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Abstract: Background: The challenge of differentiating, at an early stage, Parkinson’s disease from
parkinsonism caused by other disorders remains unsolved. We proposed using an artificial neural
network (ANN) to process images of dopamine transporter single-photon emission computed
tomography (DAT-SPECT). Methods: Abnormal DAT-SPECT images of subjects with Parkinson’s
disease and parkinsonism caused by other disorders were divided into training and test sets. Striatal
regions of the images were segmented by using an active contour model and were used as the
data to perform transfer learning on a pre-trained ANN to discriminate Parkinson’s disease from
parkinsonism caused by other disorders. A support vector machine trained using parameters of
semi-quantitative measurements including specific binding ratio and asymmetry index was used for
comparison. Results: The predictive accuracy of the ANN classifier (86%) was higher than that of
the support vector machine classifier (68%). The sensitivity and specificity of the ANN classifier in
predicting Parkinson’s disease were 81.8% and 88.6%, respectively. Conclusions: The ANN classifier
outperformed classical biomarkers in differentiating Parkinson’s disease from parkinsonism caused
by other disorders. This classifier can be readily included into standalone computer software for
clinical application.

Keywords: artificial neural network; deep learning; Parkinson’s disease; atypical parkinsonian
syndrome; dopamine transporter SPECT

1. Introduction

Disease-modifying therapies including target therapy are under development to treat
Parkinson’s disease (PD). According to the targeted pathogenesis, some treatment strate-
gies focus on the very initial phase of the disease [1,2]. However, early in the disease
progress, PD and parkinsonism caused by other disorders, including atypical parkinsonian
syndromes share similar clinical features because the hallmarks of PD or other parkinson-
ism may not have emerged [3,4]. To date, the diagnosis of PD is solely based on clinical
diagnostic criteria and gene tests. However, it takes time to fulfil these clinical diagnostic
criteria, and only less than 5% of all PD patients have known causative genes [1,5]. There-
fore, new diagnostic tools aiding efficient screening are required to address this unmet
need.

Clinicopathological studies based on brain bank material have shown that clinicians
diagnose PD incorrectly in about 25% of patients. One of the most common reasons
for misdiagnosis was atypical parkinsonian syndromes [6]. To differentiate PD from
other forms of parkinsonism, the guidelines of the European Federation of Neurological
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Societies suggest transcranial sonography of the mesencephalic brainstem. In clinical
practice, proper evaluation of the substantial nigra depends on experienced technicians and
investigators, and also on the quality of the temporal bone window. Structural magnetic
resonance imaging (MRI) reveals typical signs of Parkinson-plus syndromes only in the
middle or later course of the diseases. Many types of advanced MRI techniques such
as voxel-wise analysis [7], diffusion [8,9], susceptibility [10,11], neuromelanin [12], and
functional imaging have been evaluated, however their overall sensitivity and specificity
have been insufficient to meet the clinical demand. 18F-fluorodeoxyglucose positron
emission tomography (FDG-PET) is an imaging modality that has a prediction accuracy
above 90% [13,14]. Due to the long procedure time, the influence of the subject’s blood
glucose status, cost-effectiveness, and usage of diagnostic template images, to date, FDG-
PET has not been recommended in clinical practice. Moreover, other clinical diagnostic
modalities such as 123I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy and
olfactory testing have been reported to achieve a higher specificity of up to 80% when
compared with gold-standard clinical or clinicopathologic diagnoses in differentiating PD
from other parkinsonisms [3]. However, several olfactory test studies have reported a
sensitivity ranging from 61–77% [3,5,15,16], and when MIBG myocardial scintigraphy was
used prospectively in general parkinsonian cases, the accuracy was somewhat limited [17].

