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Abstract: Path planning is one of the key issues in the research of unmanned aerial vehicle technol-
ogy. Its purpose is to find the best path between the starting point and the destination. Although
there are many research recommendations on UAV path planning in the literature, there is a lack
of path optimization methods that consider both the complex flight environment and the perfor-
mance constraints of the UAV itself. We propose an enhanced version of the Chimp Optimization
Algorithm (TRS-ChOA) to solve the UAV path planning problem in a 3D environment. Firstly, we
combine the differential mutation operator to enhance the search capability of the algorithm and
prevent premature convergence. Secondly, we use improved reverse learning to expand the search
range of the algorithm, effectively preventing the algorithm from missing high-quality solutions.
Finally, we propose a similarity preference weight to prevent individuals from over-assimilation and
enhance the algorithm’s ability to escape local optima. Through testing on 13 benchmark functions
and 29 CEC2017 complex functions, TRS-ChOA demonstrates superior optimization capability and
robustness compared to other algorithms. We apply TRS-ChOA along with five well-known algo-
rithms to solve path planning problems in three 3D environments. The experimental results reveal
that TRS-ChOA reduces the average path length/fitness value by 23.4%/65.0%, 8.6%/81.0%, and
16.3%/41.7% compared to other algorithms in the three environments, respectively. This indicates
that the flight paths planned by TRS-ChOA are more cost-effective, smoother, and safer.

Keywords: path planning; UAV; chimp optimization algorithm; 3D environment

1. Introduction

With the continuous progress of technology, more and more automated machines
appear in the daily lives of individuals, bringing many conveniences. Unmanned aerial ve-
hicles (UAVs) are the products of a deep integration of aviation technology and information
technology (IT) [1] and are also a representative of high automation equipment. Since the
earliest UAV was developed and applied in the military field, people have gradually real-
ized that this technology will have a significant impact on the economy and development of
human society in the future. Today, UAVs equipped with various small intelligent sensors
have been widely popularized and used [2]. They assist or replace people in completing
various tasks and have become an important means for obtaining spatial data [3]. Path
planning is always a key issue in the research of UAV technology. Its main goal is to
generate a flight path that connects the initial state and the target state while satisfying
the required constraints [4]. In reality, the environmental model containing a variety of
landforms and other obstacles is very complex, which not only increases the diversity of
UAV flight paths but also increases the computational cost of path planning. Obstacles
may divide the flight environment into multiple spaces, and path planning under such
conditions is a non-convex problem because the search space has a larger scope and there
may be multiple extreme points, making it very difficult to find the optimal path [5].

In the past, dynamic planning [6] and geometric algorithms were commonly used to
plan flight paths for UAVs, such as the Measurement Assisted Dynamic Planning (MAD-P)
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algorithm [7], which measures UAV throughput in real-time through the network and
completes autonomous allocation of positions during flight. This method converts the
path planning problem into a numerical cost minimization problem, which facilitates
subsequent solutions and calculations. However, it ignores many constraints in the actual
flight process of the UAV, such as terrain, altitude, etc., resulting in certain differences
between the experimental results and the actual cost. Geometric algorithms rely heavily on
cost graphs [8], which increase the time cost of the algorithm. When dealing with complex
problems, it is difficult to meet requirements of efficiency. In addition, researchers have
proposed methods such as the A-star planner, the Theta-star planner, the Dijkstra planner,
and the Voronoi diagram for the path planning of autonomous vehicles [9–13]. However,
these methods suffer from high computational loads and difficulty generating feasible
paths in complex 3D environments. Kim [14] proposed the use of virtual proxies and virtual
sensors to quickly generate three-dimensional paths to the target point, effectively reducing
the computation load of the path planner. However, the obtained paths are generally
only locally optimal. To address the shortcomings of previous methods, researchers have
proposed the computational intelligence (CI) method [15]. CI uses numerical methods to
simulate and implement human intelligence, which has good adaptive ability and strong
global search ability. In recent years, more and more research has focused on CI methods
for solving UAV path planning problems.

The swarm intelligence optimization algorithm is an important branch of CI that
originated from the study of various insect or animal swarm behaviors. By summarizing
the intelligent characteristics existing in their series of social behaviors, corresponding algo-
rithm models are established. Common swarm intelligence optimization algorithms include
particle swarm optimization (PSO) [16], gray wolf optimization (GWO) [17], cuckoo search
(CS) [18], sparrow search algorithm (SSA) [19], whale optimization algorithm (WOA) [20],
ant lion optimization (ALO) [21], and Tunicate Swarm Algorithm (TSA) [22]. Swarm intelli-
gence algorithms not only have advantages such as simple structure, few parameters, and
no need for gradient information, but also possess self-organizing patterns, which provide
them with good robustness in solving path planning problems. This enables them to adapt
well to dynamic environments, making them highly suitable for optimizing UAV sys-
tems [23]. Roberge et al. [24] used particle swarm optimization algorithms to calculate the
optimal trajectory of UAVs in a three-dimensional environment. Wen et al. [25] proposed a
three-dimensional UAV deployment scheme based on heuristic algorithms to ensure the
connectivity of UAV networks in static and dynamic scenarios. Guan et al. [26] proposed
an algorithm based on double-ant colonies to speed up path planning. Chai et al. [27]
proposed a multi-strategy fusion differential evolution algorithm (MSFDE), which converts
environmental constraints and UAV physical characteristics into targets through a linear
weighted summation method. Zhang et al. [28] proposed an improved Harris-Hawkes
UAV path planning algorithm (HHO) to expand the search space by introducing Cauchy
mutation strategies during exploration. Ji et al. [29] proposed a learning particle swarm
optimization algorithm based on dual-dynamic biogeography (DDBLPSO) for solving
UAV flight paths in large-scale environments. Qu et al. [30] combined the simplified gray
wolf optimizer (SGWO) with modified symbiotic organisms search (MSOS) to improve
the capability of UAV path development. Shin et al. [5] proposed an improved particle
swarm optimization (IPSO) for designing UAV paths in environments containing unknown
threats. Qu et al. [31] proposed a Grey Wolf Optimization Algorithm based on reinforce-
ment learning (RLGWO) to optimize and adjust UAV paths. Yu et al. [32] proposed an
adaptive selection mutation-constrained differential evolution algorithm to solve the path
of UAV rescue in disasters. Jiang et al. [33] proposed an algorithm based on the Partially
Observable Markov Decision Process (POMDP) and Grey Wolf Optimizer (GWO), which
enhances the anti-collision performance of UAVs during flight. Du et al. [34] improved
the Chimp Optimization Algorithm by incorporating the somersault foraging strategy and
applying it to path planning in a grid-based three-dimensional space. However, there
are problems with these methods, such as insufficient consideration of terrain factors and
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computational complexity that exceeds the carrying capacity of the UAV. How to enhance
the global optimization capability of UAVs, replace local path planning, and reduce the
computational complexity of this process is still a topic worth discussing.

Khishe et al. proposed the Chimp Optimization Algorithm (ChOA) in 2020 [35],
inspired by the individual intelligence and sexual motivation of chimps in their group
hunting. ChOA divides individuals in the population into separate groups and assigns
different update strategies to each group, enabling them to play different roles in the “hunt-
ing” process and enhancing the diversity of individuals in the algorithm. Therefore, ChOA
exhibits stronger global search capabilities and robustness. In recent years, ChOA has
been increasingly used by researchers, confirming its outstanding performance in solving
nonlinear, multivariable, and multimodal function optimization problems. Kaur et al. [36]
used the improved ChOA based on sine and cosine functions to solve engineering opti-
mization problems. Hu et al. [37] used ChOA to stabilize extreme learning machines to
improve the reliability of deep networks. Housein et al. [38] proposed an improved ChOA
based on Lévy Flight, which is used for multi-level threshold segmentation of thermal
imaging breast cancer images. In these studies, due to the different constraints and objective
functions of the problem, the improvement strategies proposed by researchers are targeted,
making the algorithm tendentious and no longer applicable to all complex optimization
problems. Path planning for UAVs in a 3D environment is a complex, multi-constraint
combinatorial optimization problem. When carrying out path planning, we should not only
find the shortest path but also consider energy consumption, path safety, and other issues.
Therefore, we must make a reasonable trade-off between multiple objectives. The unique
strategy of ChOA endows it with stronger robustness and global search ability and has
enormous potential for solving path planning problems. Therefore, we propose a ChOA
(TRS-ChOA) that integrates multiple strategies for improvement and uses TRS-ChOA to
solve path planning problems in the 3D environment we constructed.

In summary, the main contributions of this article are as follows:

(1) We established 3D environment models for UAV trajectory planning, covering differ-
ent terrains or buildings such as plains, mountains, hills, and human engineering.

(2) The path length, flight altitude, and angle loss during the flight of UAVs were consid-
ered, which constituted the comprehensive evaluation index of path planning. The
cubic spline interpolation method is used to smooth the trajectory of UAVs to solve
the problem of low accuracy of interpolation points in B-spline curves [39].

(3) TRS-ChOA: To solve the 3D UAV path planning problem, we propose an enhanced
version of the original ChOA based on differential evolution, improved reverse learn-
ing, and similarity preference weights.

(4) The optimization performance of TRS-ChOA is verified by the benchmark test function
and the CEC2017 complex test function.

(5) Several well-known meta-heuristic methods are compared with the proposed TRS-
ChOA in different 3D environments.

The rest of this article is organized as follows: In Section 2, we built the 3D environment
required for the experiment. Section 3 introduces the basic ChOA. Section 4 puts forward
three strategies to improve ChOA. In Section 5, the optimization performance of TRS-ChOA
is verified by the test function. In Section 6, TRS-ChOA and a variety of algorithms are
tested in a UAV trajectory planning model.

