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Abstract: This study proposes a new metaheuristic optimization algorithm, namely the white-
tailed eagle algorithm (WEA), for global optimization and optimum design of retaining structures.
Metaheuristic optimization methods are now broadly implemented to address problems in a variety of
scientific domains. These algorithms are typically inspired by the natural behavior of an agent, which
can be humans, animals, plants, or any physical agent. However, a specific metaheuristic algorithm
(MA) may not be able to find the optimal solution for every situation. As a result, researchers will aim
to propose and discover new methods in order to identify the best solutions to a variety of problems.
The white-tailed eagle algorithm (WEA) is a simple but effective nature-inspired algorithm inspired
by the social life and hunting activity of white-tailed eagles. The WEA’s hunting is divided into two
phases. In the first phase (exploration), white-tailed eagles seek prey inside the searching region. The
eagle goes inside the designated space according to the position of the best eagle to find the optimum
hunting position (exploitation). The proposed approach is tested using 13 unimodal and multimodal
benchmark test functions, and the results are compared to those obtained by some well-established
optimization methods. In addition, the new algorithm automates the optimum design of retaining
structures under seismic load, considering two objectives: economic cost and CO2 emissions. The
results of the experiments and comparisons reveal that the WEA is a high-performance algorithm
that can effectively explore the decision space and outperform almost all comparative algorithms in
the majority of the problems.

Keywords: nature-inspired; white-tailed eagle; retaining structure; cost; CO2 emissions

1. Introduction

During the last two decades, metaheuristic optimization techniques have become
increasingly popular. Some of these algorithms, such as the Genetic Algorithm [1], Ant
Colony Optimization [2], and Particle Swarm Optimization [3], are well-known between not
just computer scientists but also experts from other domains. In addition, such optimization
approaches have been used in a variety of research areas [4–7]. There is a justification for the
rise in popularity of metaheuristics. The four major explanations for this can be described
as follows [8]: simplicity, adaptability, derivation-free process, and avoidance of local
minimum. To begin with, metaheuristics are quite simple. They’ve mainly been motivated
by extremely simple ideas. Physical occurrences, animal behaviors, and evolutionary
notions are common sources of inspiration. Researchers can use simplicity to model
many natural phenomena, introduce alternative metaheuristics, combine two or more
metaheuristics, or enhance existing metaheuristics. Furthermore, the simplicity makes
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it easier for other scientists to learn metaheuristics and apply them to their problems.
Second, adaptability refers to the capacity of metaheuristics to be used in a variety of
situations without requiring significant improvement to the algorithm’s structure. Because
metaheuristics assume problems to be black boxes, they are capable of quickly adjusting
to different challenges. In other words, a metaheuristic solely considers the system’s
inputs and outputs. Therefore, all a designer has to know about metaheuristics is how
to express his or her problem. Third, most of metaheuristics contain processes that do
not need derivation. Metaheuristics, compared with gradient-based techniques, solve
problems in a stochastic manner. The optimization process begins with a random solution(s)
to identify the optimal, and there is no need to compute the problem’s gradient. This
makes metaheuristics highly proper for real-world problems with unidentified gradient
information. Finally, metaheuristics have a superior ability to avoid local optima compared
to traditional optimization approaches. This is because of metaheuristics’ stochastic feature,
which allows them to avoid local optima and search the whole problem space effectively.
Therefore, metaheuristics provide effective possibilities for optimizing these difficult and
complicated real-world problems.

Metaheuristics are often classified into two types [9]: single-solution and population-
based. The search procedure in the first class begins with a single search agent. After that,
during the number of iterations, this single candidate solution is enhanced. On the other
hand, population-based methods conduct the optimization process by employing a collection
of search agents (population). In this scenario, the search process begins with an initial
random population (possible solutions), which is then improved over time. When compared
to single-solution methods, population-based algorithms have the following advantages:

• Multiple potential solutions communicate information regarding the search space,
resulting in unexpected leaps to the most promising area of the space;

• Several potential solutions collaborate to prevent finding the best solution locally;
• As opposed to single-solution algorithms, population-based metaheuristics allow for

more exploration.