An abnormal dopamine transporter single-photon emission computed tomography
(DAT-SPECT) image reflects the dysfunction of striatal neurons, and its discrimination
of PD or not PD relies on clinical information and other structural images. However, in
daily clinical scenarios discriminative information is not always obtainable. To classify
parkinsonism based on DAT-SPECT images, advanced engineering techniques with semi-
quantitative analysis have been applied [18]. In addition, images or signals from striatal
regions (SRs) alone can provide adequate differentiating information [19]. One research
group differentiated degenerative parkinsonism using a computer-aided automatic al-
gorithm and SR and whole-brain uptake patterns. Both were shown to have adequate
specificity (84–90%), however the whole-brain uptake pattern demonstrated lower sensi-
tivity [20]. Another study group discovered that in voxel-based analysis of DAT-SPECT
images, SR alone could differentiate PD from dementia with Lewy bodies (DLB), while
regions outside SRs were not contributory [21].

Machine learning and artificial neural networks (ANNs) have developed rapidly and
been applied in clinical settings [22]. Recently, Vaccaro et al. demonstrated that a careful
analysis of neuropsychological deficits through a machine-learning approach successfully
discriminated PD and progressive supranuclear palsy [23]. An ANN application on DAT-
SPECT images reported a classification accuracy of up to 90% in identifying PD with a
mean Hoehn and Yahr (H&Y) stage of 1.6 from healthy controls [24], a great leap from
the 80% achieved with conventional or semi-quantitative analysis [24,25]. Thus, in this
study, we combined appropriate segmentation of SR images derived from DAT-SPECT
with a widely-used pre-trained neural network for computer-vision to investigate the
efficiency of this integrated method in identification of PD from parkinsonism caused by
other disorders.

2. Material and Methods
2.1. Subjects

Ethical review and approval were waived for this study, due to collection, analysis and
publication of the retrospectively obtained and anonymized data for this non-interventional
study. As a retrospective study evaluating SPECT images performed in the diagnostic
setting without disclosing any personal information of the patients, the need for written
consent was waived.

2.1.1. First Set of Images for ANN Training and Validation

Medical charts of subjects with parkinsonian syndromes (ICD-9 coded 332.0 and 332.1)
who received DAT-SPECT imaging (99mTc-TRODAT-1-SPECT) from 2017 to 2019 at the
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outpatient clinic performed by three neurologists specializing in movement disorders were
retrospectively reviewed. The initial number of collected subjects was 518. The images
reported as normal or aging-related were firstly excluded. The remaining 379 patients
(234 subjects with clinically-favored idiopathic PD and 145 subjects with clinically-favored
non-PD) were then assigned into two groups: those with PD and those with parkinsonism
caused by other disorders (non-PDs), according to the following criteria. In the PD group,
in order to establish higher sensitivity and specificity (>90%) of “ground truth” images,
we followed the Queen Square Brain Bank (QSBB) criteria to exclude those with a history
of stroke or exposure to neuroleptic agents. Finally, 105 cases who had been regularly
followed up for more than three years were classified into the PD group. In the non-
PD group, cases with drug-induced parkinsonism were excluded, and 100 cases with a
diagnosis of possible or probable Parkinson-plus syndromes (such as multiple system
atrophy or progressive supranuclear palsy), DLB, vascular parkinsonism, or other causes
of parkinsonism characterized by parkinsonian syndromes with symmetrical features and
unresponsive to L-dopa treatment were selected (Figure 1). Finally, a total of 205 images
were used to train the ANN as a classifier through randomly splitting these images into
90% for training and 10% for validation.
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Figure 1. The flow chart of subject selection for artificial neural network (ANN)-classifier
training. The cases with drug-induced parkinsonism which reported as normal DAT-
SPECT were excluded. ICD, international classification diagnosis; DAT-SPECT, dopamine
transporter single-photon emission computed tomography; PD, Parkinson’s disease; APS,
atypical parkinsonian syndrome; QSBB, Queen Square Brain Bank; MDS, movement disor-
der society; H&Y, Hoehn and Yahr stage; MSA, multiple system atrophy; PSP, progressive
supranuclear palsy; DLB, dementia with Lewy bodies; VaP, vascular parkinsonism; SCA,
spinocerebellar ataxia.

