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Abstract 

Water utilities provide an essential service of delivery of clean and safe drinking water to society. As migrations to cities increase, 
the demands on water utilities are increasing. Traditionally optimisation was focused on the reduction of energy demand and water 
losses of the water distribution network (WDN), but contemporary networks are integrated, and optimisation is not limited to the 
WDN. In the current landscape, business sustainability is paramount. Sustainability is inclusive of the economic, environmental 
and social performance of the business. This study develops an approach to determine the sustainability performance of a water 
utility, defined as the Business Performance Index (BPI). The BPI is a function of a water utilities key performance indicators of 
energy demand, water volume entering the WDN, cost and execution time. The approach (1) quantifies the BPI based on current 
operational practice, (2) allows the business to set a target BPI and (3) identifies the business operational parameters to achieve the 
target BPI. The approach is demonstrated by application to a metropolitan water utility, where  target BPIs for time t1 and t2 are set 
at 5% and 8% lower than the quantified baseline BPI. The approach determines that the target BPIs are not always achievable given 
business constraints and interdependencies, hence a realisable BPI is defined. The realisable BPI at time t1 and t2 is 2.3% and 6.4% 
less than the baseline, respectively. For each of the realisable BPIs the required statuses of the operational variables are defined. 
The results further identify three key operational aspects for improvement, invoicing, business process energy demand and process 
energy demand.   The approach and the defined BPI enables a water utility to optimise energy demand, water losses, cost and 
execution time, holistically, as the interdependencies are considered. 
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1. Introduction 

Access to safe and clean drinking water is a basic human right, supported by the United Nation’s sustainable 
development Goal 6 [1]. Only 0.01% of potable water is available from the available 3% on earth [2]. More than 2 
billion lack access to safe drinking water and basic sanitation [3] and nearly 4 billion people could be living in water-
scarce regions by 2050 [4]. South Africa (SA) is a semi-arid country with constrained water supplies. SA has an 
average rainfall of 450 mm/year, significantly lower than the world’s average of 860 mm/year [5]. The supply of water 
to households, buildings and industry is via water distribution networks (WDNs), which are owned, maintained and 
operated by cities, water boards or private water companies. In SA, the water losses in a WDN varies between 30 to 
40%, and can increase to 58% in rural areas [6]. In 2018, Cape Town, the capital city of SA, experienced a severe 
water crisis, with the risk of the taps running dry. This emphasised the need for sustainable practices in the South 
African water sector.  

The entities owning, operating and maintaining WDNs, will henceforth be referred to as water utilities. Water 
utilities, whilst providing an essential service is still a business, and is required to be self-sustaining.  Water utilities 
experience significant challenges; water losses and its associated revenue losses, high energy demands, environmental 
impact of business operations, increasing demand, and aging infrastructure. In the current global business landscape, 
business sustainability is vital and dependent on the financial, environmental, and social performance. Defining the 
business sustainability, requires delineation of the business financial, environmental and social performance.  

The Fourth Industrial Revolution (4IR) presents opportunities for sustainable operations and economic growth for 
the water sector, termed “Digital Water,” or “Water 4.0”. 4IR drives sustainability via adoption of technologies, to 
create a fully integrated digital business. There are various technologies available, ranging from industrial internet of 
things (IoT), virtual reality (VR), augmented reality (AR), big data analytics (BDA), artificial intelligence (AI) and 
3D printing. The identification of the appropriate technology for application is crucial, as it impacts the business 
financial, environment and social performance.  Thus, the definition of the current business sustainability is necessary. 
This study develops a digital model of a water utility, inclusive of all activities (humans resources  to operations, to 
finances to maintenance), to quantify the business sustainability, defined as the Business Performance Index (BPI). 
The water utility model has the capacity to determine the impact of changes on the BPI.  

