E| < 1？

Update the position 
using Equation (11)

Cauchy variation is 
performed for the global 

optimal solution 
according to Equation 

(22)

Initialize the input parameters of Harris Hawks Optimization and 
Sine-Cosine Algorithm, i.e. search agents, T etc.

Update the generated random vector r6, r7, r8, r9

r9   0.5？

Output the best path

End

Yes

No

t = 1

Evaluation of the search agent which are generated randomly using the 
objective function and determine the optimal solution

Update E0 and J using Equation (10) and Equation (15)

Update E using Equation (9) 

YesNo

|E| < 0.5？

u < 0.5？ u < 0.5？

Update the 
position using 
Equation (13)

Update the 
position using 
Equation (17)

Update the 
position using 
Equation (16)

Update the 
position using 
Equation (20)

Yes YesNo No

YesNo

Introduce the adaptive weight using Equation (24)

Calculation of the upgraded 
position of the search agents 

from Equation (26)

Calculation of the upgraded 
position of the search agents 

from Equation (25)

Evaluation of the search agent which are 
generated randomly using the objective function 

and determine the optimal solution

t < T？

Save the best position of each search 
agents and the optimal solution

t = t + 1 

Yes

No

 

Figure 2. Flowchart of proposed path planning algorithm. 

The implementation steps of the proposed path planning algorithm based on 

SCHHO are summarized as follows. 

Step 1: preliminary modeling of a three-dimensional mountain environment. 

Step 2: initialize the population and parameters r1, r2, r3 and r4, and calculate the fitness 

value of each solution. 

Step 3: calculate the prey energy according to Equation (10). If |E| < 1, perform an explo-

ration according to Equation (11) and perform Cauchy variation according to Equation 

(22) for the global optimal solution produced by Equation (11). If |E| ≥ 1, enter local ex-

ploitation and judge the besiege mechanisms according to the prey energy E and the prey 

escape probability u. In addition, update the prey position and perform local search ac-

cording to the adaptive weight of Equation (24) and the corresponding besiege formula; 

Step 4: save the optimal position, perform SCA operation on the position according to 

Equations (25) and (26), and then change the global optimal position; 

Step 5: determine whether the number of iterations or iteration precision has been 

reached. If the number of iterations or iteration precision is not reached, the population 

Figure 2. Flowchart of proposed path planning algorithm.

4. Experimental Results and Analysis
4.1. Experiment on Benchmark Functions

In order to analyze the performance of SCHHO, benchmark function tests are per-
formed, and several variations of the same classification algorithms are compared. The
simulation test environment is: operating system Win11, 64-bit operating system, mem-
ory 16 GB, CPU AMD Ryzen 7 5800 H with Radeon Graphics, main frequency 3.20 GHz,
simulation software MATLAB 2018b.
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4.1.1. Parameter Settings

The modeling mission space has a size of 150 km × 100 km × 20 km and contains four
or five threat regions. The coordinates of start point and end point are set as (10,50,5.57) and
(130,10,6.38), respectively. In Section 4.2 below, the improved UAV path planning algorithm
and the comparison algorithm are applied to different threat environments. Among them,
Case 1–Case 3 proves the superiority of SCHHO algorithm in environments with the same
terrain but different threat radius. Case 4 is set up to demonstrate the superiority of the
improved algorithm in other different terrain and threat environments. The threat area
information of four cases to be tested is presented in Table 1. In order to reflect the fairness
and objectivity of the experiment, the population size N of all the algorithms is set to 30,
the number of iterations T is set to 200, and the common parameters of the five algorithms
are consistent. The initial parameters of SCHHO are presented in Table 2.

Table 1. The threat information of Case 1–4.

Name Coordinates Radius

threat region 1 (40,80,0) 10/13/16

threat region 2 (60,30,0) 10/13/16

threat region 3 (70,60,0) 10/13/16

threat region 4 (100,30,0) 10/13/16

threat region 5 (30,60,0) 13

threat region 6 (50,35,0) 13

threat region 7 (90,25,0) 10

threat region 8 (110,50,0) 16

Table 2. Initial parameter of SCHHO.