2.1.2. Second Set of Images for Testing the ANN Classifier

To test the performance of the trained ANN classifier, a second dataset of DAT-SPECT
images performed from January to March 2020 of cases with a diagnosis of parkinsonian
syndrome (n = 57) was obtained. Cases with a history of unilateral onset of parkinsonian
symptoms and adequate responsiveness to levodopa treatment, but who did not meet
the QSBB exclusion criteria were defined as having PD. Those with prominent red flags
such as bilateral onset of symptoms and unresponsive to levodopa treatment, or who met
the QSBB exclusion criteria such as early cognitive impairment, cerebellar signs, or with
structural imaging suggesting vascular parkinsonism or hydrocephalus were defined as
having parkinsonism caused by other disorders (non-PDs).
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2.2. Image Processing
2.2.1. Image Pre-Processing

First, a mask to remove scalp uptake was applied to all images. The intensity of
images was then normalized by contrast stretching. To select the region of interest (ROI),
i.e., the SR, an active contour model was applied [26]. The physician first selected an ROI
using the same procedure as in the conventional method for calculating striatal/occipital
ratio, and the active contour model automatically adjusted the outline of the ROI [27] to
minimize the summarized values contributed by both inside and outside of the ROI, and a
fitted ROI was then segmented out for the next step. This method also minimized selection
bias and physician inconsistency. We also kept the images before segmentation for further
comparison.

2.2.2. Binary Classification by ANN

The segmented SR images were fed into the ANN training process for classification.
We applied the method of transfer learning to a pretrained network from an open source.
AlexNet is a standard model for image classification through deep learning that has been
widely applied to medical images. It is composed of five convolutional layers and three
fully-connected layers. We froze the parameters of convolutional layers for basic feature
extraction. In the last three fully-connected layers, we replaced the label space with our
image categories. This trained ANN classifier was first validated using the validation data
targeting an accuracy > 90%, and then re-confirmed using the independent test dataset. The
results of training/validation and test dataset were presented by calculating the area under
the receiver operating characteristic curve (AUROC). For comparison, we also trained
another ANN classifier using images of the whole brain without segmentation (Figure 2).
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Figure 2. Workflow of image preprocessing, SR segmentation, and ANN classifier training.
The ANN classifier was trained by different types of images (original, whole brain, and
segmented SR). The SR segmentation demonstrated higher accuracy than the other two
types of images.

2.2.3. Semi-Quantitative Measurements and Machine-Learning Classification

Two indicators were evaluated—specific binding ratio (SBR), which was calculated as
((SR-occipital)/occipital) and asymmetry index (ASI), which was calculated as ((2 |SRleft −
SRright|)/(SRleft + SRright)). Classification of the PD and non-PD groups was attempted
using SBR and ASI with machine-learning approaches including linear discrimination,
support vector machine (SVM) with quadratic, cubic, and Gaussian kernel methods, with
or without primary component analysis (PCA) from the classification learner toolbox of
Matlab 2018b (MathWorks, Natick, Massachusetts). The SVM handled both linear and
nonlinear classification. In linear models, the SVM attempted to define the largest margin
between the points on either side of the decision line, whereas in non-linear models, a
hyperplane approach was applied for binary classification of the dataset.
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Details of the DAT-SPECT scanning protocol and imaging data acquisition are de-
scribed in Appendix A. Statistical analyses were performed using SPSS software (SPSS
Statistics for Windows, version 17.0, SPSS Inc., Chicago, IL, USA).

2.2.4. Class-Activation Mapping to Visually Explain the ANN Classifier

Computer-vision examines images in matrices using a matrix method and convolutes
them into complicated features which are usually meaningless to the human eye. These
features are not regarded as being biomarkers and are hardly correlated to clinical facts.
One way to visualize computer-vision is through class-activation mapping (CAM), which
produces “visual explanations” from an ANN using parts of the image that weigh most
while performing classification. CAM has been widely applied in deep learning methods
of medical imaging [28], and we used it in this study to visually explain the results from
the ANN classifier.

All image processing and ANN procedures were implemented in Matlab 2018b (Math-
Works, Natick, MA, USA).