2. Literature Review 

Water utilities provide an essential service of distributing safe drinking water to society. The water utilities 
distribute potable water via WDNs. These WDNs can span hundreds of kilometres and comprise piping networks, 
pumps, compressors, and control and instrumentation. However, these WDNs are a significant source of water loss. 
The water loss in developing countries is 45 million cubic meters per day, with an associated economic value of 3 
billion US dollars annually [7]. The global non-revenue water loss is estimated at 346 million cubic meters per day, 
equivalent to 39 billion US dollar annually [8]. Reducing the water loss by one third, can provide 800 million people 
with water, based on a consumption of 150 litres per day [8]. This is especially significant given that urban populations, 
are expected to increase from 55% in 2018 to 68% by 2050 [9]. Reducing water losses has multiple benefits for a 
water distribution utility; increase in water quality, reduction in energy demand, water supply reliability, and financial 
savings [8]. Water loss management is priority for water utilities and governments, towards development of 
sustainable businesses and societies, respectively. 

The water industry was accountable for 4% of global electricity consumption in 2014 [10]. The specific energy 
consumption of WDNs of developing countries is less than 0.30 kWh/m3, while that of developed countries typically 
range between 0.4 – 0.79 kWh/m3, with Germany having a specific energy consumption of 1.71 kWh/m3 [11]. Water 
pumps are the primary consumer of electricity, and can be as high as 90% of electricity consumption [10]. Increasing 
operational costs limits the utilities capacity to expand infrastructure and services, adoption of technologies to improve 
performance and maintenance of infrastructure. Increasing operational costs are ultimately transferred to the customer, 
impeding access to water. Reference [11] analysed the factors influencing the specific energy consumption of WDNs 
in China and determined that the specific energy consumption of water distribution networks decrease as the volume 
of water supplied increases and increases with a rise in pipeline network pressure.  
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The “smart water” revolution is expected to capacitate the water industry to integrate and manage both the vertical 
and horizontal value chains, i.e., the technologies aspect, business stack system, water supply/demand activities, water 
infrastructure/network and business strategy/management. 4IR advances the integration of information technology 
(IT) and operational technology (OT), and inbound supply chain to distribution to provide for the holistic integration 
of water as a business. Horizontal integration is the integration of different IT systems across various water 
infrastructure networks and business process planning which requires exchange of information, energy and resources. 
These different systems include customer relationship management, supply chain management, vendor management, 
operations management, asset management, human resource and capacity management and financial management. 
Vertical integration is the integration of different IT systems at varying hierarchical levels within the organization. 
This includes sensors, operational network, manufacturing data, enterprise resource planning, business intelligence, 
and big data and analytics. Vertical integration implementation provides a complete, single view of entire processes 
and allows a central dashboard that is applicable for monitoring and controlling of every aspect of water demand and 
supply across the different water networks [12, 13]. 

WDNs are complex, comprising of various sub-systems, including pressure management, maintenance 
management, quality, leak detection and operational optimisation. These sub systems are integral for a WDN and 
should deliver in unison. The integration of a WDN is highly dependent on data collection via sensors. The sensor 
integration presented by [14] provides for sensor integration that can deliver to all sub systems; data integration 
towards a digital WDN. Reference [15] adopted advance control systems in the form of self-tuning loops to conduct 
pressure management in WDNs. Reference [16] developed a comprehensive online model for WDNs with integration 
into the SCADA network for real time data. The model  predicts water utilisation and hydraulics in the network. 
Refence [17] conducted a case study on the application of real time control at the Benevento city WDN. The 
application of real time control resulted in reduced pressure variability within the WDN, and a 1L/s decrease in 
minimum night flow, inferring leakage reduction [17]. Reference [18] discussed a drinking water system that 
integrated SCADA, telemetry, and automatic meter reading  with databases, water management modules and a 
geographic information system (GIS) system in real time. This provided the utility with real time demand data, 
operational data, and irregularities in operations, enabling optimisation in real time [18]. 