It’s worth considering the No Free Lunch (NFL) theorem [10]. This theorem logically
proves that there is no metaheuristic that can solve all optimization issues effectively. In
other words, a metaheuristic may perform excellently on some problems while doing
poorly on others. Obviously, the NFL keeps this field of research quite active, resulting
in improvements to current techniques and the introduction of new metaheuristics every
year. This also motivates our efforts to introduce a new metaheuristic based on white-
tailed eagle inspiration. To propose a more efficient and successful approach, this article
presents the white-tailed eagle algorithm (WEA), a unique natural-inspired population-
based metaheuristic optimization algorithm that mimics the hunting behavior of white-
tailed eagles. A collection of test functions is utilized to carefully validate the proposed
WEA’s robustness and efficacy. In addition, in order to verify the effectiveness of the
proposed algorithm for solving the real-world optimization problem, the WEA automates
seismic optimization of retaining structures.

The retaining structure is an earth-retaining system that supports and resists the
pressure of the material behind it. Cantilever earth retaining walls are still fairly common in
urban areas and were chosen as the subject of this research. The use of a cantilever retaining
wall is popular in highway, bridge, and railway construction, as well as many other civil
engineering projects. A cantilever retaining wall is made up of two main components: a
vertical stem and a base slab. In the process of designing a cantilever wall, the experience
and knowledge of the designers are critical in determining the dimensions that meet
geotechnical and structural restrictions. Once the dimensions have been determined, the
designers must examine the wall’s resistance to sliding, overturning, bearing capacity of
the foundation, and its strength against bending and shear moments based on the building
code requirements. These designing and analyzing steps are repeated iteratively until the
designer achieves the desired result. In addition, in this lengthy iterative process, the cost of
construction is not taken into consideration, and there is no guarantee that the final design
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is the best. To avoid wasting material and time, optimization strategies may be useful at
this point. The dimensions that provide the lowest cost or weight of the structure while
meeting all requirements are automatically determined in the optimum retaining wall
design. The optimal design of these structures might be difficult to achieve, particularly
when seismic loading conditions are present. Analysis of a retaining wall under seismic
loads is a difficult problem because of the soil–structure interaction. Thus, simulating actual
behavior necessitates simplified analyses. These analyses, called "pseudo-static" analyses,
are based on static analysis using an equivalent seismic coefficient.

Nowadays, concern for the environment is becoming more prevalent. This has led
to considering the environmental effects and resource consumption in addition to the
economic criteria. One of the most extensively utilized criteria is reducing carbon dioxide
(CO2) emissions [11,12]. The main binder used in concrete is Portland cement, and a large
amount of CO2 is produced during its manufacturing. The interest in the optimization of
concrete structures by taking into account CO2 emissions reduction is justified because
the cement industry is responsible for 5% of the world’s greenhouse gas emissions [13].
Therefore, incorporating design criteria to reduce embedded CO2 emissions in reinforced
concrete (RC) structures seems essential. Paya-Zaforteza et al. [14] conducted an optimiza-
tion study comparing CO2 efficiency and the total cost of RC building frames using the
well-known simulated annealing (SA) algorithm. Nelson [15] developed a hybrid big bang-
big crunch algorithm for multi-objective optimization of CO2 emissions and design cost of
reinforced concrete beams. Camp and Assadollahi [16] employed a hybrid big bang-big
crunch algorithm for the optimum design of reinforced concrete footings considering CO2
emissions and construction cost. Yepes et al. [17] developed a hybrid glowworm swarm
optimization algorithm to optimize total cost and CO2 emissions of concrete road bridges
with a double U-shape cross-section.

In this study, the newly proposed WEA automates seismic optimization of retaining
structures, considering not only the cost but also CO2 emission as the objective function.
Therefore, the main contributions of this work can be summarized as follows:

1. An effective optimization approach, namely the white-tailed eagle algorithm (WEA)
has been developed for global optimization problems;

2. The performance of the WEA for numerical function optimization is evaluated on 13
frequently used benchmark functions and compared to other optimization algorithms;

3. To verify the effectiveness of the proposed method for the solution of real-world
problems, the new method is applied to retaining wall optimization under static and
seismic loads;

4. In the optimum design of the retaining walls, total construction cost as well as total
CO2 emissions are considered objective functions;

5. A sensitivity analysis is performed to determine the impact of the horizontal accelera-
tion coefficient on the construction cost and CO2 emissions of the structure.