3. Results
3.1. Demographic Characteristics

The clinical characteristics of the patient groups are summarized in Table 1. There
were no significant differences in age or gender (for training/validation set, p = 0.44 and
for test set, p = 0.91). For the training/validation dataset, there were 105 subjects in the PD
group with an average H&Y stage of 1.93 (median H&Y stage 2). The non-PD group (100
subjects) included 23 cases with Parkinson-plus syndrome, 8 cases with DLB, 8 cases with
vascular parkinsonism, 1 case with spinocerebellar ataxia, and 60 cases with other forms of
parkinsonism. For the test dataset, there were 22 subjects in the PD group, with an average
H&Y stage of 1.95 (median H&Y stage 2), and 35 subjects in the non-PD group, including 6
cases with Parkinson-plus syndrome, 8 cases with DLB and 21 cases with other forms of
parkinsonism.

Table 1. Demographic characteristics of the subjects.

Data Training/Validation Set
(n = 205)

Test Set
(n = 57)

Group PD Non-PD p Value PD Non-PD p Value

Age (years)
(mean ± SD) 65.4 ± 10.2 66.6 ± 12.8 0.44 70.3 ± 9.8 70.6 ± 13.4 0.93

Gender
(F/M) 52/53 45/55 0.51 8/14 12/23 0.87

Mean disease
duration

(years) (IQR)
2.32 (2) 1.89 (1) 0.27 2.57 (2.5) 3.56 (3) 0.34

PD, Parkinson’s disease; SD, standard deviation; IQR, interquartile range.

3.2. Comparisons of Semi-Quantitative Measurements and ANN Classifier

The performances of classifying the test dataset using semi-quantitative measurements
and ANN classifier were compared. The distributions of both SBR and ASI of the test
dataset were found to be normal according to the Shapiro–Wilk test. The unpaired t tests
between the PD and non-PD groups were p = 0.003 for SBR and p = 0.083 for ASI. The
test datasets were classified using SBR and ASI, respectively. According to the boxplot,
the distributions of SBR and ASI values between groups greatly overlapped (Figure 3A,B).
Classification by SVM using features from the combination of SBR and ASI revealed that
moderate Gaussian kernel through PCA feature extraction resulted in the best result among
the methods of machine learning (Figure 3C). There were still several remarkable errors
within each classification region. The classification accuracy was 68.4% with sensitivity and
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specificity of 31.8% and 91.4%, respectively, in predicting PD. For the ANN classifier, an
accuracy of 92% was obtained through repetitively fine-tuning and validating the training
dataset. Classification of the test dataset through best parameters (feature maps) from
computer-vision with ANN revealed an accuracy of 86% with sensitivity and specificity
of 81.8% and 88.6%, respectively, in predicting PD (Table 2). The performance of this
classifier was favorable (Table 3). The AUROC was 0.94 for the training/validation dataset
and 0.76 for the test dataset (Figure 4A). Another ANN classifier trained and tested using
whole-brain images (without segmentation) from the same groups of subjects had lower
accuracy, sensitivity, and specificity (Table 2).
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Figure 3. Distribution of indicators derived from semi-quantitative methods (SBR and ASI)
in the test dataset (n = 57). (A) Dot diagram overlaid whisker-boxplot of SBR showed a
wider range of distribution in the non-PD group. The range of the PD group almost totally
overlapped with that of the non-PD group. (B) Dot diagram overlaid whisker-boxplot
of ASI showed a wider range of distribution in the PD group. The range of the non-PD
group almost totally overlapped with that of the PD group. (C) Scatterplot of SBR and ASI
of both groups showing the classification results of median Gaussian kernel SVM with
PCA. In the PD (lighter) region only one non-PD point was included, while there were
12 PD points in the non-PD’s (darker) region. The overall accuracy was 68.4% using this
machine-learning method.

Table 2. Comparisons of the prediction accuracy of the test dataset with different classifiers.

Classifier SVM ANN

Learning Method Machine Learning Deep Learning

Input data SBR & ASI Whole-brain image SR image
Accuracy 68.4% 68.4% 86.0%

Sensitivity 31.8% 81.8% 81.8%
Specificity 91.4% 60.0% 88.6%

SVM, support vector machine; ANN, artificial neural network; SBR, specific binding ratio; ASI,
asymmetry index; SR, striatal region.