Reference [19] developed a multi-criteria assessment tool for evaluating the performance of water supply system 
providers with interval-valued intuitionistic fuzzy number and pair-wise comparison. Five criteria were selected; 
technical, socio-cultural, environmental, economic and governance, which were applied in demonstrating the 
developed tool. Reference [20] presented a digitally integrated platform for water resources in a province in China. 
The cloud-based platform served as a real time data sharing platform, from sensor to enterprise for the entire province. 
This recent study is positive and illustrates a digital WDN is a reality.   

Literature defines the complexity, energy usage, water losses and other critical aspects of the WDN. The key focus 
is managing or reducing water losses. There is limited focus on the business as a whole; optimisation of the operations 
of the business (inclusive of supporting functions of HR, safety, health and environment, finance) to reduce water 
losses, and optimise energy and resource utilisation. The ability to predict optimisation opportunities to reduce water 
losses, energy utilisation and cost is the focus of this study. This study proposes a multi-pronged approach in defining 
and optimising a water utilities BPI. 

3. Methodology 

A business process (BP) details the logical steps in completion of a business task, from the initiation of the task to 
the end. A business process model (BPM) provides a graphical illustration of a business process. Water utilities are 
operated and managed by execution of BPMs. The business task can vary from leak management to establishment of 
a business mission. BPs are hierarchically categorized, beginning at Level 0, and proceeding to a Level n. Level 0 is 
typically at a business function level such as human resources (HR), finance, information, and communication 
technology (ICT), while Level “n” is the activity level specifying actions for execution of a specific business task.   

Business process simulation (BPS) evaluate the performance of a process under multiple scenarios, allowing 
comparative analysis of options towards improving the performance of a business process [21].  The nth level processes 
are comprehensive and specific to the task being executed. The simulation of the nth level process enables 
quantification of the; resources required (laptops, printers, switches, firewalls, pumps, compressors, HVAC), 
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utilisation time and energy demand of the  resources and skills and time requirement of the personnel. For the purposes 
of this study, a four-level hierarchy is adopted for the water utility.  

• Level 0 -  business functions, such as operations, maintenance, finance. 
• Level 1 -  process areas per business function, such pressure management within the operations function. 
• Level 2 -  business processes per process area, such as pressure reduction within the pressure management 

process area. 
• Level -  specific steps within each BP, such as open valve x at location y for the pressure reduction BP. 

The expansion of the processes from Level 0 to level 3 is illustrated in Equations 1 to 4.  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 0 = ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵 𝑓𝑓𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝐵𝐵𝑓𝑓𝐵𝐵𝐵𝐵𝑚𝑚
1                                            (1) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 1 = ∑ ∑ 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝐿𝐿𝐵𝐵𝐵𝐵 𝑎𝑎𝑃𝑃𝐿𝐿𝑎𝑎𝐵𝐵𝑚𝑚
1

𝑙𝑙
1                                   (2) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 2 = ∑ ∑ ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵 𝑝𝑝𝑃𝑃𝑓𝑓𝑓𝑓𝐿𝐿𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵𝑘𝑘
1

𝑙𝑙
1

𝑚𝑚
1                               (3) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 3 = ∑ ∑ ∑ ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵 𝑝𝑝𝑃𝑃𝑓𝑓𝑓𝑓𝐿𝐿𝐵𝐵𝐵𝐵 𝐵𝐵𝑓𝑓𝐿𝐿𝑝𝑝𝐵𝐵𝑗𝑗
1

𝑘𝑘
1

𝑙𝑙
1

𝑚𝑚
1                              (4) 