2. Related Works

This section provides a brief overview of several selected metaheuristics as well as
some current applications. Generally, these optimization algorithms are divided into four
categories based on the type of inspiration as follows:

2.1. Swarm Intelligence Algorithms

Swarm Intelligence (SI) is an interesting branch of population-based metaheuristics
suggested for the first time by Beni and Wang [18]. Natural colonies, flocks, herds, and
schools are the main sources of inspiration for SI approaches. Various SI algorithms have
been proposed by academics and researchers. We will go through a few of these algorithms
in more detail below. Particle Swarm Optimization (PSO), which is inspired by the natural
behaviors of swarm particles, is one of the most common SI algorithms. Each particle in this
approach represents a potential solution. After that, each particle may be updated based
on its global best position as well as its local position [3]. The PSO has been used to tackle a
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variety of problems over the years. Zhang et al. [19] applied particle swarm optimization
algorithm for training the feedforward neural network. Khajehzadeh et al. [20] utilized
the PSO algorithm for the optimum design of spread footing and retaining wall. For
the design of water supply systems, Montalvo et al. [21] implemented the PSO method.
The simultaneous coordinated designing of the power system stabilizer based on PSO
is presented by Eslami et al. [22,23]. Liu et al. [24] applied the PSO approach for patient
clustering from emergency departments.

Ant Colony Optimization is inspired by the foraging behavior of several ant species [2].
In nature, ants leave pheromones on the ground to indicate the best direction for the colony
members to go. It has gotten a lot of attention and has been used in a variety of optimization
challenges. For example, Kahatadeniya et al. [25] applied ant colony optimization for slope
stability analysis. Xu et al. [26] developed an artificial neural network model using ant
colony optimization to improve the performance of retaining walls under dynamic conditions.
Goa [27] utilized ant colony optimization to address the traveling salesman problem.

The behavior of a honeybee colony inspired the Artificial Bee Colony [28]. It contains
three collections: employed bees searching for sources of food, observer bees selecting
food sources, and scout bees searching for food sources at random [28]. The ABC has been
applied to a variety of optimization problems. Ozturk and Durmus [29] applied an artificial
bee colony algorithm for the optimum cost design of RC columns. Akay and Karaboga [30]
developed an artificial bee colony algorithm for large-scale problems and engineering
design optimization. Habib et al. [31] used artificial bee colony optimization for energy
cost optimization considering multi-objective functions. The flashing light of fireflies in
the waters inspired the Firefly Algorithm (FA) [32]. It has also gotten a lot of attention and
has been used in a variety of applications. Khajehzadeh et al. [33] developed the firefly
algorithm for slope stability analysis. Apostolopoulos and Vlachos [34] implemented the
firefly algorithm for addressing the economic emissions load dispatch problem. Khurshaid
et al. [35] applied the firefly algorithm for the optimal coordination of directional over-
current relays. Furthermore, several SI algorithms have been developed in the literature,
and they have demonstrated excellent results in a variety of optimization applications,
including Krill Herd (KH) [36], Whale Optimization Algorithm (WOA), Crow Search Algo-
rithm (CSA) [37], Rat Swarm Optimizer [38,39], Sperm Swarm Optimization [40,41], and
Chameleon Swarm Algorithm [42].

2.2. Evolutionary Algorithms

On the basis of biological evolution’s natural behaviors, several evolutionary algo-
rithms (EA) have been developed in the literature to address optimization challenges. Some
examples of EA algorithms are presented below. The most frequently used EA method is
the Genetic Algorithm (GA). Holland in 1992 created it after being inspired by Darwin’s
evolution theory [1]. It has gotten a lot of attention and is being used in a lot of areas. For
example, Zolfaghari et al. [5] applied the genetic algorithm for failure analysis of earth
slopes. Fernandes et al. [43] developed a genetic algorithm methodology to control the
energy consumption of an intelligent house. Eslami et al. [44] introduced a GA-based
damping controller solution for power system oscillations. Johnson et al. [45] used a ge-
netic algorithm for the optimization of the neural networks architecture for a given image
classification problem. Storn and Price presented differential evolution (DE) [46]. It has
also been used in a variety of optimization projects, including training feed-forward neural
networks [47], real-valued antenna and microwave design problems [48], and large-scale
black-box optimization [49]. The bi-directional evolutionary structural optimization (BESO)
approach proposed by Huang and Xie [50] has been applied successfully to some engi-
neering optimization problems, such as the optimal plastic design of pile foundations [51],
elastoplastic limit analysis of reliability-based topology optimization [52], and reliability-
based topology optimization of geometrically nonlinear elastoplastic models [53]. Other
well-known EA-based algorithms have proven their worth in a variety of optimization prob-
lems, including Evolution Strategy (ES), Genetic Programming (GP), Biogeography Based
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Optimizer (BBO) [54], Evolutionary Programming (EP) [55], and Virulence Optimization
Algorithm (VOA) [56].