3.3. Visualization of Computer-Vision through CAM

Class-activation mapping revealed the most discriminative parts of the images, and
the results showed that computer-vision focused on the most informative regions of both
sides of the putamen (tail of comma) (Figure 4B) to classify PD and non-PD. However,
which of the intensity, shape, curvature, or convexity of contour was the most characteristic
feature was not available for further analysis.
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Table 3. Confusion matrix of ANN classifier for predicting PD.

Predicted Positive
(Classified as PD)

Predicted Negative
(Classified as non-PD)

Actual positive
(PDs = 22)

TP
18

FN
4

Sensitivity (recall)
0.818

Actual negative
(non-PDs = 35)

FP
4

TN
31

Specificity
0.886

Precision
0.818

Negative Predictive value
0.886

Accuracy
0.860

F1 score: 2 × (precision × recall)/(precision + recall) = 0.818

PD, Parkinson’s disease; TP, true positive; FP, false positive; FN, false negative; TN, true positive.

Biomedicines 2021, 9, x FOR PEER REVIEW 7 of 11 
 

PD, Parkinson’s disease; TP, true positive; FP, false positive; FN, false negative; TN, true positive. 

 

Figure 4. Classification of the test dataset using the ANN classifier. (A) The area under the receiver 

operating characteristic curve (AUROC) was 0.94 in the training/validation dataset (blue line) and 

0.76 in the test dataset (red line). (B) Examples of classification using the ANN classifier for each 

group. Upper row is an example of PD and the lower row non-PDs. Left column: the images be-

fore scalp-mask and segmentation. Middle column: the images of segmented SR using the active 

contour model. Right column: the CAM represented with a heat map. The computer-vision 

weighted more on areas with a warmer color when examining the images. Overlaying on SR im-

ages showed that the computer focused most on the putamen. This PD subject was a 58-year-old 

male with symptoms of resting tremors in his right hand for 2 years and H&Y stage 2 when DAT-

SPECT was obtained. Another example case of multiple system atrophy was a 69-year-old male 

who had symptoms of urinary incontinence, orthostatic hypotension, and cerebellar features of 

dysmetria and parkinsonism. The disease duration before DAT-SPECT was obtained was 2 years. 

Prob., probability of class. 

3.3. Visualization of Computer-Vision through CAM 

Class-activation mapping revealed the most discriminative parts of the images, and 

the results showed that computer-vision focused on the most informative regions of both 

sides of the putamen (tail of comma) (Figure 4B) to classify PD and non-PD. However, 

which of the intensity, shape, curvature, or convexity of contour was the most character-

istic feature was not available for further analysis. 

4. Discussion 

The accuracy of differentiating parkinsonian syndromes through visually rating 

DAT-SPECT images has been reported to be quite low [29]. Although the semi-quantita-

tive measurements revealed statistical differences between the PD and non-PD groups in 

testing data in this study, the individual values overlapped greatly between groups (Fig-

ure 3). The ANN classifier provided a higher specificity in prediction using “computer-

vision parameters”. Our results showed acceptable accuracy in differentiating PD from 

parkinsonism caused by other disorders using only DAT-SPECT images without addi-

tional information. The performance of the ANN classifier, with sensitivity and specificity 

both above 80%, was comparable to that of quantitative olfactory examinations and MIBG 

myocardiac scintigraphy suggested by diagnostic guidelines. Furthermore, this method is 

promising because of several advantages: (1) as the sample size of the dataset increases, 

training results can be further improved; (2) with an adequate number of images taken 

during the earlier phase of disease (PD or atypical parkinsonian syndromes), the ANN 

classifier may be trained to identify PD at an early phase [24] or even possibly at a pre-

clinical phase; (3) medical centers and hospitals can train a site-specific ANN classifier 

using SPECT images based on their own existing dataset without developing new diag-

nostic modalities or purchasing expensive machines, especially for places where MIBG is 