For Equations 1 to 4, m is the number of business functions, l is the number of process areas, k is the number of 
business processes and j is the number of business process steps. In the operation of a water utility business tasks do 
not occur in silo, the tasks are integrated with other tasks. For example, maintenance activities are linked to, (1) finance 
tasks for purchasing of required materials to execute the maintenance task, (2) customer service management to inform 
customers of disruptions to water supply, if applicable. At Level 3 , all business activities integration are considered.  
Thus, the simulation of Level 3 processes, as defined by Equation 4, creates a comprehensive digital representation 
of the water utility. henceforth referred to as the water utility model. BPMs are developed in Microsoft Visio for all 
activities conducted by the water utility. The BPMs are exported from Microsoft Visio to Microsoft Excel, which 
enables development of the water utility simulation model in Microsoft Excel VBA. In the operation of a water utility 
there are fluctuations in operations, as each variable has its own operating range.  Example of variables include; 
number of water leakages, number of maintenance requests, number of in-arrears customers, number of customer 
queries and complaints and number of pressure deviations across the WDN. This creates an inherent level of 
uncertainty in the business. To simulate the uncertainty the Monte Carlo Simulation approach is adopted, with 
randomness applied to the variables, constrained to minimum and maximum range of the specific variable. The Monte 
Carlo Simulation is executed via an algorithm within the water utility model, until the change in the standard error of 
the mean of the target output is negligible. 

The execution of the water utility model, in Microsoft Excel VBA, quantifies the business energy demand, carbon 
dioxide (CO2) emissions, water volume entering the WDN, execution time of tasks, personnel hours, and energy and 
personnel costs. Since business activities may occur daily, weekly, bi-weekly, monthly, quarterly or annually.  all 
activities are simulated to a common basis of per annum. 

The water utility model, based on business process simulation, is the building block for defining the Business 
Performance Index (BPI). The BPI is a function of the key performance indicators (KPIs) of a water utility; energy 
demand, water volume entering the WDN, cost and execution time . The volume of water entering the WDN is critical 
as it is an indication of the water loss in the WDN; the higher the water loss the higher the entering volume. The higher 
the water loss, the higher the financial losses due to non-revenue water and higher operating costs. Execution time 
refers to the time taken to execute the various business tasks. The key variables influencing each KPI are detailed in 
Equations 5 to 8.  

𝐸𝐸𝐵𝐵𝐿𝐿𝑃𝑃𝐸𝐸𝐸𝐸 𝐷𝐷𝐿𝐿𝐷𝐷𝑎𝑎𝐵𝐵𝐷𝐷 = 𝑓𝑓{𝑃𝑃𝐿𝐿𝐵𝐵𝑓𝑓𝐵𝐵𝑃𝑃𝑓𝑓𝐿𝐿 𝑓𝑓𝐸𝐸𝑝𝑝𝐿𝐿(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, 𝐼𝐼𝐻𝐻𝐼𝐼, 𝑝𝑝𝑃𝑃𝑓𝑓𝑓𝑓𝐿𝐿𝐵𝐵𝐵𝐵, 𝐵𝐵𝐿𝐿𝑓𝑓𝑛𝑛𝑓𝑓𝑃𝑃𝑛𝑛); 𝐿𝐿𝑒𝑒𝐿𝐿𝑓𝑓𝐵𝐵𝑓𝑓𝐵𝐵𝑓𝑓𝐵𝐵 𝑓𝑓𝐵𝐵𝐷𝐷𝐿𝐿}                        (5) 

𝐸𝐸𝑒𝑒𝑓𝑓𝐿𝐿𝐵𝐵𝑓𝑓𝐵𝐵𝑓𝑓𝐵𝐵 𝐼𝐼𝐵𝐵𝐷𝐷𝐿𝐿 = 𝑓𝑓{𝑝𝑝𝐿𝐿𝑃𝑃𝐵𝐵𝑓𝑓𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿 𝐵𝐵𝑛𝑛𝐵𝐵𝐿𝐿𝐿𝐿𝐵𝐵; 𝑃𝑃𝐿𝐿𝐵𝐵𝑓𝑓𝐵𝐵𝑃𝑃𝑓𝑓𝐿𝐿 𝑓𝑓𝐸𝐸𝑝𝑝𝐿𝐿; 𝑎𝑎𝑓𝑓𝑓𝑓𝐵𝐵𝐿𝐿𝐵𝐵𝑓𝑓𝐸𝐸/𝑓𝑓𝑎𝑎𝐵𝐵𝑛𝑛}                               (6) 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑓𝑓{𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶𝑒𝑒𝐶𝐶𝑒𝑒 𝐶𝐶𝑒𝑒𝑑𝑑𝑒𝑒, 𝑝𝑝𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝐶𝐶𝑒𝑒𝑑𝑑𝑒𝑒}                            (7) 