2.3. Physics-Based Algorithms (PhA)

Physical-based algorithms employ natural phenomena and physical principles to
address optimization problems. The following are some effective PhA-based optimiza-
tion algorithms. Big Bang-Big Crunch (BB-BC) is a common PhA that was inspired by
the universe’s development [57]. BB-BC has been used by researchers in a variety of do-
mains, including optimal retaining wall design [58], voltage and frequency regulation in
autonomous microgrids [59], and construction-engineering design optimization [60]. The
law of gravity and mass interactions inspired the Gravitational Search Algorithm (GSA) [61].
It has also received a lot of attention and has been utilized to enhance and address a variety
of applications and difficulties. A few examples include multi-objective optimization of
foundations and retaining structures [62,63], Filter Modeling [64], and Feature Selection [65].
Additionally, other PhA-based metaheuristic algorithms include Central Force Optimiza-
tion (CFO) [66], Black Hole Algorithm (BH) [67], Curved Space Optimization Algorithm
(CSO) [68], Ray Optimization (RO) [69], and Multi-verse Optimizer (MVO) [70].

2.4. Human-Based Algorithms

Researchers presented numerous metaheuristic algorithms for addressing optimiza-
tion issues by modeling some genuine human behaviors. We will go through a few of these
strategies in more detail below. The effect of a teacher on the output of students in a class
inspired the Teaching Learning Based Optimization (TLBO) [71]. It has been used to solve a
variety of issues, including constrained mechanical design optimization problems [72], and
truss structure optimization [73]. The Socio Evolution Learning Optimization Algorithm
(SELOA) is suggested based on the social learning behavior of humans [74]. Furthermore,
other popular human-based algorithms are the Imperialist Competitive Algorithm (ICA) [75],
Exchanged Market Algorithm (EMA) [76], and volleyball Premier League Algorithm [77].

3. White-Tailed Eagle Algorithm (WEA)

The competitiveness of novel metaheuristics in solving optimization problems is
a common criterion for their evaluation. It is important to note that it is not possible
to develop an algorithm that can generate global solutions for all types of problems.
The literature has indicated that metaheuristics are highly suitable for handling difficult
problems. The "No Free Lunch" concept, however, encourages academics to develop
innovative optimization algorithms to solve the real-life problems that inevitably arise
owing to technological advancements [78]. This theory also holds this area of research open.
Hence, there are still issues that have not yet been addressed or can be better addressed by
new algorithms. Furthermore, there is no work in the literature that mimics the behavior of
white-tailed eagles in nature.

The white-tailed eagle optimization algorithm is a population-based and gradient-free
method, so it can be used to address complicated or straightforward optimization problems.
The main advantages of the proposed WEA are its capacity to avoid local optima, explore
the search region, and more reliably exploit the global optimum. Additionally, the method is
relatively simple and easy to implement, with few parameters that need to be adjusted. In this
section, the inspiration and mathematical model of the proposed WEA are presented, which
is inspired by the social behavior and hunting mechanisms of white-tailed eagles in nature.

3.1. Inspiration and Behavior of White-Tailed Eagles

White-tailed eagles are sporadic predators who only exist at the top of the food chain
due to their magnitude [79]. Moreover, these birds are scavengers who eat protein-rich
foods. White-tailed eagles prefer to eat fish as their principal source of food, and they
have the ability to detect fish from great distances [80]. White-tailed eagles use a variety of
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assault strategies and can hunt while flying. White-tailed eagles can change their foraging
technique and move from passively waiting for prey to an active quest [81].

After that, white-tailed eagles take a break because hunting requires a lot of energy.
These eagles fly in a predetermined direction and choose a specific region to begin their
search for food above a body of water. As a result, self-searching and tracking other birds
are used to locate the search space. Following that, white-tailed eagles will fly straight to
the location. Because space searching is the first stage of hunting behavior, when the eagles
arrive in the region, they will start looking for food [81]. Additionally, while soaring high,
white-tailed eagles reap the benefits of stormy weather. Increased wind speed triggers
soaring, during which eagles spend a significant amount of time flying. They have good
vision as well, allowing them to see food under the water from hundreds of feet above. An
eagle’s eye is the same size as a humans, but it has greater power. In addition, an eagle’s
eye has excellent vision, four times higher than humans. Eagles may also realize in both
forward and side views at the same time. Scanning gets simple with a twisting motion
when eagles are flying thousands of feet in the air.