Figure 4. Classification of the test dataset using the ANN classifier. (A) The area under
the receiver operating characteristic curve (AUROC) was 0.94 in the training/validation
dataset (blue line) and 0.76 in the test dataset (red line). (B) Examples of classification using
the ANN classifier for each group. Upper row is an example of PD and the lower row
non-PDs. Left column: the images before scalp-mask and segmentation. Middle column:
the images of segmented SR using the active contour model. Right column: the CAM
represented with a heat map. The computer-vision weighted more on areas with a warmer
color when examining the images. Overlaying on SR images showed that the computer
focused most on the putamen. This PD subject was a 58-year-old male with symptoms
of resting tremors in his right hand for 2 years and H&Y stage 2 when DAT-SPECT was
obtained. Another example case of multiple system atrophy was a 69-year-old male who
had symptoms of urinary incontinence, orthostatic hypotension, and cerebellar features of
dysmetria and parkinsonism. The disease duration before DAT-SPECT was obtained was
2 years. Prob., probability of class.

4. Discussion

The accuracy of differentiating parkinsonian syndromes through visually rating DAT-
SPECT images has been reported to be quite low [29]. Although the semi-quantitative
measurements revealed statistical differences between the PD and non-PD groups in testing
data in this study, the individual values overlapped greatly between groups (Figure 3). The
ANN classifier provided a higher specificity in prediction using “computer-vision parame-
ters”. Our results showed acceptable accuracy in differentiating PD from parkinsonism
caused by other disorders using only DAT-SPECT images without additional information.
The performance of the ANN classifier, with sensitivity and specificity both above 80%,
was comparable to that of quantitative olfactory examinations and MIBG myocardiac
scintigraphy suggested by diagnostic guidelines. Furthermore, this method is promising
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because of several advantages: (1) as the sample size of the dataset increases, training
results can be further improved; (2) with an adequate number of images taken during the
earlier phase of disease (PD or atypical parkinsonian syndromes), the ANN classifier may
be trained to identify PD at an early phase [24] or even possibly at a preclinical phase;
(3) medical centers and hospitals can train a site-specific ANN classifier using SPECT
images based on their own existing dataset without developing new diagnostic modalities
or purchasing expensive machines, especially for places where MIBG is not available;
(4) SPECT is more widely available, so that when the diagnosis is not straightforward,
physicians tend to order SPECT imaging first to confirm striatal neuron loss, such as to
differentiate essential tremors from PD, but not MIBG myocardial scintigraphy before
proving a neurodegenerative disease in the early phase; and (5) PD can be differentiated
from many disease types of parkinsonism, not just a few Parkinson-plus syndromes or
other Lewy body diseases [19,30]. Therefore, this classifier is more applicable when facing
uncertain types of parkinsonism in clinical practice. In addition, we chose easily-accessible
methods and basic application programs, including an active contour model for segmenta-
tion and AlexNet for learning and classification. These two tools are widely utilized and
can be obtain from online resources. All the processing in this paper were done by a PhD
student with entry-level graphics processing unit (GPU, NVIDIA GeForce GTX 1060) in a
personal computer. This avoided the need for complicated image processing procedures,
experienced engineers, or high-performance computer equipment.

For a feasible classifier, the discriminative parameters do not necessarily need to be
clinically correlated, such as extracted features from component analysis [25] or shape/
morphological fitting characteristics [18]. Even though SPECT is an imaging technique
with a lower resolution than MRI, ANN analyzes an image by decomposing hundreds of
thousands of pixels into hundreds of pixeled “matrices” to extract local features. Computer-
vision sees patterns of relationships between decomposed pixels of matrices, even if the
images do not represent actual anatomical structure in fine detail. However, the excessive
number of parameters is also a pitfall of ANN. When training the neural network with
SPECT images of whole-brain uptake, the accuracy was lower. This might be because the
ANN automatically counted differences in intra- and extra-striatal uptake or background
noise equally. Unlike computer-vision, when humans examine DAT-SPECT images they
spontaneously focus on the uptake in the SR much more than in extra-striatal regions. This
has been shown in previous studies in which better classification accuracy was achieved
by looking only at the SR rather than at the whole brain [20]. It could be argued that
comparing only the SR may result in the loss of too much information. For example, PD,
multiple system atrophy, and DLB are all associated with the same fibrillar α-synuclein
protein, but the differences are the sites in which it accumulates in the brain. Although
it may be reasonable to compare different patterns of the whole brain, according to prior
studies, only the SR was sufficient to differentiate PD from multiple-system atrophy or
DLB [21,31].