𝑊𝑊𝑑𝑑𝐶𝐶𝑒𝑒𝑒𝑒 𝑉𝑉𝐶𝐶𝑝𝑝𝑒𝑒𝑑𝑑𝑒𝑒 = {𝑂𝑂𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑𝐶𝐶𝑒𝑒𝐶𝐶𝑒𝑒𝑑𝑑𝑝𝑝 𝑝𝑝𝑒𝑒𝑑𝑑𝑒𝑒𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒;  𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝐶𝐶𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒; 𝑤𝑤𝑑𝑑𝐶𝐶𝑒𝑒𝑒𝑒 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶}                            (8) 

The four KPIs, each with its own set of influencing variables (with some common variables), necessitates a multi-
objective optimisation (MOO) approach to develop a singular objective function representative of the BPI. The 
scalarisation technique of equivalent weighting of each function is adopted in defining the BPI objective function [22, 
23]. An equal weighting approach for each KPI is used, due to the lack of quantifiable data for ranking of the four 
KPI’s  

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑤𝑤1𝑓𝑓𝐸𝐸𝐸𝐸 + 𝑤𝑤2𝑓𝑓𝐸𝐸𝐸𝐸 + 𝑤𝑤3𝑓𝑓𝐶𝐶 + 𝑤𝑤4𝑓𝑓𝑊𝑊𝑊𝑊     Constrained to  ∑ 𝑤𝑤4
1 = 1                (9) 

In  Equation 9 w is the weighting of each function, fED is energy demand, fET is execution time, fC is cost and fWV is 
water volume. To solve Equation 9, objective functions are required for each of the KPIs. To develop the objective 
functions the water utility model is executed.  

The execution of the water utility model, inclusive of the Monte Carlo Simulation, creates a data set. The data set 
comprises the variables and KPIs. For each data point (each run of the Monte Carlo simulation) the variables statuses 
and the associated energy demand, execution time, cost and water volumes are defined. Linear regression is applied 
to the dataset to, firstly identify the variables impacting each of the four KPIs, and secondly to develop predictive 
functions for each KPI (based on the significant variables). The dataset is divided into the learning and validating sets. 
The learning dataset comprises 70% of the original data and is applied in developing the predictive functions, while 
the remaining 30% is applied in validating the predictive functions. The linear predictive functions developed for each 
of the KPIs is in the following format, with the energy function used as an example: 

𝑓𝑓𝑒𝑒𝐸𝐸𝐸𝐸 = 𝐶𝐶 + 𝐶𝐶𝐸𝐸1𝑒𝑒𝐸𝐸1 + 𝐶𝐶𝐸𝐸2𝑒𝑒𝐸𝐸2 + 𝐶𝐶𝐸𝐸3𝑒𝑒𝐸𝐸3 + 𝐶𝐶𝐸𝐸4𝑒𝑒𝐸𝐸4 + 𝐶𝐶𝐸𝐸5𝑒𝑒𝐸𝐸5 … … . . +𝐶𝐶𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝐸𝐸                            (10) 

In Equation 10 C is a constant, is variable influencing energy demand, CE is coefficient of the respective variable 
and n is number of variables. Similar equations are developed for the remaining KPIs, with the key differentiator being 
the variables applicable to each KPI. A sensitivity analysis is conducted on each of the four predictive functions to 
eliminate the insignificant variables. The dataset also identifies the minimum and maximum value of each objective 
function. The definition of the predictive function for each of the KPIs, enables resolution of the BPI. 

In solving equation 9, a water utilities current BPI is determined. The next step is optimisation of the BPI. The 
water utility defines a target BPI, a value less than the current BPI, as the objective is to reduce energy demand, costs, 
water volume entering the WDN, and execution time. With the target BPI set, equation 9 is now solved in reverse by 
applying the solver function. This approach identifies the new states of the four KPIs constrained to the maximum and 
minimum value of each function, to achieve the targeted BPI. The solver function is then applied to each KPI function 
to determine the new statuses of the significant variables. These variable statuses are then updated on the BPM for 
operational execution. The methodology detailed above is illustrated in Figure 1.  