Parameter Meaning Value

ω1 Weight coefficient of path length 0.5

ω2 Weight coefficient of average flight height 0.3

ω3 Weight coefficient of comprehensive threat index 0.2

T Maximum iteration 200

N Population size 30

D Problem dimension 30

lmin Minimum path 130

Lmax Maximum path 200

hmin Minimum Ground clearance 5

∆ϕmax Maximum turning angle 270

θmax Maximum climb angle 90

4.1.2. Results and Analysis

Using benchmark functions with different properties is a common approach for the
evaluation of the stochastic optimization algorithms. It can ensure that the results obtained
by the algorithm are not accidental [36]. Following this fact, several benchmark functions
are introduced to verify the validity of the proposed SCHHO method, including unimodal
and multimodal benchmark functions [29,37], that are presented in Table 3. In addition,
SCHHO is compared with the standard HHO, PSO, SCA and WOA, considering the case
of function dimension n of 30 and 50. The parameter settings of these algorithms are the
same, in order to make a fair comparison in the experimental test.
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Table 3. Six benchmark functions.

Name Definition Domain Minimum

Sphere f1(x) =
D
∑

i=1
x2

i
[−100, 100] 0

Schwefel 1.2 f2(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2

[−100, 100] 0

Rosenbrock f3(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−100, 100] 0

Rastrigin f4(x) =
D
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12] 0

Ackley f5(x) = 20− 20 exp

(
− 1

5

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ e [−32, 32] 0

Griewank f6(x) =
n
∑

i=1

x2
i

4000 −
n
∏
i=1

cos( xi√
i
) + 1 [−100, 100] 0

In all the cases, 30-times independent experiments are performed on each benchmark
function, and the best value, mean value and standard deviation (Std.) of the objective
function values are obtained. With the same benchmark function, the best value, mean value
and standard deviation denote the exploration ability, convergence accuracy and stability
of the algorithm, respectively. The experimental results are shown in Figures 3 and 4.

It can be seen from Figures 3 and 4 that, after running the five algorithms for 30 times,
the best value and mean value obtained by the improved SCHHO are better than those
obtained by HHO, PSO, SCA and WOA, for all the six functions. In other words, the
convergence accuracy of SCHHO is the highest on the whole. Simultaneously, the standard
deviation of the results obtained by SCHHO is smaller than that of the other algorithms,
which indicates that SCHHO has a better robustness and the optimal solution is more stable.
In summary, the proposed SCHHO improves the exploration and exploitation capacities of
the algorithm using the Cauchy mutation strategy and adaptive weight. Thus, it overcomes
the problem of low optimization accuracy of the HHO algorithm, greatly improves the
optimization performance, and has obvious competitive advantages compared with other
existing algorithms.

In order to intuitively show the optimization performance of SCHHO, the convergence
curves of the six benchmark functions for n = 30 and n = 50 are shown in Figures A1 and A2
in the Appendix A respectively.

It can be seen that the optimization ability of SCHHO is significantly higher than that
of PSO, HHO, SCA and WOA, and in the convergence curve of Rosenbroc test function,
the convergence speed of SCHHO is obviously higher than that of other algorithms. In the
iterative process, multiple inflection points exist in SCHHO. It is proved that due to the
introduction of SCA, the improved SCHHO gradually converges to the optimal solution
using the oscillation characteristics of the sine and cosine functions, efficiently reduces the
possibility of falling into local extreme value, and has a better global optimization effect.
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4.2. Experiment for Path Planning

Simulation experiments are also performed to evaluate the ability of SCHHO in solving
the 3D path planning problem of UAV. Four other algorithms are applied in path planning
for comparison: HHO, PSO, SCA and WOA. In all the experiments, the parameters of these
algorithms are set according to their original version. For fair comparison, the maximum
iteration number of all the algorithms is set to 200, while the population size is set to 30.
Considering the randomness of heuristic algorithms, each tested algorithm is independently
executed 30 times.

In order to prove the path planning performance in different environments, all the
algorithms are applied in four cases. Cases 1–3 are tested for the same threat location but
different threat radius. In Cases 1–3, threat regions 1–4 are the active threat areas and threat
regions 5–8 are the non-active threat areas. Case 4 is tested for another different terrain and
threat environments where threat region 3 and threat regions 5–8 are active threat areas
and threat regions 1, 2 and 4 are non-active threat areas. In threat region 3 of Case 4, the
radius is 16 km. The threat information of Cases 1–4 has been shown in Table 1.

Figure 5 presents the 2D contour map, and Figure 6 shows the 3D simulation map of
UAV path planning. The UAV starts from the start point and moves forward at a low flying
altitude when it is low-lying. When it encounters a steep slope or threat area, it can climb
up in accordance with the terrain. After crossing the peak or threat area, it still approaches
the target point at a low flying altitude in the valley. The feasibility and efficiency of the
proposed algorithm in solving the 3D path planning of UAV are verified. Figure 7 shows
the statistical results of cost function values of five algorithms. Figure 8 shows a comparison
of the evolution curves of the cost function values for the five algorithms in Case 1 and
Case 2, Case 3 and Case 4.