2. UAV Path Planning Problem Model
2.1. Background

In recent years, UAVs have shown great potential for autonomous sensing [40]. UAV
systems have been widely used to map, monitor, search, and track target individuals or
areas. Compared to manned aircraft, UAVs can more efficiently perform repetitive and
dangerous tasks, such as delivering supplies to disaster areas, exploring unknown areas,
and so on. UAVs often face complex, three-dimensional environments when performing
tasks. How to plan a UAV trajectory in three-dimensional space is a multi-constraint
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combinatorial optimization problem that needs to consider the threats brought by the envi-
ronment and the performance limitations of the UAV. Therefore, it is crucial to construct an
appropriate cost function around these problems to solve the optimal UAV flight trajectory.
The usual modeling flow of the UAV path planning problem is shown in Figure 1. As can
be seen from Figure 1, the UAV trajectory planning process can be divided into two major
parts, namely, environmental modeling and track modeling. Finally, the smoothed trajec-
tory data is uploaded to the UAV control system to realize the autonomous flight of the
UAV. To simplify the modeling process, we make the following assumptions: (a) The UAV
is regarded as a particle during the experiment and always flies at a uniform speed. (b) The
terrain and dangerous areas of the target area can be detected and mapped by satellites.
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2.2. Environmental Model

Environmental modeling refers to the process of abstracting mathematical models
from the actual environment that can be processed by planning algorithms [41]. Compared
to environmental modeling for 2D path planning, more topographic factors need to be
considered in 3D environments, such as mountains, hills, and plains. These environmental
challenges require UAVs to have more coping strategies during flight. To restore the real
geomorphic features as much as possible, this paper uses the method of function simulation
to construct the plain landform. The plains are characterized by flat terrain without
excessive fluctuations. Equation (1) shows the expression for the simulation function.

z(x, y) = sin(y + a) + b sin(x) + c cos(d
√

y2 + x2) + e cos(y) + f sin( f
√

y2 + x2) + g cos(y) (1)

where x, y, and z represent the coordinate values of a point in three-dimensional space.
Generally, the plane composed of the x-axis and the y-axis is used as the ground, and z
represents the height. In Equation (1), a, b, c, d, e, f, and g are all random numbers between
[0, 3], which makes the constructed plain terrain more random. In order to increase the
challenge and authenticity of the environment, we superimpose the mountain model on
the plain terrain. Equation (2) shows the mathematical expression of the mountain model.

h(x, y) = ∑
i

hi exp[− x− xoi

a2
i
− y− yoi

b2
i

] + ho (2)
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where ho represents the height of the base terrain and hi represents the height of the i-th
mountain. (xoi, yoi) represents the center coordinate of the i-th mountain. ai and bi are the
slopes of the i-th mountain along the x-axis and y-axis directions, respectively. By setting
the values of hi, ai, and bi, we can get different mountains or hills, providing a more complex
test environment for the UAV. Equation (3) is the expression of environmental height after
superimposing the mountain model.

H(x, y) = max[z(x, y), h(x, y)] (3)

In reality, UAVs have to deal with natural obstacles as well as human engineering
threats. These threats include high-rise buildings, no-fly zones, and the surveillance range
of enemy radar or air defense missiles. If the UAV does not avoid these areas in its path,
there is a risk of a crash. To simplify the model, a cylinder with a radius of r is used to
represent the area covered by the radar or missile. The threat coefficient at the center of
the cylinder is the highest and gradually decreases outward. In addition, we use regular
polygonal prisms to represent human buildings. These threatening human projects are
also superimposed on environmental models to verify whether the algorithm has obstacle
avoidance capabilities.

2.3. Track Model

The simplified UAV path planning task is similar to the Traveling Salesman problem
(TSP) [42]. In TSP, salespeople are expected to travel through all urban nodes with the
shortest travel distance, and path planning tasks also require UAVs to consume the least
amount of power when reaching their destinations. Ergezer et al. [43] designed a 3D
path-planning method for multiple UAVs based on the genetic algorithm. They let UAVs
fly along the desired path as much as possible to achieve the goal of reducing the flight
distance. However, when faced with complex flight environments, global optimization is
more effective. The flight path planning of UAVs should not only consider terrain factors
but also be constrained by their performance. The main performance indexes include the
flight path length, flight height, minimum step size, steering cost, maximum climb angle,
etc. These limitations increase the complexity of the optimal path and make it contain many
different features. In order to make the model more consistent with the actual situation,
this paper uses a more complex trajectory evaluation function to judge the pros and cons of
the generated path.

The first consideration in evaluating a path is its length. Shorter flight paths can save
more fuel and time for UAVs while reducing the probability of distress during flight. The
flight path of the UAV refers to the distance it travels from its origin to its destination.
Suppose a complete route contains n nodes, where the distance between the i-th node
and the (i + 1)-th node is Di, and the coordinates of the two nodes are (xi, yi, zi) and
(xi+1, yi+1, zi+1), abbreviated as N(i) and N(i + 1). Equation (4) describes the length of the
UAV’s actual flight path, Dpath.

Di = ‖N(i + 1)− N(i)‖2

Dpath =
n−1
∑

i=1
Di

(4)

Natural landforms and human engineering on the flight path may cause UAVs to
crash and fail to complete flight missions. Basada-Portas et al. [44] reduce the probability
of distress during flight by sharing the optimal path between UAVs, but increase the
computational cost of the system. Generally, the UAV will fly at a lower altitude to take
advantage of the favorable terrain and avoid being exposed to enemy radar. However, a
low flying altitude increases the chances of the UAV colliding with trees, mountains, and
buildings. Frequent adjustments of the UAV’s flight angle and altitude will also consume
more fuel and increase the burden on the control system. Therefore, it is necessary to keep
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the UAV at a stable altitude as much as possible to avoid a bumpy flight path. Equation (5)
shows the flight altitude model of the UAV.

HUAV =

√
1
n

n−1
∑

i=0
(z(i)− z)2

z = 1
n

n−1
∑

i=0
z(i)

(5)

where z(i) represents the flight altitude of the UAV at the i-th node. Steering is also involved
in the flight of the UAV. Good steering performance makes the UAV more maneuverable,
but too much steering may also cause instability in the UAV fuselage. Therefore, the
steering angle of the UAV during flight should not be greater than the preset maximum
value. We assume that the maximum steering Angle of the UAV is Φ and the current
steering Angle is θ. Equation (6) is the UAV’s steering angle loss function.

cos θ =
sT

i si+1
|si ||si+1|

Aloss =
n
∑

i=1
(cos(Φ− cos θ))

(6)

where si represents the segment vector of the i-th segment trajectory and |si| represents its
length. Through separate discussions of the three aspects mentioned above, we obtain the
loss function for UAV path planning as shown in Equation (7).

Closs = α1Dpath + α2HUAV + α3 Aloss

3
∑

i=1
α1 = 1

αi ≥ 0

(7)

Closs is the total loss function, and α1, α2, and α3 represent the weight. In this paper, we
set α1 = 0.4, α2 = 0.4, and α3 = 0.2. After effective processing of Closs, a flight path composed
of line segments is obtained, but this trajectory is only theoretically feasible. We use cubic
spline interpolation instead of the B-spline curve method to smooth the trajectory so as to
improve the accuracy of interpolation points.

Considering the two-dimensional case, assume that there are n + 1 nodes along the
planned path, marked as (x0, y0), (x1, y1), (x2, y2), and (xn, yn). If linear fitting is used to
connect these discrete points, the resulting function is not smooth enough. To smooth
the line between two adjacent nodes, we use a cubic function to fit them, as shown in
Equation (8).

yi = aix3 + bix2 + cix + di, i = 0, 1, 2, . . . , n− 1 (8)

where ai, bi, ci, and di represent the coefficient terms in the curve equation. When fitting a
trajectory, it is required that the junction points be continuous and smooth, so the first and
second derivatives of a cubic spline curve should also be continuous. For ease of illustration,
suppose we need to fit three points P1 (x1, y1), P2 (x2, y2), and P3 (x3, y3), marking the cubic
function between P1 and P2 as J and the cubic function between P2 and P3 as K, as shown
in Equation (9). 

J = a1x3 + b1x2 + c1x + d1

K = a2x3 + b2x2 + c2x + d2

(9)
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Points P1 and P2 are on the curve J, and points P2 and P3 are on the curve K. This
relationship is shown in Equation (10).

y1 = a1x1
3 + b1x1

2 + c1x1 + d1

y2 = a1x2
3 + b1x2

2 + c1x2 + d1 = a2x2
3 + b2x2

2 + c2x2 + d2

y3 = a2x3
3 + b2x3

2 + c2x3 + d2

(10)

Because the derivatives of the spline curve at the nodes are continuous, the first
derivatives of the two cubic functions at point P2 are equal. In addition, if the spline is
a cubic spline with a free boundary, the second derivatives at the starting point and the
ending point are also required to be continuous. Therefore, by calculating the second
derivative of Equations (10) and (11), the following is obtained:

6a1x1 + 2b1 = 0

6a1x2 + 2b1 = 6a2x2 + 2b2

6a2x3 + 2b2 = 0

(11)

By using Equations (10) and (11) and the coordinates of this set of points, the poly-
nomial coefficients (a1, b1, c1, d1, a2, b2, c2, d2) of the two cubic splines can be determined
through algebraic calculation. However, path-planning involves multiple segments, so
matrix equations are often used to solve spline parameters. To calculate the coefficients
(ai, bi, ci, di) of each spline curve, first calculate the step length hi between two adjacent
nodes, as shown in Equation (12).

hi = xi+1 − xi, i = 0, 1, 2, . . . , n− 1 (12)

Substitute the path point and endpoint condition (if it is a free boundary, the endpoint
condition in the cubic spline is yi

′′ = 0) into Equation (13) to obtain the quadratic differential
value mi, thereby deriving the coefficients of the spline curve, as shown in Equation (14).



1 0 0 · · · 0

h0 2(h0 + h1) h1 0 · · · 0

0 h1 2(h1 + h2) h2 0 0

0 0 h2 2(h2 + h3) h3
...

... 0
. . . 0

0 · · · 0 · · · 2(hn−2 + hn−) hn−1

0 0 0 · · · 0 1





m0
m1
m2
m3
...
mn


= 6



0
y2−y1

h1
− y1−y0

h0

y3−y2
h2
− y2−y1

h1

· · ·
yn−yn−1

hn−1
− yn−1−yn−2

h2

0


(13)



ai = yi

bi =
yi+1−yi

hi
− hi

2 mi − hi
6 (mi+1 −mi)

ci =
mi
2

di =
mi+1−mi

6hi

(14)

The corresponding spline function expression within each subinterval xi ≤ x ≤ xi + 1
is shown in Equation (15).

fi(x) = ai + bi(x− xi) + ci(x− xi)
2 + d(x− xi)

3 (15)
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Considering that the derivation process involves numerical analysis and other foun-
dations and is far from the topic of UAV path planning, this article omits the detailed
derivation process. The complete derivation process of the cubic spline interpolation
method can be found in Reference [45]. In 3D space, the equation of a curve is z = f (x, y),
and its parametric form is x = x (t), y = y (t), and z = z (t). The original set of input points
{(xi, yi, zi)} becomes Po1 = {(ti, xi)}, Po2 = {(ti, yi)}, and Po3 = {(ti, zi)}. Po1, Po2, and Po3
satisfy the monotonicity of the spline. Set ti = 1, 2, . . . , n, do cubic spline interpolation on
the three point sets, respectively, and calculate the corresponding (xi, yi, zi), which is the
point set after uniform interpolation. By connecting these points, a smooth flight path can
be obtained.