 

 

 

 

 

 

Fig. 1. Approach to defining and optimising BPI 
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The proposed model achieves three needs of a water utility, (1) quantifies the BPI based on current operational 
practice, (2) allows the business to set a target BPI and (3) identifies the business operational parameters to achieve 
the set target.  

4. Results 

A metropolitan water utility BPI is evaluated, as per the methodology illustrated in Figure 1. The BPs for the water 
utility were developed utilising the APQC Cross Industry Process Classification Framework and validated with 
experts in water utilities operation and management. The business processes are converted to business process models 
and the water utility simulation model is developed inclusive of all business activities and associated integration. All 
required process data is extracted from publicly available sources such as energy databases and annual reports. In 
analysis of the developed business processes, 77 business variables are identified ranging from water flow rate, number 
of maintenance requests, number of new personnel recruitments, to number of purchase orders issued. In execution of 
the Monte Carlo Simulation, the 77 variables are randomised, limited to the maximum and minimum range of each 
variable, until the change in the standard error of the mean of the energy demand is negligible. For the water utility, 
this is realised at 2800 runs. 

This creates an 81 by 2800 data matrix, with 81 representing the 77 identified business variables and the four KPIs 
of energy demand, execution time, water volume and cost. For each of the 2800 runs, the 77 variables and the four 
KPIs have a specific variable status and output, respectively.  The data matrix is analysed via linear regression in 
Python and predictive functions are developed for each of the KPIs. A sensitivity analysis is conducted on each of the 
four functions to eliminate insignificant variables. The final functions for each of the four KPIs are detailed below. 

 
Execution Time Function: Calculates the business execution hours,  per annum 

𝑓𝑓𝐸𝐸𝐸𝐸 =  −9.16 ∗ 10−5 − 1.217𝐴𝐴 − 1.682𝐵𝐵 + 0.0085𝐶𝐶 + 0.134𝐹𝐹 + 0.267𝐺𝐺                                       (11) 

Energy Demand Function: Calculates the business energy demand per annum 

𝑓𝑓𝐸𝐸𝐸𝐸 = 0.0016 + 0.739𝐵𝐵 + 0.0005𝐶𝐶 + 2.109𝐺𝐺 − 0.064𝐻𝐻 + 0.064𝑀𝑀 + 0.002𝐽𝐽                                                    (12) 

Water Volume Function: Calculates the volume of water entering the WDN per day to meet final demand 

𝑓𝑓𝑊𝑊𝑊𝑊 = −1.42 ∗ 10−6 − 1.32 ∗ 10−7𝐷𝐷 + 2.53 ∗ 10−7𝐸𝐸 + 11.05𝐼𝐼                                      (13) 

Cost Function: Calculates the operational costs per annum 

𝑓𝑓𝐶𝐶 = −0.0027 + 1.002𝐶𝐶 + 0.014𝐼𝐼 + 0.952𝐺𝐺 + 1.582𝐾𝐾 + 0.119𝑀𝑀                                                                       (14) 

To avoid distortion of Equation 9,due to the magnitudes of the KPI outputs, the water volume entering the WDN 
is set at per day, with the remaining KPIS set at per annum.  Each variable of Equations 11 to 14 is detailed in Table 
1, together with the allowable operational range. Due to the varying magnitudes of the energy demand, it is classified 
as (1) ancillary energy demand - all business activities (HR, finance, customer services management, SHEQ) energy 
demand excluding the WDN operational demand, (2) HVAC energy demand  - facilities energy demand and (3) 
process energy demand - WDN operational energy demand inclusive of pumps, compressors and control and 
instrumentation. BPMs have decision blocks, which determine the path followed in execution of a business task. This 
impacts the resources utilised, personnel requirements, execution time, and costs.  The variables D and E represent 
decision blocks with two possible options; hence the range is 0 to 1. For variable D, path A is followed if the water 
balance is correct, with, path B followed if the water balance is incorrect. Path B is a more intensive process path 
requiring additional resources, time, and personnel as the reason for the water balance not reconciling must be 
resolved. 
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Table 1. Variable influencing the four functions of the BPI 