The next step of hunting behavior is going to the prey. When the eagles spot their
meal, they begin the final step of their hunting activity, which involves descending with a
slow flow of motion to approach the target at a high speed and snatching the fish from the
water. To validate the sequences of each step of hunting, the proposed white-tailed eagle
algorithm simulates the behavior of the white-tailed eagle during hunting. As a result,
this algorithm can be broken down into two parts, namely, searching the search space and
improving the population and moving toward the prey [79].

3.2. Optimization Algorithm

Even with the broad diversity of population-based methods, the process of reaching
the optimum is almost the same. Typically, these algorithms begin the search with a
randomly chosen initial population. Utilizing a fitness function, these randomly generated
solutions are evaluated throughout iterations and improved using a set of formulae until a
termination requirement is satisfied.

Regardless of differences between the population-based techniques, these methods
share common information. In these approaches, the search process is divided into two
stages: exploration and exploitation [82]. Exploration comprises searching the full search
area for open locations that are far from the present position. The exploration stage occurs
when a metaheuristic approach tries to identify the best areas of a given search space.
On the other hand, the goal of exploitation is to explore the near-optimal points. During
the exploitation stage, the algorithm might focus on the neighborhood of higher-quality
answers inside the problem space. Implementation of the exploration alone could result
in new positions with a poor degree of precision. Using exploitation solely, on the other
hand, raises the risk of being stuck in local ideal situations. Numerous investigations
have underlined the significance of balancing exploration and exploitation in metaheuristic
approaches [83]. As a result, achieving the right balance among these two stages is vital. In
the proposed WEA, two different phases are introduced to make an effective exploration
and exploitation.

The proposed WEA’s step-by-step process is outlined below:
Step 1—Population initialization
As shown in the equation below, WEA, like other population-based evolutionary

optimization approaches, starts the investigation by utilizing a collection of randomly
generated elements (i.e., a set of eagles with a random position) in the search space.

Ei = lbi + rand× (ubi − lbi) ; i = 1 , 2, . . . , N (1)

The position of the ith eagle in the search space is represented by Ei. Furthermore, ubi
and lbi represent the variable’s lower and upper limits, respectively. A random number
between 0 and 1 is called rand.

Step 2—Population assessment
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In the second stage, the created random solutions will be measured using the fitness
function, and the eagle with the optimum fitness value will be chosen as EBest.

Step 3—Searching phase (Exploration)
In this phase, white-tailed eagles look for prey within the searching area they’ve

chosen, moving in different directions to speed up their hunt. Through the exploration of
the search space, the algorithm carefully investigates various areas using its randomized
operators. In this phase, each eagle cooperates with the best eagle and also interacts
randomly with other eagles to update its position.

The following equation presents this behavior mathematically:

Ei(t + 1) =
{

Ei(t) + 2× r1 × (Er(t)− Ei(t)) i f r2 < 0.5
Ei(t) + 2× r1 × (EBest(t)− Ei(t)) i f r2 ≥ 0.5

(2)

where Ei(t) represents the position of the ith eagle in the search space at iteration t, Er
is position of the randomly selected eagle from the population (i 6= r), EBest denotes the
position of the best eagle (i.e., nearest eagle to the prey), r1 and r2 are random numbers in
the range of (0, 1).

Step 4—Improving phase (Exploitation)
In the improving stage, each eagle gets knowledge from the population’s best candi-

date. In this phase, to improve the quality of the solutions of WEA, each eagle interacts
with the best eagle of the swarm ( EBest). The best eagle has the greatest effect on others to
find the prey. This behavior is illustrated in the following equation:

Ei(t + 1) = rand× EBest(t) + rand× (EBest(t)− Ei(t)) (3)

Step 5—Movement limitation
In every iteration, the WEA adjusts the distance each eagle moves through all dimen-

sions of the scratch area. Equations (2) and (3) show that the eagles’ movement is a stochastic
variable and can permit the eagle to follow a larger distance in the problem space. Therefore,
to manage these oscillations and prevent the eagle’s divergence, any eagle that goes beyond
the search-space limits will be regenerated according to the following equation:

Ei =


lbi i f Ei ≤ lbi
ubi i f Ei ≥ ubi
Ei otherwise

(4)

Algorithm 1 presents the proposed WEA’s pseudo code. In addition, the flowchart of
the WEA is depicted in Figure 1.