3. Chimp Optimization Algorithm (ChOA)

ChOA [35] is inspired by the predatory behavior of chimp populations. During
hunting, chimps are divided into four groups according to their functions: attacker, driver,
barrier, and chaser. The attacker is the overall leader of the hunt, assisted by the other three
chimps. The hunting process of chimps can be divided into two steps, namely, Chasing
prey and attacking prey, which correspond to the exploration and development stages of
the algorithm. The mathematical model for these two steps is described below.

3.1. Driving and Chasing the Prey

All chimpanzees participating in predation randomly change their position to ap-
proach the prey. Equations (16) and (17) describe this process.

D =
∣∣∣c · xprey(t)−m · xchimp(t)

∣∣∣ (16)

xchimp(t + 1) = xprey(t)− a · d (17)

where, D represents the distance between the chimp and the prey. xchimp is the chimp’s posi-
tion vector. xprey is the prey’s position vector. t represents the current iteration number. a, m,
and c are coefficient vectors. a, m, and c are determined by Equations (18)–(20), respectively.

a = 2 · f · r1 − f (18)

c = 2 · r2 (19)

m = Chaotic_value (20)

where the value of f decreases from 2.5 to 0 during the iteration period. r1 and r2 are random
vectors within the range of [0, 1]. m is a chaotic vector calculated based on various chaotic
maps, which represents the influence of sexual motivation on chimp during hunting.

3.2. Attacking Method

When attacking prey, it is assumed that the first attacker (the best solution available),
driver, barrier, and chaser are better informed about the location of potential prey, and
other chimps are forced to update their positions according to the best chimps locations.
Equations (21)–(23) describe this relationship.

dAttacker = |c1xAttacker −m1x|

dBarrier = |c2xBarrier −m2x|

dChaser = |c3xChaser −m3x|

dDriver = |c4xDriver −m4x|

(21)
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

V1 = xAttacker − a1(dAttacker)

V2 = xBarrier − a2(dBarrier)

V3 = xChaser − a3(dChaser)

V4 = xDriver − a4(dDriver)

(22)

x(t + 1) =
V1 + V2 + V3 + V4

4
(23)

where dAttacker, dBarrier, dChaser, and dDriver represent the distance between the four types
of chimps and the prey in the current population. xAttacker, xBarrier, xChaser, and xDriver are
their position vectors relative to the prey. V1, V2, V3, and V4 represent their position
update vector. x(t + 1) is the position of the t + 1 generation chimps. a1~a4, m1~m4, and
c1~c4 are all coefficient vectors. After food satisfaction, the chimps would release hunting
responsibilities, meaning they would no longer take on four hunting roles and instead
scramble to get food. This chaotic behavior helps prevent the algorithm from falling below
its local optimal value. Equation (24) is a mathematical model of this phenomenon.

xchimp(t + 1) =

{
xprey(t)− a · d, i f µ < 0.5
Chaotic_value, i f µ ≥ 0.5

(24)

where µ is a random number between [0, 1], and Chaotic_value represents the chaotic mapping.

4. Improved Chimp Optimization Algorithm (TRS-ChOA)

In this section, three improvements to ChOA were introduced. In order to improve
ChOA’s exploration ability and solve its premature convergence issue, this study integrated
the mutation mechanism of differential evolution (DE) [46] into ChOA. To expand the
search range of ChOA and enhance the diversity of individuals, an improved reverse
learning mechanism was introduced. Finally, to prevent ChOA from getting stuck in local
optima, a similarity preference weight was proposed to assist ChOA in position updates.
The specific descriptions of these three improvement strategies are described below.

4.1. The Differential Evolution

The basic idea of the differential evolution (DE) algorithm is to use vector differences to
generate new individuals for optimizing the objective function. The differential operation
is the core of DE, which generates new solution vectors (offspring) by mutating and
crossing the current population. If the fitness value of an offspring is better than that
of its corresponding parent, the offspring will replace its parent. The DE algorithm has
the advantages of fast global search speed, simple implementation, and fewer algorithm
parameters. Therefore, it has been successfully applied in optimizing various practical
problems and has demonstrated good performance and robustness. Algorithm 1 shows the
pseudocode of the DE algorithm.

In Algorithm 1, xi represents the individuals in the population, and d is the dimension
of the problem. jrand represents a random integer between [1, d]. r1, r2, and r3 are individuals
randomly selected from the population to participate in the mutation process. CR is the
crossover probability. Randreal [0, 1) generates a random real number between 0 and 1. x*
represents the current best individual. F is the mutation operator, which is generally taken
between [0, 2]. xi(j) is the j-th variable of the i-th individual in the population, and vi is
its offspring. From the pseudocode of the DE algorithm, it can be seen that DE has strong
exploration ability but is not good at local exploitation.



Axioms 2023, 12, 702 10 of 27

Algorithm 1 (The DE Algorithm)

1. Generate the initial population xi (i = 1, 2, . . . , N)
2. Evaluate the fitness of each individual in xi
3. while (t < T)
4. for i = 1 to N do
5. Select uniform randomly r1 6= r2 6= r3 6= i
6. jrand = randint(1, n)
7. for j = 1 to d do
8. if randrealj [0, 1) > CR or j == jrand then
9. vi(j) = x* (j) + F × (xr2 (j) − xr3 (j))
10. else
11. vi(j) = xi(j)
12. end if
13. end for
14. end for
15. Evaluate the offspring vi
16. if vi is better than Xi then
17. Update individual i, xi = vi
18. if vi is better than x* then
19. Update best individual, x* = vi
20. end if
21. end if
22. end while

To improve the exploration ability of the ChOA algorithm, we hybridize the operators
of ChOA with the mutation operator of DE to obtain a mixed operator. In addition, a
nonlinear transformation convergence factor is introduced to control individuals choosing
different operators and behaviors (exploration or exploitation) at different stages of iteration.
The nonlinear convergence factor α is adjusted by Equation (25).

α = 1− (
et/T − 1

e− 1
)

β

(25)

where e represents the Euler constant. T represents the maximum number of iterations;
β ∈ [1, 10] is used to control the decay rate of α, and the larger β, the slower the convergence
factor decays. In order to allow ChOA to explore the space sufficiently in the early stage
of iteration and to perform well in local exploitation in the later stage, β is set to 3.5
in this paper, which has been obtained as the optimal state after multiple experimental
tests. However, it can be adjusted according to different optimization tasks. The mutation
strategy of DE gives it excellent exploration performance [47]. After combining ChOA
with DE, the development ability is similar to before, while the difference is that in the
exploration phase, more elite individuals (good offspring replacing parents) are retained
in the population. During the crossover and mutation processes, we still need to consider
boundary constraints. If a dimension of an individual violates the constraint condition, it
should be adjusted by Equation (26).

xi(j) =

{
lbj + randreal(0, 1)× (ubj − lbj) i f xi(j) < lbj

ubj − randreal(0, 1)× (ubj − lbj) i f xi(j) < ubj
(26)

lbj and ubj represent the lower and upper bounds of the j-th dimension, respectively.
xi(j) represents the j-th dimension of the i-th solution. randreal(0, 1) represents a random
number between 0 and 1.

4.2. Improved Reverse Learning

In order to improve the population diversity and individual quality of ChOA, we
used improved reverse learning to obtain the reverse solutions of individuals and then
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retained the individuals with high fitness values. Traditional reverse learning increases
the diversity of particles, but obtaining new positions symmetrically makes it easy for the
algorithm to fall into the local extremum. Therefore, we combine the refraction principle of
light with reverse learning. As shown in Figure 2, the refraction angle is introduced when
obtaining the reverse position of the current individual, thus expanding the search scope of
the individual and improving the generalization ability of the algorithm.
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Figure 2. Schematic diagram of refraction and reverse learning.

In refraction reverse learning, the upper and lower sides of the horizontal axis are
distributed with mediums A and B, which have different refractive indexes. The vertical
axis is the normal line. u and l represent the upper and lower bounds of the search
space, respectively, x ∈ [u, l], and O is the midpoint of the interval [u, l]. Light enters the
medium A along the PO direction (Angle of incidence θ1), refracts at O, and exits along
the OQ direction (Angle of refraction θ2). Equations (27) and (28) can be obtained from the
geometric relationship in Figure 2.{

sin θ1 = ((u + l)/2− x)/|PO|
sin θ2 = (x′ − (u + l)/2)/|OQ| (27)

η =
sin θ1

sin θ2
(28)

where η represents the refractive index. Let k = |PO|/|OQ|, then the refraction reverse
learning solution can be determined, as shown in Equation (29).

x′ = u + l
2

+
u + l
2kη

− x
kη

(29)

By extending Equation (29) to an n-dimensional space, the general form of the inverse
solution can be obtained, as shown in Equation (30).

x′i =
ui + li

2
+

ui + li
2kη

− xi
kη

(30)

where ui and li represent the i-th dimensional vector of the upper and lower bounds,
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respectively. At the later stage of the iteration, due to the concentrated distribution of
particles near high-quality solutions, it may be difficult for the algorithm to find the global
optimal solution. Therefore, hyper-parametric ω is introduced. It can adjust adaptively
according to different iteration stages to increase the randomness of the solution, so as
to improve the ability of the algorithm to escape from local optima. The improvement is
shown in Equation (31).  x′i = ui+li

2 + ui+li
2ω −

xi
ω

ω = σ
2 − ( et/T−1

e−1 )
σ (31)

where t represents the current number of iterations and T represents the maximum number
of iterations. σ can control the attenuation rate of ω; the larger the σ, the slower the ω
decays. After obtaining the reverse position of each chimp, individuals with higher fitness
values were retained through the greedy strategy, while individuals with lower fitness
values were eliminated, as shown in Equation (32).

xupdate = max_ f itness(xi, x′i) (32)

4.3. Similarity Preference Weight

In ChOA, the average positions of attacker, driver, barrier, and chaser determine the
update trend of other chimps’ positions. If these four types of chimps are located near the
local optimal solution and other individuals converge towards them without distinction, it
may result in the inability to search for a global optimal solution. Therefore, we propose to
consider the similarity of each chimp’s attacker, driver, barrier, and chaser separately. In an
n-dimensional space, the similarity between two individuals is described by the sum of their
absolute characteristic differences in each dimension. This idea fits with the Manhattan
distance. The Manhattan definitions of n-dimensional vectors a = (x11, x12, x13, . . . , x1n)
and b = (x21, x22, x23, . . . , x2n) are shown in Equation (33).

d(a, b) =
n

∑
k
|x1k − x2k| (33)

In Equation (33), the similarity between two chimps is inversely proportional to
the value of d. In the process of location updating, we make chimps more inclined to
approach leaders with lower similarity and stay away from leaders with higher similarity.
This mechanism can effectively alleviate the serious assimilation phenomenon at the end
of iteration and avoid the algorithm falling into local optima. Equation (34) shows an
improved location update method based on Equation (23). x(t + 1) = λ1V1 + λ2V2 + λ3V3 + λ4V4

λi =
di

d1+d2+d3+d4
, i = 1, 2, 3, 4

(34)

where, λ1, λ2, λ3, and λ4 represent the current chimp’s preference weights for attacker,
driver, barrier, and chaser, respectively. d represents the similarity value calculated from
Equation (33).