It can be seen from Figures 5 and 6 that among all the five algorithms, SCHHO can find
the best path for UAV. It can be seen from Figure 7 that SCHHO has the best performance
in terms of the best cost value and mean cost value. In Case 1 to Case 4, the mean
value of the improved SCHHO algorithm is 1.06–3.61% higher than that of the basic HHO
algorithm, and 3.28–12.01% higher than that of the other three basic algorithms. Meanwhile,
the standard deviations of SCHHO algorithm are lower than those of other comparison
algorithms. This demonstrates that SCHHO outperforms the other four algorithms in terms
of searching ability and stability. It can be seen from Figure 8 that the convergence speed
of the SCHHO algorithm performs well in four cases, which is better than most of the
other algorithms in this paper. And the greater the threat range, the more prominent the
performance of the SCHHO algorithm. In different terrains, the superiority of SCHHO
also exists.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 24 
 

 

introduction of SCA, the improved SCHHO gradually converges to the optimal solution 

using the oscillation characteristics of the sine and cosine functions, efficiently reduces the 

possibility of falling into local extreme value, and has a better global optimization effect. 

4.2. Experiment for Path Planning 

Simulation experiments are also performed to evaluate the ability of SCHHO in solv-

ing the 3D path planning problem of UAV. Four other algorithms are applied in path 

planning for comparison: HHO, PSO, SCA and WOA. In all the experiments, the param-

eters of these algorithms are set according to their original version. For fair comparison, 

the maximum iteration number of all the algorithms is set to 200, while the population 

size is set to 30. Considering the randomness of heuristic algorithms, each tested algorithm 

is independently executed 30 times. 

In order to prove the path planning performance in different environments, all the 

algorithms are applied in four cases. Cases 1–3 are tested for the same threat location but 

different threat radius. In Cases 1–3, threat regions 1–4 are the active threat areas and 

threat regions 5–8 are the non-active threat areas. Case 4 is tested for another different 

terrain and threat environments where threat region 3 and threat regions 5–8 are active 

threat areas and threat regions 1, 2 and 4 are non-active threat areas. In threat region 3 of 

Case 4, the radius is 16 km. The threat information of Cases 1–4 has been shown in Table 1. 

Figure 5 presents the 2D contour map, and Figure 6 shows the 3D simulation map of 

UAV path planning. The UAV starts from the start point and moves forward at a low 

flying altitude when it is low-lying. When it encounters a steep slope or threat area, it can 

climb up in accordance with the terrain. After crossing the peak or threat area, it still ap-

proaches the target point at a low flying altitude in the valley. The feasibility and efficiency 

of the proposed algorithm in solving the 3D path planning of UAV are verified. Figure 7 

shows the statistical results of cost function values of five algorithms. Figure 8 shows a 

comparison of the evolution curves of the cost function values for the five algorithms in 

Case 1 and Case 2, Case 3 and Case 4. 

  

(a)  (b)  

Figure 5. Cont.



Sensors 2022, 22, 5232 16 of 24
Sensors 2022, 22, x FOR PEER REVIEW 16 of 24 
 

 

  
(c)  (d)  

Figure 5. Path planning results in 2D contour map. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. 

 
 

(a) (b) 

  
(c) (d)  

Figure 6. Path planning results in 3D simulation map. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. 

Figure 5. Path planning results in 2D contour map. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 24 
 

 

  
(c)  (d)  

Figure 5. Path planning results in 2D contour map. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. 

 
 

(a) (b) 

  
(c) (d)  

Figure 6. Path planning results in 3D simulation map. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. Figure 6. Path planning results in 3D simulation map. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.



Sensors 2022, 22, 5232 17 of 24

Figure 7. Statistical results of cost function values. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.
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In order to compare the execution efficiency of the five algorithms, take Case 1 as a
representative to analyze the memory consumption (unit: MB) and execution time (unit: s)
of the above five algorithms, as shown in Figure 9.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 24 
 

 

  
(c)  (d)  

Figure 8. Evolution curves of cost function values. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. 