Algorithm 1. White-Tailed Eagle Algorithm (WEA)

Determine the parameters N, tMax
Generate initial population of eagles using Equation (1)
Evaluate eagles’ fitness
Rank the eagles based on their fitness
Consider the best eagle as EBest

t = 1
while t < tMax

Update the position of each eagle based on Equation (2)
Move each eagle toward the prey using Equation (3)
Check if any eagle goes beyond the

search space limit adjusts it
Evaluate eagles’ fitness
Rank the eagles based on their fitness
Update EBest

t= t +1
end while

Output the best solution
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4. Comparative Analysis of the WEA

Because metaheuristic algorithms are stochastic, numerous test cases must be used to
approve an algorithm’s efficacy. The performance of WEA is examined in this study using
a well-studied set of benchmark problems from the literature [84,85], as well as a great
combination of well-established algorithms. All of these are minimizing problems that may
be used to assess the search efficiency and convergence rate of optimization algorithms.
Tables 1 and 2 provide the details and mathematical formulation of these test functions [63].
Figures 2 and 3 show three-dimensional illustrations of these benchmark functions.
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Table 1. Unimodal benchmark functions.

Function Range fmin n (Dim)

F1(X) = ∑n
i=1 x2

i [−100, 100]n 0 30
F2(X) = ∑n

i=1|xi|+ ∏n
i=1|xi| [−10, 10]n 0 30

F3(X) = ∑n
i=1

(
∑i

j=1 xj

)2
[−100, 100]n 0 30

F4(X) = max
i
{|xi|, 1 ≤ i ≤ n } [−100, 100]n 0 30

F5(X) = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30]n 0 30

F6(X) = ∑n
i=1([xi + 0.5])2 [−100, 100]n 0 30

F7(X) = ∑n
i=1 ix4

i + random[0, 1) [−1.28, 1.28]n 0 30

Table 2. Multimodal benchmark problems.

Function Range fmin n (Dim)

F8(X) = ∑n
i=1 −xi sin

(√
|xi |
)

[−500, 500]n 428.9829
× n 30

F9(X) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n 0 30

F10(X) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

( 1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e [−32, 32]n 0 30

F11(X) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]n 0 30

F12(X) =

[−50, 50]n 0 30

π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+∑n

i=1 u(xi , 10, 100, 4)

yi = 1 + xi+4
4 , u(xi , a, k, m) =

 k(xi − a)m xi > a
0 a < xi < a

k(−xi − a)m xi < −a
F13(X) =

0.1
{

sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

∑n
i=1 u(xi , 5, 100, 4)

[−50, 50]n 0 30

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 29 
 

4. Comparative Analysis of the WEA 

Because metaheuristic algorithms are stochastic, numerous test cases must be used 

to approve an algorithm's efficacy. The performance of WEA is examined in this study 

using a well-studied set of benchmark problems from the literature [84,85], as well as a 

great combination of well-established algorithms. All of these are minimizing problems 

that may be used to assess the search efficiency and convergence rate of optimization al-

gorithms. Tables 1 and 2 provide the  details and mathematical formulation of these test 

functions [63]. Figures 2 and 3 show three-dimensional illustrations of these benchmark 

functions. 

Table 1. Unimodal benchmark functions. 

Function Range 𝒇𝒎𝒊𝒏 n (Dim) 

𝐹1(𝑋) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 [−100, 100]𝑛 0 30 

𝐹2(𝑋) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1
 [−10, 10]𝑛 0 30 

𝐹3(𝑋) = ∑ (∑ 𝑥𝑗

𝑖

𝑗=1
)

2𝑛

𝑖=1
 [−100, 100]𝑛 0 30 

𝐹4(𝑋) = max
𝑖

 {|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛 } [−100, 100]𝑛 0 30 

𝐹5(𝑋) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1
 [−30, 30]𝑛 0 30 

𝐹6(𝑋) = ∑ ([𝑥𝑖 + 0.5])2
𝑛

𝑖=1
 [−100, 100]𝑛 0 30 

𝐹7(𝑋) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)

𝑛

𝑖=1
 [−1.28, 1.28]𝑛 0 30 

 

 
F1 

 
F2 

 
F3 

 
F4 

 
F5 

 
F6 

Figure 2. Cont.



Sustainability 2022, 14, 10673 10 of 28
Sustainability 2022, 14, x FOR PEER REVIEW 10 of 29 
 

 

 
F7 

 

Figure 2. 3-D view of unimodal test problems. 

Table 2. Multimodal benchmark problems. 