4.4. TRS-ChOA Pseudocode

Algorithm 2 is the pseudocode for the improved ChOA algorithm, which combines
three different strategies. The improved ChOA consists of two parts: the exploration part
(lines 16–21 of Algorithm2) and the exploitation part (lines 22–27 of Algorithm 2).
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Algorithm 2 (TRS-ChOA Algorithm)

1. Generate the initial population xi (i = 1, 2, . . . , N)
2. Initialize f, m, a and c
3. Divide chimps randomly into independent groups
4. Calculate the fitness of each chimp
5. xAttacker = the best search agent
6. xChaser = the second-best search agent
7. xBarrier = the third-best search agent
8. xDriver = the fourth-best search agent
9. while (t < T)
10. for i = 1 to N do
11. Extract the chimp’s group
12. Use its group strategy to update f, m, c, a and d
13. Select uniform randomly r1 6= r2 6= i
14. Update α by the Equation (25), jrand = randint(1,n), p = randreal(0,1), µ = randreal(0,1)
15. for j = 1 to d do
16. if p ≤ α then
17. if randrealj[0,1) ≤ CR or j == jrand then
18. vi(j) = randchoice{xAttacker (j), xChaser (j), xBarrier (j), xDriver (j)} + F × (xr1(j) – xr2(j))
19. else
20. vi(j) = Chaotic_value
21. end if
22. else if p > α then
23. if randrealj [0,1) ≤ 0.5 then
24. vi(j)= xAttacker (j) – a × d
25. else
26. Update the position of the current search agent using the Equation (34)
27. end if
28. end if
29. end for
30. end for
31. Calculate the reverse position of each chimp by Equation (31)
32. Update high-quality individuals by Equation (32)
33. Ranking chimp individuals by fitness value
34. Update xAttacker, xDriver, xBarrier, xChaser
35. t = t + 1
36. end while
37. return xAttacker

4.5. Time Complexity Analysis of TRS-ChOA

The time complexity of the basic ChOA algorithm is O (N × d × T). Where, N is the
population size, d defines the dimension of a test function, and T is the maximum number
of iterations. The time complexity of TRS-ChOA is analyzed as follows:

(1) The time complexity after combining with differential evolution is represented as O
(N × d), so the time complexity of the algorithm becomes O (N × d × T + N × d) = O
(N × d × T) after it is introduced;

(2) The time complexity of using improved reverse learning to update the position of
the population is O (N × d × T), However, this is a juxtaposed loop, so the time
complexity of the algorithm is O (N × d × T + N × d × T) = O (N × d × T).

(3) Assuming that the time required to introduce the similarity preference weight is t,
then the time complexity of the algorithm is O (N × d × T + t) = O (N × d × T)

In summary, the time complexity of TRS-ChOA is O (N × d × T). It can be seen that
the time complexity of the TRS-ChOA proposed in this paper is consistent with the time
complexity of ChOA.
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5. TRS-ChOA Optimized Performance Test

To verify the optimization performance of TRS-ChOA, we selected part of the bench-
mark test function and the CEC2017 complex test function [48] to test it. The environment of
the experiment was Windows 10, with a CPU of 3.4 GHz Intel Core i7-6500 U, 8 GB of RAM,
and a 64-bit operating system. The simulation software is Matlab R2021. Table 1 records
the internal parameters of the algorithms involved in the experiment and their references.

Table 1. Algorithm parameter setting.

Algorithm Parameters Setting Reference

GWO r1 ∈ [0, 1], r2 ∈ [0, 1] [17]

SSA
proportion of discoverers: 20%

proportion of scouter: 10%
alert threshold: 0.7

[19]

WOA b = 1, r1 ∈ [0, 1], r2 ∈ [0, 1],
l ∈ [−1, 1], p ∈ [0, 1] [20]

ALO

w = 1, t ≤ 0.1 T
w = 2, t > 0.1 T
w = 3, t > 0.5 T
w = 4, t > 0.75 T
w = 5, t > 0.9 T

w = 6, t > 0.95 T

[21]

ChOA r1 ∈ [0, 1], r2 ∈ [0, 1], m = chaos (3,1,1) [35]
TRS-ChOA F ∈ [0, 1], CR = 0.1, k ∈ [0, 1], σ = 2.5 Section 4 of this article

5.1. Benchmark Function Test

We selected 13 benchmark functions [49] as the content of the test, and their details
are recorded in Table 2. Among the 13 functions, f 1–f 6 are single module functions, which
are mainly used to study the convergence speed and accuracy of the algorithm. f 7–f 13
are multi-modal functions used to evaluate the algorithm’s exploration ability and its
ability to avoid local optima. In the experiment, the dimensions of the test functions are
d = 30/500/1000 to verify the ability of the algorithm to handle low- and high-dimensional
problems. To verify the effectiveness of the three improvement strategies proposed in
Section 4, the ChOA that integrates the differential evolution algorithm, improves reverse
learning, and similarity preference weights are recorded as TChOA, RChOA, and SchOA,
respectively, and they are tested together with ChOA and TRS-ChOA. This is an ablation
study. To ensure the fairness of the experiment, basic parameters were set uniformly during
the experiment: population size N = 30, maximum number of iterations T = 500. After
each algorithm runs 50 times independently, the mean value and standard deviation of the
results are recorded. The specific experimental results are shown in Table 3.

Table 2. Introduction to benchmark functions.

Fun No. Name Range Dim Optimal Value Function Type

f 1 Sphere Function [−100, 100] 30, 500, 1000 0 Single-modal
f 2 Schwefel’s problem 2.22 [−10, 10] 30, 500, 1000 0 Single-modal
f 3 Schwefel’s problem 1.2 [−100, 100] 30, 500, 1000 0 Single-modal
f 4 Schwefel’s problem 2.21 [−100, 100] 30, 500, 1000 0 Single-modal

f 5
Generalized Rosenbrock’s

Function [−30, 30] 30, 500, 1000 0 Single-modal

f 6 Step Function [−100, 100] 30, 500, 1000 0 Single-modal
f 7 Quartic Function [−1.28, 1.28] 30, 500, 1000 0 Single-modal

f 8
Generalized Schwefel’s

problem2.26 [−500, 500] 30, 500, 1000 12,569.5 Multi-modal

f 9 Generalized Rastrigin’s Function. [−5.12, 5.12] 30, 500, 1000 0 Multi-modal
f 10 Ackley’sFunction [−32, 32] 30, 500, 1000 0 Multi-modal
f 11 Generalized Criewank’s Function [−600, 600] 30, 500, 1000 0 Multi-modal
f 12 Generalized Penalized Function 1 [−50, 50] 30, 500, 1000 0 Fixed multi-modal
f 13 Generalized Penalized Function 2 [−50, 50] 30, 500, 1000 0 Fixed multi-modal
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Table 3. Comparison of optimization results of different improvement strategies for ChOA.

Fun
No. Dim

ChOA TChOA RChOA SChOA TRS-ChOA

Mean Std Mean Std Mean Std Mean Std Mean Std

f 1
d = 30 1.69 × 10−21 4.76 × 10−21 1.70 × 10−215 4.95 × 10−214 1.46 × 10−243 1.53 × 10−240 1.76 × 10−300 8.66 × 10−298 0 0

d = 500 2.03 × 10−22 3.61 × 10−22 5.69 × 10−168 6.42 × 10−174 3.58 × 10−233 1.76 × 10−230 2.20 × 10−301 6.33 × 10−300 0 0
d = 1000 7.84 × 10−16 4.38 × 10−17 3.77 × 10−164 4.29 × 10−150 1.25 × 10−200 9.23 × 10−203 6.53 × 10−276 4.85 × 10−280 0 0

f 2
d = 30 2.13 × 10−15 1.41 × 10−15 1.13 × 10−78 5.74 × 10−77 3.38 × 10−112 3.14 × 10−103 4.49 × 10−326 2.47 × 10−341 0 0

d = 500 3.74 × 10−15 1.89 × 10−14 4.81 × 10−82 5.11 × 10−85 6.52 × 10−105 4.32 × 10−105 7.55 × 10−317 4.35 × 10−377 0 0
d = 1000 6.51 × 10−15 7.03 × 10-−9 7.64 × 10−77 3.58 × 10−77 2.78 × 10−67 7.53 × 10−69 4.89 × 10−300 3.14 × 10−305 0 0

f 3
d = 30 5.15 × 101 2.90 × 101 3.50 × 10−167 1.22 × 10−165 4.33 × 10−214 8.64 × 10−213 0 0 0 0

d = 500 2.82 × 101 7.26 × 101 2.21 × 10−154 1.97 × 10−148 4.67 × 10−212 6.38 × 10−213 6.47 × 10−303 4.54 × 10−302 0 0
d = 1000 4.15 × 101 3.91 × 101 5.30 × 10−144 1.79 × 10−139 3.55 × 10−210 7.24 × 10−218 6.52 × 10−170 6.09 × 10−175 0 0

f 4
d = 30 4.92 × 10−1 2.34 × 10−1 1.36 × 10−81 1.93 × 10−80 3.72 × 10−141 3.69 × 10−151 3.36 × 10−184 2.36 × 10−185 0 0