It can be seen from Figure 5 and Figure 6 that among all the five algorithms, SCHHO 

can find the best path for UAV. It can be seen from Figure 7 that SCHHO has the best 

performance in terms of the best cost value and mean cost value. In Case 1 to Case 4, the 

mean value of the improved SCHHO algorithm is 1.06–3.61% higher than that of the basic 

HHO algorithm, and 3.28–12.01% higher than that of the other three basic algorithms. 

Meanwhile, the standard deviations of SCHHO algorithm are lower than those of other 

comparison algorithms. This demonstrates that SCHHO outperforms the other four algo-

rithms in terms of searching ability and stability. It can be seen from Figure 8 that the 

convergence speed of the SCHHO algorithm performs well in four cases, which is better 

than most of the other algorithms in this paper. And the greater the threat range, the more 

prominent the performance of the SCHHO algorithm. In different terrains, the superiority 

of SCHHO also exists. 

In order to compare the execution efficiency of the five algorithms, take Case 1 as a 

representative to analyze the memory consumption (unit: MB) and execution time (unit: 

s) of the above five algorithms, as shown in Figure 9. 

  

(a)  (b)  

Figure 9. Memory consumption and execution time comparison. (a) memory consumption. (b) 

execution time. 
Figure 9. Memory consumption and execution time comparison. (a) memory consumption. (b) exe-
cution time.

From Figure 9, it can be seen that the memory consumption of the five algorithms is
similar, and SCHHO is slightly better. The SCHHO algorithm runs 4.42–22.2% faster than
other algorithms.

Figure 10 compares the optimal path length and average path length of 100 simulation
experiments of the five algorithms in Case 1, Case 2, Case 3 and Case 4. It can be seen that
the path planning ability of SCHHO algorithm is better. Among them, the optimal path
length of SCHHO is 0.95–10.8% lower than other algorithms, and the average path length
is 1.08–11.54% lower than other algorithms. (Unit: km).
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Figure 10. Path length comparison of five algorithms. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

The 3D UAV path planning on this complex optimization problem is that the Cauchy
distribution function increases the diversity of Harris Hawks population, increases the
search space, enhances the global exploration ability of the proposed algorithm, and
improves the convergence speed. Simultaneously, an adaptive weight method is introduced
to update the neighborhood of prey location and improve the exploitation capacity of the
proposed algorithm. In addition, the SCA algorithm improves the convergence ability of
the proposed algorithm through its oscillation characteristics. Therefore, the proposed
algorithm has good exploration and utilization ability, and it is more competitive in the
advantages and stability of optimization objectives, which allows to find the optimal flight
path of the UAV.

Generally speaking, maintaining a higher altitude implies an increase in energy con-
sumption. It is assumed that the energy consumption is proportional to the flight altitude,
this paper analyzes the energy consumption of five paths under four cases by comparing
the Average altitude.

It can be seen from Figure 11 that the average height of SCHHO in different environ-
ments has little difference with the other four algorithms and in Case 2 and Case 3, the
average flight altitude of SCHHO is slightly higher than that of other algorithms. Combined
with the comparison of the average path length of the five algorithms in Figure 10, it can be
inferred that the energy consumption of the five algorithms is similar.
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5. Conclusions and Future Work

In this paper, a UAV path planning algorithm based on improved HHO is proposed.
A 3D mission space model and flight path cost function are first developed to transform the
path planning problem into a multidimensional function optimization problem. HHO is
then improved for path planning. In the global exploration stage, the Cauchy distribution
function is used to increase the diversity of Harris Hawks population, increase the search
space and improve the global exploration ability of the algorithm. In the local exploitation
stage, an adaptive weight method is introduced to update the neighborhood of prey
location, so as to improve the local exploitation ability. In addition, in order to reduce the
possibility of falling into local extremum, SCA is used to gradually converge to the optimal
solution. In the experimental results, the standard deviation of the path length planned by
SCHHO algorithm is 1.08–11.54% lower than other algorithms, and the average path length
is 0.95–10.8% lower than other algorithms, indicating that SCHHO’s path planning ability
and stability are higher than other algorithms. In addition, the improved SCHHO algorithm
runs 4.42–20.7% faster than other algorithms. The obtained results demonstrate that the
proposed algorithm has certain advantages in dealing with path planning problems in 3D
mountain environments with multiple threat ranges. Many challenges remain in future
work, such as dynamic barriers and unknown interference. Thus, multi-UAV mission
assignment and path planning issues with dynamic threats will continue to be focus on.
Moreover, it would be meaningful to constantly improve the equipment and facilities, and
strive to apply the research results in the actual environment.
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