Variable Factor Min Value Max Value 

Ancillary energy demand per annum (kWh) A 750 266 963 051 

Ancillary energy cost per annum (ZAR) B 997 854 1 280 858 

Personnel costs per annum (ZAR) C 914 045 366 1 122 085 586 

Is the water balance correct (0 = No and 1 = yes) D 0 1 

Is the pressure deviation due to a fault at the bulk water supplier (0 = No and 1 = yes) E 0 1 

Number customer invoice queries per month F 229 2 498 500 

HVAC energy demand per annum (kWh) G 2 006 186 2 006 186 

Personnel hours per annum (hr) H 5 726 025 7 125 083 

Process energy demand per annum (kWh) I 101 382 400 144 832 000 

Process energy cost per annum (ZAR) J 134 838 592 192 626 560 

HVAC energy cost per annum (ZAR) K 2 668 227 2 668 227 

Water flowrate per day (l/day) L 1 120 000 000 1 600 000 000 

Network energy demand per annum (kWh) M 2 481 033 2 481 033 

 
As per the equivalent weighted multi-objective function, the BPI is defined as: 

𝐵𝐵𝐵𝐵𝐵𝐵 = 0.25𝑓𝑓𝐸𝐸𝐸𝐸 + 0.25𝑓𝑓𝐸𝐸𝐸𝐸 + 0.25𝑓𝑓𝑊𝑊𝑊𝑊 + 0.25𝑓𝑓𝐶𝐶                                   (15) 

Using the current operational conditions, the baseline BPI is calculated, with the results in detailed in Table 2. 

Table 2. Baseline BPI and KPI outputs 

BPI Energy (kWh) Water (ML/day) Cost (ZAR) Execution Time (hr) 

734 014 938 5 848 053 1 600 000 000 1 323 131 939 7 079 760 

 
The baseline status of each of the significant variables is detailed Table 3.  

Table 3. Baseline operational status of the variables 

Variable Factor Operational status 

Ancillary energy demand per annum (kWh) A 963 051 

Ancillary energy cost per annum (ZAR) B 1 280 858 

Personnel costs per annum (ZAR) C 1 122 000 000 

Is the water balance correct (0 = No and 1 = yes) D 1 

Is the pressure deviation due to a fault at the bulk water supplier (0 = No and 1 = yes) E 1 

Number customer invoice queries per month F 2 498 500 

HVAC energy demand per annum (kWh) G 2 006 186 

Personnel hours per annum (hr) H 7 000 000 

Process energy demand per annum (kWh) I 144 832 000 

Process energy cost per annum (ZAR) J 190 000 000 

HVAC energy cost per annum (ZAR) K 2 668 227 

Water flowrate per day (l/day) L 1 600 000 000 
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Network energy demand per annum (kWh) M 2 481 033 

 
In optimisation of the BPI, two reduced BPI’s at time t1 and t2 are defined. Reduced BPI’s (in reference to the 

baseline BPI) are the aim, as it is achieved by reductions in energy demand, water volume, costs and execution time. 
The reduction of the KPI’s result in improved sustainability of the water utility.  BPI at t1 is set at 5% lower than the 
baseline, whilst at t2 it is set at 8% lower. The targets are defined at times t1 and t2, as reducing the BPI would logically 
occur in a phased approach beginning with small increments and increasing steadily thereafter.   

The results illustrated in Figure 2 demonstrate that achievement of set targets is not always possible given business 
constraints and interdependencies, hence a realisable BPI is defined. The realisable BPI is as close as possible to the 
target BPI. Figure 2 illustrates that the realisable BPIs at t1 and t2 are 2.3% and 6.4% lower than the baseline. 
 