d = 500 4.57 × 10−1 1.99 × 10−1 2.14 × 10−56 4.31 × 10−67 3.11 × 10−110 2.76 × 10−133 3.52 × 10−217 8.12 × 10−142 0 0
d = 1000 8.44 × 100 7.34 × 100 3.42 × 10−40 2.66 × 10−42 1.52 × 10−86 3.74 × 10−76 4.16 × 10−182 3.81 × 10−163 0 0

f 5
d = 30 2.90 × 101 4.25 × 101 1.33 × 101 1.04 × 101 2.82 × 10−2 1.76 × 10−1 2.88 × 101 1.29 × 101 2.64 × 10−4 8.62 × 10−4

d = 500 4.36 × 101 1.69 × 101 4.22 × 102 1.67 × 101 4.66 × 10−1 1.80 × 10−1 2.69 × 101 3.58 × 100 2.15 × 10−5 8.33 × 10−5

d = 1000 8.92 × 102 4.53 × 102 1.73 × 102 6.51 × 101 2.06 × 101 4.69 × 100 1.18 × 102 2.39 × 101 3.05 × 10−5 6.69 × 10−4

f 6
d = 30 3.53 × 101 3.05 × 100 8.24 × 10−4 5.56 × 10−4 3.62 × 10−5 1.51 × 10−5 1.33 × 100 7.39 × 10−1 1.37 × 10−4 6.12 × 10−4

d = 500 4.31 × 100 4.81 × 100 7.96 × 10−2 4.81 × 10−2 3.69 × 10−5 1.71 × 10−4 1.57 × 100 6.63 × 10−1 1.47 × 10−2 5.77 × 10−3

d = 1000 6.37 × 101 4.22 × 101 1.67 × 10−3 4.10 × 10−2 9.04 × 10−4 2.58 × 10−2 7.33 × 101 1.09 × 100 1.55 × 10−2 7.04 × 10−2

f 7
d = 30 1.82 × 10−3 6.88 × 10−4 2.55 × 10−2 3.41 × 10−2 2.13 × 10−3 1.46 × 10−3 5.38 × 10−4 1.91 × 10−4 4.77 × 10−7 9.28 × 10−8

d = 500 2.03 × 10−3 5.16 × 10−4 2.18 × 10−2 3.63 × 10−2 4.30 × 10−4 3.87 × 10−4 4.01 × 10−3 3.19 × 10−3 4.35 × 10−6 7.81 × 10−8

d = 1000 1.66 × 10−2 6.09 × 10−2 8.25 × 10−1 4.52 × 10−1 1.94 × 10−3 8.33 × 10−2 6.13 × 10−3 5.46 × 10−1 5.72 × 10−6 3.20 × 10−5

f 8
d = 30 −5734.36 8.95 × 10−9 −5498.63 3.21 × 102 −10340.06 2.21 × 103 −8334.31 6.26 × 102 −12,567.28 2.53 × 10−10

d = 500 −5529.71 6.34 × 10−8 −5736.44 2.73 × 102 −10649.63 2.08 × 102 −8221.50 5.90 × 102 −12,496.63 4.10 × 10−10

d = 1000 −6017.87 3.65 × 10−5 −4396.07 8.60 × 103 −8774.59 6.77 × 102 −8005.19 2.53 × 103 −12,195.10 2.74 × 10−9

f 9
d = 30 1.37 × 101 6.11 × 102 8.07 × 101 2.88 × 100 0 0 0 0 0 0

d = 500 1.63 × 101 6.40 × 102 7.46 × 101 3.00 × 100 0 0 0 0 0 0
d = 1000 2.70 × 102 8.39 × 100 3.98 × 102 5.14 × 100 7.57 × 10−279 9.41 × 10−278 7.03 × 10−131 3.72 × 10−110 0 0

f 10
d = 30 2.00 × 101 9.03 × 10−14 5.89 × 100 3.86 × 10−1 4.34 × 10−15 3.97 × 10−11 1.60 × 10−12 7.11 × 10−16 8.88 × 10−14 0

d = 500 3.12 × 101 6.51 × 10−13 5.53 × 100 4.02 × 10−1 4.22 × 10−12 2.67 × 10−8 3.07 × 10−11 2.97 × 10−15 6.93 × 10−14 0
d = 1000 4.73 × 101 7.73 × 10−4 8.14 × 101 7.50 × 10−2 5.96 × 10−13 7.51 × 10−8 8.46 × 10−7 5.29 × 10−10 5.00 × 10−13 1.37 × 10−12

f 11
d = 30 4.42 × 10−2 3.97 × 10−12 4.45 × 10−1 3.24 × 10−2 1.61 × 10−216 1.62 × 10−223 0 0 0 0

d = 500 4.90 × 10−3 3.62 × 10−11 4.73 × 10−2 1.88 × 10−2 0 0 0 0 0 0
d = 1000 2.26 × 10−3 4.74 × 10−11 5.30 × 10−2 4.09 × 10−2 2.73 × 10−10 2.11 × 10−10 6.16 × 10−14 8.40 × 10−15 3.71 × 10−13 6.11 × 10−16

f 12
d = 30 4.68 × 10−1 1.60 × 10−11 1.41 × 101 3.17 × 100 9.29 × 10−2 7.76 × 10−2 9.02 × 10−3 5.12 × 10−2 6.07 × 10−6 8.36 × 10−13

d = 500 3.90 × 10−1 4.25 × 10−10 2.68 × 101 5.33 × 100 6.75 × 10−2 5.77 × 10−1 4.57 × 10−2 8.16 × 10−2 9.12 × 10−6 6.31 × 10−12

d = 1000 9.57 × 100 7.75 × 10−8 4.69 × 102 8.01 × 101 5.10 × 10−2 9.69 × 10−2 3.88 × 10−3 1.90 × 10−2 5.17 × 10−6 6.21 × 10−12

f 13
d = 30 2.71 × 100 1.66 × 10−13 2.25 × 101 3.37 × 101 5.48 × 10−1 2.82 × 10−6 2.85 × 10−1 7.45 × 10−9 1.93 × 10−4 5.65 × 10−17

d = 500 6.24 × 100 3.57 × 10−12 3.06 × 101 5.65 × 101 3.98 × 10−1 2.17 × 10−5 1.74 × 100 8.61 × 10−5 2.01 × 10−4 4.85 × 10−15

d = 1000 4.82 × 100 3.07 × 10−10 6.44 × 101 6.00 × 101 4.32 × 10−1 2.73 × 10−1 9.38 × 100 1.00 × 10−3 2.13 × 10−4 9.32 × 10−14

As can be seen from Table 3, the averages and standard deviations of TRS-ChOA are
better than the other four algorithms in most cases, indicating that the three improved
strategies effectively enhance the optimization accuracy and stability of the original ChOA.
When dimensions are between 30 and 500, TRS-ChOA can search for optimal values on
functions f 1, f 2, f 3, f 4, f 9, and f 11, while ChOA does not obtain the global optima on any of
the 13 functions. On the multi-modal function f 9, RChOA and SChOA can find theoretical
optima at 30 and 500 dimensions, and have higher accuracy than ChOA at 1000 dimensions,
indicating that reverse learning strategies and similarity preference weights can help the
algorithm escape local optima. TChOA performs better than ChOA on functions f 1, f 2, f 3, f 4,
f 5, f 6, and f 10. Most of these functions are single-modal functions, which indicates that The
differential evolution can improve the optimization ability of the algorithm on single-mode
problems but is not effective in dealing with multi-mode problems. Although TRS-ChOA
cannot find the theoretical optimal value for all functions, its optimization results can
be close to the theoretical extreme value. For example, on function f 8, TRS-ChOA can
converge to −12,567.28, which is the closest theoretical value among all algorithms. It can
be concluded that TRS-ChOA exhibits stronger search performance than ChOA in both
low-dimensional and high-dimensional functions and is an optimization algorithm with
better stability and robustness.

The results in Table 3 reflect the advantages of TRS-ChOA in terms of optimization
accuracy and stability. To show the dynamic convergence characteristics of TRS-ChOA
more directly, we give the average convergence curves of TChOA, RChOA, SChOA, ChOA,
and TRS-ChOA on the benchmark functions f 1–f 13. The dimensions of the functions are
d = 500, the population size is N = 30, and the maximum iteration number is T = 500.
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The specific results are shown in Figure 3. From the convergence curves of functions f 1,
f 2, f 3, f 4, f 9, f 10, and f 11, it can be seen that compared with the other four algorithms,
TRS-ChOA has a faster convergence speed, while ChOA has the slowest optimization
speed, indicating that the three improvement strategies enhance the performance of ChOA
to varying degrees. From the convergence curves of functions f 5, f 7, f 8, and f 12, it can be
found that TChOA, RChOA, SChOA, and TRS-ChOA have higher optimization accuracy
than ChOA while guaranteeing the optimization speed, which indicates that the three
improvement strategies increase the population diversity of ChOA and improve the ability
of the algorithm to escape from local optima. According to the above analysis, TRS-ChOA
has a faster convergence rate in the optimization process of benchmark functions and can
escape in time to improve the accuracy of optimization when falling into local extremes. In
short, it is a better algorithm for solving global optimization problems.

5.2. Wilcoxon Rank-Sum Test

When the data sample is not normally distributed, the Wilcoxon rank-sum test is often
used to compare the difference between the distribution positions of two independent
samples [50]. To comprehensively analyze the performance difference between the TRS-
ChOA and other algorithms, we use the running results of ChOA, TChOA, RChOA, SChOA,
and TRS-ChOA in thirteen benchmark test functions to conduct the Wilcoxon rank sum
test. In the Wilcoxon rank-sum test, it is stipulated that when p < 5%, the test results of the
two algorithms are significantly different. When p > 5%, there is no significant difference
between the test results of the two algorithms. The results of the Wilcoxon rank-sum test
are shown in Table 4. Where, “NaN” indicated that there were no data for comparison. +,
=, and—indicate that the performance of TRS-ChOA is superior, approximate, and inferior
to that of the compared algorithms, respectively.

Table 4. Wilcoxon rank-sum test results.