Function Range 𝒇𝒎𝒊𝒏 n (Dim) 

𝐹8(𝑋) = ∑ −𝑥𝑖sin (√|𝑥𝑖|)
𝑛

𝑖=1
 [−500, 500]𝑛 

428.9829×

n 
30 

𝐹9(𝑋) = ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 [−5.12, 5.12]𝑛 0 30 

 𝐹10(𝑋) = −20 exp (−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) −

exp (
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛
𝑖=1 ) + 20 + 𝑒      

[−32, 32]𝑛 0 30 

𝐹11(𝑋) =
1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1
− ∏ cos (

𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1
 [−600, 600]𝑛 0 30 

𝐹12(𝑋) = 
𝜋

𝑛
{10 sin(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)2[1 + 10 sin2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2

𝑛−1

𝑖=1
}

+ ∑ 𝑢(𝑥𝑖 , 10, 100, 4)
𝑛

𝑖=1
 

𝑦𝑖 = 1 +
𝑥𝑖+4

4
, 𝑢(𝑥𝑖 , 𝑎, 𝑘, 𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚        𝑥𝑖 > 𝑎   
0                 𝑎 < 𝑥𝑖 < 𝑎 

𝑘(−𝑥𝑖 − 𝑎)𝑚       𝑥𝑖 < −𝑎
 

[−50, 50]𝑛 0 30 

𝐹13(𝑋) = 0.1 {sin2(3𝜋𝑥1)

+ ∑ (𝑥𝑖 − 1)2[1 + sin2(3𝜋𝑥𝑖 + 1)]
𝑛

𝑖=1

+ (𝑥𝑛 − 1)2[1 + sin2(2𝜋𝑥𝑛)]} + ∑ 𝑢(𝑥𝑖 , 5, 100, 4)
𝑛

𝑖=1
 

[−50, 50]𝑛 0 30 

 

 
F8 

 
F9 

 
F10 

Figure 2. 3-D view of unimodal test problems.

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 29 
 

 

 
F7 

 

Figure 2. 3-D view of unimodal test problems. 

Table 2. Multimodal benchmark problems. 

Function Range 𝒇𝒎𝒊𝒏 n (Dim) 

𝐹8(𝑋) = ∑ −𝑥𝑖sin (√|𝑥𝑖|)
𝑛

𝑖=1
 [−500, 500]𝑛 

428.9829×

n 
30 

𝐹9(𝑋) = ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 [−5.12, 5.12]𝑛 0 30 

 𝐹10(𝑋) = −20 exp (−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) −

exp (
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛
𝑖=1 ) + 20 + 𝑒      

[−32, 32]𝑛 0 30 

𝐹11(𝑋) =
1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1
− ∏ cos (

𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1
 [−600, 600]𝑛 0 30 

𝐹12(𝑋) = 
𝜋

𝑛
{10 sin(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)2[1 + 10 sin2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2

𝑛−1

𝑖=1
}

+ ∑ 𝑢(𝑥𝑖 , 10, 100, 4)
𝑛

𝑖=1
 

𝑦𝑖 = 1 +
𝑥𝑖+4

4
, 𝑢(𝑥𝑖 , 𝑎, 𝑘, 𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚        𝑥𝑖 > 𝑎   
0                 𝑎 < 𝑥𝑖 < 𝑎 

𝑘(−𝑥𝑖 − 𝑎)𝑚       𝑥𝑖 < −𝑎
 

[−50, 50]𝑛 0 30 

𝐹13(𝑋) = 0.1 {sin2(3𝜋𝑥1)

+ ∑ (𝑥𝑖 − 1)2[1 + sin2(3𝜋𝑥𝑖 + 1)]
𝑛

𝑖=1

+ (𝑥𝑛 − 1)2[1 + sin2(2𝜋𝑥𝑛)]} + ∑ 𝑢(𝑥𝑖 , 5, 100, 4)
𝑛

𝑖=1
 

[−50, 50]𝑛 0 30 

 

 
F8 

 
F9 

 
F10 

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 29 
 

 
F11 

 
F12 

 
F13 

Figure 3. 3-D view of multimodal test problems. 

This benchmark set is divided into two categories: unimodal test functions with a 

single global best for evaluating an algorithm's convergence rate and exploitation capa-

bility, and multimodal test functions by numerous local solutions and a global optimum 

for evaluating an algorithm's local optima prevention and exploration power. The sug-

gested algorithm is written in the computer language MATLAB R2020b. After the manu-

script is accepted, the MATLAB code will be published. It is advised that the performance 

of a newly presented computational intelligence algorithm be compared to the perfor-

mance of other generally established algorithms in the area in order to validate its success.  