In order to feed the ANN with segmented images, an active contour model is not
only a feasible tool to select the ROI of the SR as with human vision, but also a highly-
reproducible method to diminish inter-individual errors in ROI contour outlining. The
successful classification using a combination of active contour method and ANN was
supported by CAM. The most informative area to differentiate PD from parkinsonism
caused by other disorders was the putamen. The region on which computer-vision focused
most in this study has also been reported in previous studies using semi-quantitative
measurements and other imaging modalities such as diffusion MRI.

We proposed a feasible method to develop a diagnostic tool capable of differentiating
PD from parkinsonism caused by other disorders at an early stage through DAT-SPECT
images. However, there are some limitations: (1) As a general rule, a bigger dataset is better
for training an ANN. A test dataset with more cases with a confirmed diagnosis or even a
prospective study is needed to prove and improve the accuracy. Unfortunately, the number
of medical images is usually limited. In this study, we used learning from a well-pretrained
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network to address this limitation. To develop customized and appropriate layers of a
neural network is another solution [24,28] to avoiding overfitting during training. (2) Using
images from multi-centers to recruit a larger amount of data may result in compatibility
problems among different reconstruction algorithms and different machines. Although
ANNs may accommodate discrepancies resulting from different reconstruction algorithms
by using more parameters, the accuracy may be lower. To consider raw image information
such as a “probability map” before reconstruction, appropriate normalization protocols
may also be able to solve this issue [25]. (3) In the clinical scenario, the really difficult cases
are those that did not fit any diagnostic criteria, the so called gray cases. Although this
ANN classifier was trained by images from subjects with discriminative features, it had the
potential to study the diagnostic accuracy in gray cases. However, the exact diagnosis of
these gray cases is the main obstacle and may depend on pathology. (4) The basis for the
diagnosis in this study was purely clinical without underlying pathology. (5) AlexNet is
not the most up-to-date tool. To further explore the methodology of applying a pretrained
neural network, advanced ANN with more convincing validation algorithms should be
considered. (6) Differential diagnosis based only on images could be limited. To promote
diagnostic accuracy, a combination of clinical, neuroimaging, and neuropsychology may
provide better discrimination between parkinsonisms [23].

5. Conclusions

In this study, an ANN classifier focusing on the putamen region of DAT-SPECT images
outperformed the classical biomarkers to differentiate PD from parkinsonism caused by
other disorders, with an accuracy of 86% (sensitivity of 81.8% and sensitivity of 88.6%). This
method is easily accessible and clinically applicable and provides opportunities to develop
an early diagnostic tool to allow for the appropriate application of disease-modifying
therapies, in clinical trials and even possibly for bedside treatment in the future.
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Appendix A

DAT-SPECT Scan and Reconstruction Protocol

Subjects were intravenously administered with 740 MBq (20 mCi) (99mTc) TRODAT-1
(a radiolabeled form of a tropan derivative for the selective labeling of DAT) in a quiet
environment about 10 min after insertion of an intravenous line. The SPECT data were
obtained using an energy window of 15% centered on 140 keV for (99mTc). Imaging of
(99mTc) TRODAT-1 was initiated approximately 240 min after injection, and SPECT images
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were acquired over a circular 360◦ rotation in 120 steps, 50 s per step, in a 128 × 128
× 16 matrix. The images were then reconstructed using Butterworth and Ramp filters
(cutoff frequency = 0.3 Nyquist, and power factor = 7) with attenuations according to
Chang’s method [1], and the reconstructed transverse images were realigned parallel to the
canthomeatal line. The slice thickness of each transverse image was 2.89 mm [1]. Chang LT.
A method for attenuation correction in radionuclide computed tomography. IEEE Trans
Nucl Sci. (25) (1978) 638-43.
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