Fun No. ChOA (P1) TChOA (P2) RChOA (P3) SChOA (P4)

f 1 8.01 × 10−14 8.01 × 10−14 8.01 × 10−14 8.01 × 10−14

f 2 1.83 × 10−15 1.83 × 10−15 1.83 × 10−15 1.83 × 10−15

f 2 3.16 × 10−13 3.16 × 10−13 3.16 × 10−13 3.16 × 10−13

f 2 3.02 × 10−16 3.16 × 10−13 3.16 × 10−13 3.16 × 10−13

f 3 2.03 × 10−7 4.73 × 10−12 5.80 × 10−15 1.01 × 10−17

f 4 1.86 × 10−12 8.66 × 10−14 2.64 × 10−15 1.83 × 10−17

f 5 3.09 × 10−9 1.71 × 10−10 1.83 × 10−11 1.83 × 10−11

f 6 7.77 × 10−13 NaN 1.12 × 10−13 1.83 × 10−13

f 7 1.64 × 10−14 9.53 × 10−17 7.07 × 10−18 1.01 × 10−17

f 8 2.65 × 10−18 7.08 × 10−12 0.91 × 10−6 9.54 × 10−18

f 9 3.31 × 10−20 3.31 × 10−20 NaN 8.97 × 10−7

f 10 3.31 × 10−20 3.43 × 10−13 6.45 × 10−15 NaN
f 11 3.31 × 10−20 3.31 × 10−20 3.27 × 10−6 NaN
f 12 7.10 × 10−9 1.46 × 10−12 7.06 × 10−18 7.79 × 10−12

f 13 1.58 × 10−12 1.62 × 10−13 4.44 × 10−15 2.38 × 10−10

+/=/— 13/0/0 12/1/0 11/1/1 11/2/0

As can be seen from Table 4, in function f 6, the p value of RChOA is 1.12 × 10−13,
indicating that there is a significant difference between RChOA and TRS-ChOA, and
RChOA demonstrates stronger optimization performance on f 6 than TRS-ChOA. NaN
indicates that the difference is not significant, i.e., the optimization performance of the two
algorithms is equivalent. In most cases, the value of p is less than 5%, indicating that the
optimization performance of TRS-ChOA on benchmark functions is significantly superior
to the other four algorithms.
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Figure 3. Convergence curve of TRS − ChOA and other algorithms on the benchmark test function.
(a) Convergence curve of f 1. (b) Convergence curve of f 2. (c) Convergence curve of f 3. (d) Con-
vergence curve of f 4. (e) Convergence curve of f 5. (f) Convergence curve of f 6. (g) Convergence
curve of f 7. (h) Convergence curve of f 8. (i) Convergence curve of f 9. (j) Convergence curve of f 10.
(k) Convergence curve of f 11. (l) Convergence curve of f 12. (m) Convergence curve of f 13.
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5.3. CEC2017 Function Test

The ablation experiments in Section 5.1 confirm that TRS-ChOA, which integrates
the three improved strategies, has better performance than ChOA, but this result does
not reflect the difference between TRS-ChOA and other classical swarm intelligence
optimization algorithms. To further verify the performance of TRS-ChOA in dealing
with complex functions, we selected TRS-ChOA, ChOA, SSA, WOA, and GWO for com-
parative testing on CEC2017 complex functions. Table 5 shows the specific information
about the CEC2017 functions. These functions include complex functions composed of
basic test functions and incorporate new problems such as rotated traps, posing greater
challenges to the optimization ability of the algorithm. In Table 5, UF, SMF, HF, and
CF indicate that the types of functions are Uni-modal Functions, Simple Multimodal
Functions, Hybrid Functions, and Composition Functions, respectively. The basic param-
eters in the experiment are set as follows: population size N = 100, dimension d = 10/50,
and maximum iteration number T = 1000. After running each algorithm 50 times inde-
pendently, calculate the mean value and standard deviation. The specific experimental
results are shown in Table 6.

Table 5. CEC2017 test function information.

Fun No. Dim Function Type Range Optimal Value

CEC01 10, 50 UF (Uni-modal Function) [−100, 100] 100
CEC02 10, 50 UF [−100, 100] 200

CEC03 10, 50 SMF (Simple Multimodal Functions) [−100, 100] 300
CEC04 10, 50 SMF [−100, 100] 400
CEC05 10, 50 SMF [−100, 100] 500
CEC06 10, 50 SMF [−100, 100] 600
CEC07 10, 50 SMF [−100, 100] 700
CEC08 10, 50 SMF [−100, 100] 800
CEC09 10, 50 SMF [−100, 100] 900

CEC10 10, 50 HF (Hybrid Function) [−100, 100] 1000
CEC11 10, 50 HF [−100, 100] 1100
CEC12 10, 50 HF [−100, 100] 1200
CEC13 10, 50 HF [−100, 100] 1300
CEC14 10, 50 HF [−100, 100] 1400
CEC15 10, 50 HF [−100, 100] 1500
CEC16 10, 50 HF [−100, 100] 1600
CEC17 10, 50 HF [−100, 100] 1700
CEC18 10, 50 HF [−100, 100] 1800
CEC19 10, 50 HF [−100, 100] 1900

CEC20 10, 50 CF (Composition Function) [−100, 100] 2000
CEC21 10, 50 CF [−100, 100] 2100
CEC22 10, 50 CF [−100, 100] 2200
CEC23 10, 50 CF [−100, 100] 2300
CEC24 10, 50 CF [−100, 100] 2400
CEC25 10, 50 CF [−100, 100] 2500
CEC26 10, 50 CF [−100, 100] 2600
CEC27 10, 50 CF [−100, 100] 2700
CEC28 10, 50 CF [−100, 100] 2800
CEC29 10, 50 CF [−100, 100] 2900
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Table 6. CEC2017 function optimization comparison.

Fun
No. Dim

ChOA SSA GWO WOA TRS-ChOA

Mean Std Mean Std Mean Std Mean Std Mean Std

CEC1
d = 10 2.32 × 102 7.39 × 101 8.47 × 102 2.15 × 102 1.36 × 102 3.13 × 101 5.78 × 102 2.62 × 100 1.14 × 102 1.59 × 100

d = 50 4.52 × 102 2.31 × 102 3.62 × 103 4.22 × 102 2.37 × 102 1.16 × 102 7.40 × 102 1.72 × 102 1.32 × 102 6.21 × 101

CEC2
d = 10 9.70 × 102 5.46 × 100 6.53 × 102 1.59 × 101 3.35 × 102 4.61 × 101 4.41 × 102 3.84 × 10−1 3.51 × 102 4.32 × 100

d = 50 6.94 × 102 2.40 × 102 5.39 × 102 3.11 × 102 4.02 × 102 4.11 × 102 5.37 × 102 3.78 × 101 3.77 × 102 1.60 × 100

CEC3
d = 10 4.80 × 102 1.13 × 102 4.85 × 102 1.97 × 101 3.32 × 102 4.44 × 102 1.00 × 103 6.93 × 102 3.28 × 102 6.55 × 10−1

d = 50 6.40 × 102 3.27 × 102 2.66 × 103 5.64 × 102 5.49 × 102 3.13 × 101 7.46 × 102 2.86 × 102 4.09 × 102 9.85 × 100

CEC4
d = 10 4.51 × 102 4.75 × 10−2 4.22 × 102 9.53 × 10−2 3.69 × 102 1.35 × 101 4.36 × 102 4.30 × 10−2 4.02 × 102 4.28 × 10−2

d = 50 4.89 × 102 5.77 × 10−1 6.35 × 102 4.91 × 10−1 4.62 × 102 4.62 × 101 5.76 × 102 2.73 × 101 4.55 × 102 4.58 × 10−1

CEC5
d = 10 6.44 × 102 1.14 × 100 5.14 × 102 3.24 × 100 5.75 × 102 1.33 × 101 6.44 × 102 1.26 × 100 5.26 × 102 6.82 × 10−1

d = 50 6.97 × 102 4.03 × 100 5.96 × 102 1.95 × 101 5.20 × 102 4.67 × 10−2 5.76 × 102 2.73 × 101 5.19 × 102 2.73 × 10−2

CEC6
d = 10 6.37 × 102 2.99 × 101 6.47 × 102 6.21 × 101 6.01 × 102 1.35 × 10−1 6.72 × 102 6.72 × 10−2 6.22 × 102 1.24 × 100

d = 50 6.84 × 102 3.62 × 101 6.72 × 102 2.51 × 101 6.49 × 102 5.23 × 10−1 6.94 × 102 5.26 × 100 6.43 × 102 7.30 × 100

CEC7
d = 10 7.66 × 102 5.39 × 101 8.06 × 102 3.67 × 100 7.15 × 102 6.59 × 10−3 8.21 × 102 3.00 × 101 7.04 × 102 6.39 × 10−1

d = 50 8.04 × 102 1.41 × 101 2.93 × 103 4.80 × 101 8.01 × 102 3.57 × 100 1.53 × 103 5.12 × 101 7.87 × 102 0

CEC8
d = 10 2.41 × 103 9.41 × 101 1.19 × 103 9.13 × 101 9.36 × 102 5.43 × 101 9.77 × 102 1.84 × 102 9.04 × 102 4.32 × 101

d = 50 1.47 × 103 6.27 × 102 1.65 × 103 2.41 × 102 1.79 × 103 1.75 × 102 1.01 × 103 3.17 × 102 1.23 × 103 8.02 × 101

CEC9
d = 10 1.91 × 103 3.72 × 102 3.37 × 103 8.44 × 101 2.85 × 103 9.62 × 10−1 1.38 × 103 3.16 × 102 9.44 × 103 7.06 × 10−3

d = 50 3.34 × 103 8.00 × 102 4.17 × 103 1.94 × 102 1.45 × 103 1.16 × 101 3.93 × 103 2.40 × 102 9.65 × 103 1.00 × 101

CEC10
d = 10 5.34 × 102 7.01 × 102 2.63 × 103 2.61 × 102 9.10 × 102 8.21 × 100 5.20 × 103 7.46 × 100 1.03 × 103 3.13 × 100

d = 50 7.99 × 102 8.96 × 102 9.13 × 102 1.36 × 102 1.81 × 103 1.96 × 102 3.18 × 103 2.17 × 102 1.08 × 103 4.32 × 100

CEC11
d = 10 1.00 × 103 2.85 × 101 1.39 × 103 3.59 × 101 1.13 × 103 3.85 × 101 1.28 × 103 7.62 × 100 1.11 × 103 2.25 × 100

d = 50 1.41 × 104 4.28 × 102 2.77 × 103 2.99 × 101 4.31 × 103 3.38 × 102 7.19 × 103 2.85 × 102 1.30 × 103 7.36 × 100

CEC12
d = 10 3.45 × 103 2.09 × 101 2.07 × 103 8.00 × 100 2.96 × 103 4.45 × 101 1.84 × 103 4.51 × 102 1.54 × 103 7.31 × 10−1

d = 50 4.06 × 103 5.23 × 101 2.62 × 103 1.36 × 102 1.49 × 103 5.27 × 102 1.78 × 103 2.81 × 102 2.19 × 103 4.85 × 100