 

 

 

 

Fig. 2. Results of BPI optimisation 

The objective functions of the KPI’s are set at the respective realisable target values, and the corresponding states 
of the significant variables determined. The new states of the significant variables are presented as a percentage 
reduction from the baseline state, refer to Figure 3. 
 

 

Fig. 3. Status of variables to achieve the realisable BPI at t1 and t2 
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The variables with highest capacity for optimisation are the number of customer invoice queries per month, BP 
energy cost and process energy cost. The customer invoicing process can be improved by automation and the use of 
smart water meters for collection of accurate customer consumption data. The BP energy cost is directly linked to the 
BP energy demand. Repetitive and high-volume tasks such as customer invoicing, customer queries handling, 
purchase order generation, and payments can be automated. Automation would significantly reduce the time taken to 
execute these tasks, thereby reducing the BP energy demand and associated costs. Automation of these tasks would 
also facilitate data gathering, with the data analysed to provide insights on process improvements. Similarly, process 
energy cost is directly linked to process energy demand. Pumps are the highest consumers of energy in the WDN. 
Variable speed drives (VSD) can significantly reduce the energy demand of pumps, as it varies the speed of the pump 
motor with a change in the water flow. 4IR technologies of IoT, Industrial Internet of Things, and BDA have 
significant potential for the water industry. The adoption of IoT enables integration of the various components of the 
WDN and ERP systems. With an integrated set of systems comes a continuous and consistent stream of real time data, 
which collated over time is ideal for BDA for optimisation.  

The water flowrate is directly proportionally to the process energy demand; a 2.5% decrease in water flowrate 
results in corresponding 2.5% decrease in process energy demand for the BPI at time t1, with a similar pattern for BPI 
at t2. Reducing the water losses across the WDN, has a domino effect of decreasing the volume of water to be pumped 
per day, process energy demand, and process energy costs. 4IR based leak detection systems have been adopted 
globally and can assist in timeous leak identification, driving reductions in water losses. HVAC has the lowest 
potential for improvement, as HVAC infrastructure improvements are cost and time intensive, requiring step wise 
improvements across a period.  The results demonstrate the capacity of the model to identify and optimise the BPI, 
including the status of the variables for the optimised state. It also provides insights into areas for improvement.    

5. Conclusion  

As the demand for water increases, and available water resources become increasingly constrained, water utilities 
are under severe pressure to optimise business performance. A core component of the water utilities is the WDN. The 
traditional approach to optimisation focuses on reduction of the WDN energy utilisation and water loss, but this is 
limited in the current business landscape. The proposed approach is holistic, considering the economic, environmental, 
and social aspects. In this study a sustainability business measure, defined as the BPI is developed for water utilities. 
The BPI is a function of the KPIs of energy demand, water volume entering the WDN, cost and execution time. 

In definition of the BPI the following were developed and executed; a comprehensive water utilities model based 
on BPs; Monte Carlo Simulation, linear regression and MOO. The BPI approach was demonstrated by application to 
a metropolitan water utility. The baseline BPI was determined based on current operational practice, with the target 
BPIs at times t1 and t2 set at 5% and 8% lower than the baseline respectively. The proposed approach illustrated that 
the target BPIs are not always achievable given business constraints and interdependencies, thus a realisable BPI is 
defined. The realisable BPIs at t1 and t2 is 2.3% and 6.4% lower than baseline, respectively. The statuses of the 
significant variables for attainment of the realisable BPIs were determined. The key variables identified for 
improvement are number of customer invoice queries, business process energy demand and process energy demand.  

Future work is to refine the equal weighting applied in determining the BPI, as it is unlikely that the KPIs are 
equally weighted.  This would require significant additional data. The deployment of a fully integrated network is also 
currently in progress, which would lead to significant refinement and improvements to this study. The value-add of 
the proposed approach is its applicability to any water utility, with only the BPs and resources requiring updating.  
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