CEC13
d = 10 1.30 × 103 3.60 × 101 1.42 × 103 7.62 × 100 1.33 × 103 1.57 × 101 6.55 × 103 1.98 × 103 1.35 × 103 1.43 × 101

d = 50 1.01 × 104 1.44 × 102 2.58 × 103 1.01 × 102 1.34 × 103 1.83 × 102 7.01 × 103 7.46 × 102 1.28 × 103 1.20 × 102

CEC14
d = 10 3.79 × 103 2.16 × 100 1.71 × 103 1.56 × 102 1.64 × 103 2.27 × 102 8.84 × 103 2.48 × 102 1.63 × 103 5.57 × 100

d = 50 2.95 × 103 7.02 × 101 3.26 × 103 3.71 × 102 1.89 × 103 1.23 × 102 1.07 × 104 5.05 × 102 1.57 × 103 8.23 × 100

CEC15
d = 10 2.44 × 103 8.15 × 102 2.25 × 103 5.61 × 102 5.49 × 103 7.61 × 101 1.74 × 103 3.46 × 101 1.68 × 103 2.17 × 101

d = 50 3.76 × 103 1.54 × 102 3.77 × 103 9.99 × 101 6.25 × 103 8.09 × 100 1.99 × 103 2.27 × 102 1.39 × 103 4.44 × 100

CEC16
d = 10 1.85 × 103 5.07 × 101 2.50 × 103 5.57 × 101 1.71 × 103 7.33 × 10−1 1.77 × 103 1.65 × 101 1.66 × 103 6.59 × 10−1

d = 50 1.90 × 103 4.39 × 101 3.98 × 103 4.35 × 101 1.61 × 103 4.82 × 100 5.28 × 103 6.92 × 102 1.60 × 103 4.78 × 100

CEC17
d = 10 2.02 × 103 3.18 × 101 2.03 × 103 5.70 × 101 1.73 × 103 1.17 × 100 1.79 × 103 6.83 × 100 1.72 × 103 1.08 × 100

d = 50 1.87 × 103 4.67 × 101 3.77 × 103 9.92 × 101 3.13 × 103 5.60 × 102 4.46 × 103 4.30 × 102 1.83 × 103 6.85 × 101

CEC18
d = 10 3.23 × 103 1.78 × 101 1.90 × 103 1.06 × 102 1.86 × 103 3.27 × 102 1.54 × 103 2.12 × 102 1.88 × 103 1.25 × 101

d = 50 1.45 × 103 5.14 × 102 3.26 × 103 2.29 × 101 2.39 × 103 4.38 × 102 2.36 × 103 7.03 × 102 2.06 × 103 1.73 × 101

CEC19
d = 10 1.46 × 103 3.69 × 102 4.24 × 103 4.50 × 102 3.12 × 103 1.05 × 102 3.18 × 103 2.37 × 102 2.27 × 103 1.01 × 102

d = 50 3.36 × 103 4.05 × 102 5.38 × 103 7.82 × 101 2.76 × 103 9.47 × 100 3.37 × 103 9.15 × 101 2.69 × 103 5.05 × 100

CEC20
d = 10 4.06 × 103 2.70 × 100 2.41 × 103 2.55 × 102 2.63 × 103 2.94 × 101 1.53 × 104 2.40 × 103 2.28 × 103 2.31 × 100

d = 50 3.00 × 103 7.18 × 101 5.75 × 103 9.57 × 100 4.79 × 103 2.70 × 102 5.18 × 103 2.17 × 102 2.89 × 103 8.86 × 100

CEC21
d = 10 2.33 × 103 1.28 × 102 2.37 × 103 4.09 × 102 2.10 × 103 3.12 × 10−1 2.18 × 103 9.06 × 100 2.03 × 103 5.31 × 100

d = 50 2.94 × 103 5.05 × 101 2.63 × 103 5.33 × 102 2.64 × 103 1.50 × 102 2.88 × 103 3.54 × 101 2.15 × 103 3.51 × 101

CEC22
d = 10 2.41 × 103 6.22 × 101 2.88 × 103 2.68 × 101 2.29 × 103 2.84 × 101 2.32 × 103 2.49 × 101 2.18 × 103 1.97 × 101

d = 50 8.29 × 103 8.13 × 102 1.09 × 104 3.87 × 102 2.31 × 103 7.52 × 101 1.60 × 104 3.83 × 102 2.28 × 103 5.36 × 101

CEC23
d = 10 2.67 × 103 4.28 × 101 2.59 × 103 3.06 × 102 2.63 × 103 0 2.69 × 103 7.35 × 100 2.37 × 103 4.28 × 101

d = 50 4.13 × 103 1.59 × 102 2.90 × 103 5.17 × 102 2.64 × 103 4.48 × 10−1 3.64 × 103 1.25 × 102 2.29 × 103 4.11 × 101

CEC24
d = 10 2.64 × 103 3.22 × 101 2.73 × 103 6.85 × 101 2.29 × 103 2.38 × 100 2.73 × 103 8.76 × 100 2.46 × 103 2.02 × 100

d = 50 3.77 × 103 2.65 × 101 2.99 × 103 8.36 × 101 2.68 × 103 6.69 × 10−1 3.50 × 103 3.29 × 102 2.43 × 103 1.99 × 10−1

CEC25
d = 10 3.36 × 103 2.45 × 102 1.03 × 104 4.42 × 102 2.90 × 103 1.53 × 102 4.45 × 103 5.55 × 102 2.64 × 103 1.45 × 102

d = 50 6.63 × 103 2.52 × 101 9.13 × 103 3.57 × 102 3.18 × 103 3.41 × 102 6.29 × 103 8.12 × 101 3.02 × 103 2.21 × 101

CEC26
d = 10 4.69 × 103 1.58 × 103 3.89 × 103 2.29 × 102 4.45 × 103 1.91 × 102 4.84 × 103 6.35 × 100 3.50 × 103 4.75 × 100

d = 50 3.08 × 103 9.14 × 102 4.03 × 103 1.57 × 102 4.62 × 103 2.16 × 102 3.98 × 103 9.50 × 102 2.94 × 103 1.38 × 102

CEC27
d = 10 4.30 × 103 3.28 × 102 2.29 × 103 1.11 × 102 3.18 × 103 4.14 × 101 5.52 × 103 3.08 × 102 3.18 × 103 2.20 × 102

d = 50 3.01 × 103 5.24 × 101 3.53 × 103 3.34 × 102 2.89 × 103 1.54 × 102 7.85 × 103 1.25 × 102 3.04 × 103 4.00 × 101

CEC28
d = 10 3.44 × 103 4.37 × 102 4.88 × 103 1.20 × 102 3.19 × 103 2.40 × 102 6.07 × 103 1.37 × 102 2.99 × 103 7.49 × 101

d = 50 5.96 × 103 2.27 × 100 6.79 × 103 6.17 × 101 3.91 × 103 2.87 × 102 9.38 × 103 3.08 × 102 3.37 × 103 1.56 × 100

CEC29
d = 10 2.82 × 103 8.13 × 102 3.11 × 103 3.18 × 102 2.27 × 103 1.50 × 102 4.58 × 103 9.71 × 101 3.10 × 103 7.58 × 101

d = 50 2.76 × 103 3.03 × 102 4.35 × 103 6.07 × 102 1.14 × 104 3.62 × 103 6.61 × 103 7.49 × 102 3.18 × 103 2.74 × 102

As can be seen from Table 6, when dealing with complex CEC2017 test functions, the
performance of all algorithms is degraded, and it becomes rare to directly obtain theoretical
values. On functions CEC1, CEC4, CEC7, CEC10, CEC11, CEC16, CEC17, CEC22, CEC23,
and CEC24, the results of TRS-ChOA are very close to the theoretical optimal value, and the
accuracy is higher than other algorithms. When the dimension d = 10, the mean value of GWO
on CEC2, CEC6, CEC18, and CEC21 is closer to the optimal value than that of TRS-ChOA, but
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TRS-ChOA performs better when the dimension increases. In addition, the standard deviation
of TRS-ChOA is generally superior to the other four algorithms, indicating that TRS-ChOA
has stronger stability. In conclusion, compared with the other four algorithms, the proposed
TRS-ChOA has more prominent advantages in the CEC2017 test functions, which indicates
that TRS-CHOA has better robustness and can adapt to more complex problems.

By conducting experiments on 13 benchmark functions and 29 CEC2017 complex func-
tions, it was proven that the three proposed improvement strategies effectively enhanced the
performance of the original ChOA. TRS-ChOA demonstrates faster search speed and higher
convergence accuracy compared to ChOA in both low- and high-dimensional benchmark func-
tions. When solving CEC2017 complex functions, TRS-ChOA exhibits superior optimization
performance over the other four algorithms and demonstrates good stability. In summary,
TRS-ChOA has better optimization performance and robustness; it can not only handle simple
single-mode problems but also solve high-dimensional multi-constraint optimization problems.

6. UAV Path Planning Test

In Section 2, we establish a mathematical model for the UAV path planning problem.
Based on this model, we design three different 3D environments and utilize the proposed
algorithms to plan flight paths for UAVs in these environments, aiming to mitigate the ran-
domness of experimental results. In these models, there are challenges such as mountains,
buildings (modeled as regular prisms), and areas with enemy radar scanning (modeled as
cylinders), which pose threats to UAV flight. In order to verify the effectiveness of TRS-
ChOA in solving UAV path planning, WOA, ALO, SSA, ChOA, and GWO were selected
and compared with TRS-ChOA in different 3D environment models.

6.1. Parameter Settings

To ensure the fairness of the experiment, the basic parameters of each algorithm are
set uniformly: population size N = 30, maximum number of iterations T = 50. The internal
parameters of WOA, ALO, GWO, SSA, ChOA, and TRS-ChOA are shown in Table 1. All
environmental models have an area of 220 × 220 without limiting the height of the models.
The basic terrain is constructed by Equation (1), and the mountains and human engineering
are then superimposed onto the model to make it more realistic. The starting and ending
point coordinates of the UAV are (20, 20, 20) and (200, 200, 20), respectively. The altitudes
of the starting point and the ending point are 20 to avoid the problem of excessive climbing
angle or descending angle of the UAV during takeoff or landing, which may lead to the crash
of the UAV. Setting the height to 20 also tests whether the algorithm can search down in 3D
space. In addition, since the height of obstacles in the model is all greater than 20, as long
as the UAV flies over the obstacles, there will be a change in height, which will generate
losses in Equation (5). This is fair to all algorithms participating in the simulation. The specific
parameters of the mountain areas, buildings, and radar scanning areas in the model are shown
in Table 7. Figure 4 shows a 3D environment built from the data in Table 7.
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Table 7. Parameters of the 3D environment model.

3D Environment Threat
Areas Parameters Value

Model 1

mountains

Central coordinate [80,25] [70,80] [175,45] [140,125] [60,150] [120,175]

height 40 40 50 40 40 45

Slope in the X direction 40 15 35 15 20 35

Slope in the Y direction 40 15 60 15 20 20

buildings

Central coordinate [35,120] [105,115]

height 40 40

Apothem 15 15

Side length 30 15

Radar areas

Central coordinate [45,50] [120,75] [175,165]

height 40 40 40

radius 10 15 12

Model 2

mountains

Central coordinate [100,160] [170,40] [105,50]
height 60 70 80

Slope in the X direction 40 20 45

Slope in the Y direction 40 20 20

buildings

Central coordinate [30,125] [50,40]

height 40 30

Apothem 24 10

Side length 34.87 20

Radar areas

Central coordinate [160,150]

height 50

radius 20

Model 3

mountains

Central coordinate [50,60] [130,100] [135,90] [170,150] [170,50]
height 40 40 50 40 40

Slope in the X direction 40 15 60 15 20

Slope in the Y direction 40 15 35 15 20

buildings

Central coordinate [110,40]

height 60

Apothem 17.3

Side length 34.6

Radar areas

Central coordinate [50,170] [170,195]

height 30 50

radius 25 10

6.2. Simulation Experiment and Results

Figure 5 shows the optimization results of the six algorithms in three simulation en-
vironments, and Figure 6 shows their corresponding vertical views. As can be seen from
Figure 5, all six algorithms can find the flight path from the starting point to the destination.
However, in environment 1, to bypass human engineering at the center of the map, ALO,
WOA, and GWO choose to increase the flight altitude of the UAV and fly along a route close
to the mountain. This increases the distance of the flight and the likelihood of encountering
danger. In environment 2, ALO, WOA, and SSA also chose to fly over the mountain on the
left, resulting in the UAV wasting more resources. In environment 3, we place threatening
human engineering on both sides of the map, but WOA, ALO, SSA, ChOA, and GWO still
can’t find the best path at the center of the map. In contrast, TRS-ChOA finds a better path in
all three scenarios, not only avoiding the threat area but also always staying at a low flight
altitude (flying over mountains or human engineering as little as possible), greatly shortening
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the UAV’s flight distance. In addition, the path planned by TRS-ChOA in Figure 6 is smoother
than other algorithms and maintains a safe distance from the threat area on the map. In
environment 1, the steering angle of the paths planned by SSA and WOA is too large, which
makes it easy to cause a crash accident. The routes of other algorithms in environment 2
and environment 3 fluctuate greatly and are close to mountains, which also increases the risk
factor. Therefore, the UAV trajectory planned by TRS-ChOA is more secure and stable.
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To more scientifically and objectively compare the performance of TRS-ChOA with five
other algorithms in trajectory planning, we repeated the tests 30 times in all three environments.
Table 8 records the length of the trajectories obtained by the six algorithms. Figure 7 shows
the average convergence curves of the six algorithms in the path planning experiment. Table 9
records the loss function values of the trajectories obtained by each algorithm.
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Table 8. Path length of each algorithm.

3D Model
Algorithm

Path Length
Longest Shortest Mean

Environment 1

WOA 410.32 284.73 390.27
ALO 399.76 363.45 374.18
SSA 341.25 295.07 318.08

ChOA 292.08 259.62 283.24
GWO 406.91 372.94 381.06

TRS-ChOA 286.40 251.79 263.29

Environment 2

WOA 354.61 293.55 318.46
ALO 317.42 261.00 284.72
SSA 320.08 294.18 315.65

ChOA 327.10 281.38 304.01
GWO 321.94 300.25 309.19

TRS-ChOA 297.36 274.82 279.56

Environment 3

WOA 352.47 312.29 338.97
ALO 354.12 347.53 350.68
SSA 297.74 263.80 285.88

ChOA 333.26 304.91 317.93
GWO 324.59 299.47 313.93

TRS-ChOA 284.06 262.56 267.71

Table 9. Loss function value of each algorithm.

3D Model
Algorithm

Fitness Value
Optimal Worst Mean

Environment 1

WOA 464.13 487.51 477.19
ALO 300.00 364.74 311.42
SSA 287.85 329.99 300.61

ChOA 463.11 490.07 476.08
GWO 198.65 347.61 224.93

TRS-ChOA 113.60 152.79 115.37

Environment 2

WOA 392.64 985.06 937.40
ALO 435.29 908.31 850.31
SSA 224.57 678.34 343.06

ChOA 339.15 852.38 771.56
GWO 455.74 890.00 860.67

TRS-ChOA 119.48 481.90 125.04

Environment 3

WOA 314.60 869.75 573.51
ALO 428.00 589.91 560.29
SSA 365.77 714.70 401.57

ChOA 316.49 462.39 385.48
GWO 293.68 613.44 442.83

TRS-ChOA 250.84 419.56 268.16

According to Table 8, in environment 1, the average path length of TRS-ChOA is
shortened by 32.5%, 29.6%, 17.2%, 7.0%, and 30.9% compared to WOA, ALO, SSA, ChOA,
and GWO, respectively, with an average reduction of 23.4%. In environment 2, the average
path length of TRS-ChOA is shortened by 12.2%, 1.8%, 11.4%, 8.0%, and 9.6% compared to
WOA, ALO, SSA, ChOA, and GWO, respectively, with an average reduction of 8.6%. In
environment 3, the average path length of TRS-ChOA is shortened by 21.0%, 23.7%, 6.4%,
15.8%, and 14.7% compared to WOA, ALO, SSA, ChOA, and GWO, respectively, with an
average reduction of 16.3%. These data indicate that TRS-ChOA can find a shorter path
connecting the starting point and ending point in a complex 3D environment, saving more
energy and flight time for UAVs.

As can be seen from Figure 7, the fitness values of TRS-ChOA in the three models are
lower than those of the other five algorithms. In Figure 7a,c, although TRS-ChOA is not the
algorithm with the fastest convergence speed in the early stage of iteration, it can jump out
of the local optima and find the global optima in the later stage. In Figure 7b, TRS-ChOA
converges quickly at the beginning of the iteration and finds the optimal value. Therefore,
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TRS-ChOA has a better global optimization capability than the other five algorithms and
can minimize the loss of UAV path planning.

According to Table 9, in environment 1, the average fitness value of TRS-ChOA
is decreased by 75.8%, 63.0%, 61.6%, 75.8%, and 48.7% compared to WOA, ALO, SSA,
ChOA, and GWO, respectively, with an average reduction of 65.0%. In environment 2,
the average fitness value of TRS-ChOA has decreased by 86.7%, 85.3%, 63.6%, 83.8%, and
85.5% compared to WOA, ALO, SSA, ChOA, and GWO, respectively, with an average
reduction of 81.0%. In environment 3, the average fitness value of TRS-ChOA has decreased
by 53.2%, 52.1%, 33.2%, 30.4%, and 39.4% compared to WOA, ALO, SSA, ChOA, and GWO,
respectively, with an average reduction of 41.7%. In addition, the difference between the
optimal and worst fitness values of TRS-ChOA is small, indicating that TRS-ChOA has
excellent stability. In summary, TRS-ChOA has a stronger performance in solving multi-
constraint combinatorial optimization problems. In the process of planning the flight path
for UAVs, it can better balance the flight distance, flight altitude, and steering angle, saving
more energy and time while ensuring the safety of UAVs.

7. Conclusions

In this paper, we propose an improved version of the Chimp Optimization Algorithm
(ChOA), called TRS-ChOA, for solving the path planning problem of UAVs in 3D envi-
ronments. We construct a challenging simulated 3D environment that includes various
terrain and buildings that may pose threats to UAV flights. Additionally, we consider three
performance constraints that UAVs need to consider during the path planning process:
flight distance, climbing height, and turning angle, and integrate them into a comprehen-
sive loss function for path planning. We make the following improvements to ChOA:
firstly, we integrate the differential evolution mutation operator into ChOA to enhance the
quality of individuals in the population. Secondly, we utilize improved reverse learning
to expand the search space effectively, avoiding the possibility of missing high-quality
solutions. Finally, we introduce similarity preference weights to prevent search agents
from excessively assimilating, thereby enhancing the algorithm’s ability to escape from
local optima. In benchmark and CEC2017 complex function optimization tests, TRS-ChOA
outperforms ChOA and other algorithms in both low-dimensional and high-dimensional
scenarios. This demonstrates that these three improvement strategies effectively enhance
the convergence speed, convergence accuracy, stability, and robustness of ChOA.

We conducted simulation experiments on path planning using TRS-ChOA and five
well-known algorithms in three different 3D environments. The experimental results show
that, compared to the other five algorithms, TRS-ChOA can obtain shorter, smoother, and
safer flight paths in all three scenarios. It effectively reduces the flying time and distance of
the UAV while avoiding threat areas on the map, ensuring safety during the UAV’s flight.
Additionally, the paths planned by TRS-ChOA try to avoid directly crossing obstacles
in the environment. This eliminates the safety hazards caused by large-scale climbing or
descending the UAV, as well as reducing energy consumption. We repeated the experiments
30 times in each of the three scenarios, and the results demonstrate that the average length
of paths planned by TRS-ChOA is the shortest among all the algorithms. Compared to
the other algorithms, it reduces the average length by 23.4%, 8.6%, and 16.3% in the three
scenarios, respectively. Meanwhile, the fitness value of the paths generated by TRS-ChOA
is reduced by an average of 65.0%, 81.0%, and 41.7% in the three scenarios, respectively. It
can be seen from these data that TRS-ChOA exhibits good reliability and effectiveness in
UAV path planning in 3D environments, providing a new strategy for solving such multi-
constraint combinatorial optimization problems. However, in our research, we simplified
the UAV as a uniformly moving point to simplify the flight model and ignored many
dynamic issues that need to be considered in reality. Moreover, we constructed a static
environment where the positions and sizes of obstacles are fixed. In the future, we will
introduce more factors that may affect UAV flight, construct more realistic flight models
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and dynamic 3D environments, and further improve TRS-ChOA to plan flight paths for
UAVs in real-time changing environments.
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