The suggested WEA's findings and performance are compared to those of other well-

known optimization techniques. The WEA has a simple structure and requires just two 

key parameters: the number of eagles (N) and the maximum iteration number (tMax). Ac-

tually, the termination criterion of the algorithm is the maximum number of iterations. 

The primary parameters of the algorithms under consideration are shown in Table 3. 

These coefficients were obtained using the reference-based parameter detection approach, 

as advised by the authors of the original studies.  

Because metaheuristic strategies are stochastic, the outcomes of a single run may not 

be accurate, and the methods can seek better or even worse answers than those previously 

found. Thus, to obtain a proper assessment and efficacy measurement of the techniques, 

statistical analysis is used. To deal with this problem, thirty separate runs are done for the 

specified approaches, and statistical findings are obtained and given in Tables 4 and 5. 

The exploitation, exploration, and convergence rate of the novel approach are studied, 

utilizing a comparison of WEA versus four chosen algorithms, in the following subsec-

tions. 

Table 3. selected algorithms’ parameters. 

Algorithm (year) Parameter Value 

WEA (2022) 
Number of eagles 

Iterations’ Number 

50 

1000 

GSA (2009) 

Agent’s Number 

Gravitational constant 

Iterations’ Number 

50 

100 

1000 

GWO (2014) 

Agent’s Number 

Control parameter  

Iterations’ Number 

50 

[2,0] 

1000 

SCA (2016) 

Agent’s Number 

Number of elites 

Iterations’ Number 

50 

2 

1000 

TSA (2020) 
Agent’s Number 

Iterations' Number 

50 

1000 

Figure 3. 3-D view of multimodal test problems.

This benchmark set is divided into two categories: unimodal test functions with a
single global best for evaluating an algorithm’s convergence rate and exploitation capability,
and multimodal test functions by numerous local solutions and a global optimum for
evaluating an algorithm’s local optima prevention and exploration power. The suggested
algorithm is written in the computer language MATLAB R2020b. After the manuscript
is accepted, the MATLAB code will be published. It is advised that the performance of a
newly presented computational intelligence algorithm be compared to the performance of
other generally established algorithms in the area in order to validate its success.

The suggested WEA’s findings and performance are compared to those of other well-
known optimization techniques. The WEA has a simple structure and requires just two key
parameters: the number of eagles (N) and the maximum iteration number (tMax). Actually,
the termination criterion of the algorithm is the maximum number of iterations.

The primary parameters of the algorithms under consideration are shown in Table 3.
These coefficients were obtained using the reference-based parameter detection approach,
as advised by the authors of the original studies.
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Table 3. Selected algorithms’ parameters.

Algorithm (Year) Parameter Value

WEA (2022)
Number of eagles 50

Iterations’ Number 1000

GSA (2009)
Agent’s Number 50

Gravitational constant 100
Iterations’ Number 1000

GWO (2014)
Agent’s Number 50

Control parameter [2,0]
Iterations’ Number 1000

SCA (2016)
Agent’s Number 50
Number of elites 2

Iterations’ Number 1000

TSA (2020)
Agent’s Number 50

Iterations’ Number 1000

Because metaheuristic strategies are stochastic, the outcomes of a single run may not
be accurate, and the methods can seek better or even worse answers than those previously
found. Thus, to obtain a proper assessment and efficacy measurement of the techniques,
statistical analysis is used. To deal with this problem, thirty separate runs are done for the
specified approaches, and statistical findings are obtained and given in Tables 4 and 5. The
exploitation, exploration, and convergence rate of the novel approach are studied, utilizing
a comparison of WEA versus four chosen algorithms, in the following subsections.

Table 4. Results of unimodal test problems.

Fun. Index WEA TSA SCA GSA GWO

F1

Min 0.00 5.238 × 10−61 1.613 × 10−7 1.128 × 10−17 2.513 × 10−61

Max 0.00 1.218 × 10−54 2.931 × 10−3 3.243 × 10−17 3.754 × 10−58

Avg 0.00 8.245 × 10−56 2.298 × 10−4 2.276 × 10−17 4.817 × 10−59

Med 0.00 7.221 × 10−58 1.887 × 10−5 2.105 × 10−17 1.132 × 10−59

SD 0.00 2.520 × 10−55 7.875 × 10−4 5.921 × 10−18 1.144 × 10−58

F2

Min 0.00 1.029 × 10−35 1.485 × 10−9 1.473 × 10−8 8.412 × 10−36

Max 0.00 3.321× 10−32 9.796 × 10−6 3.419 × 10−8 5.295 × 10−34

Avg 0.00 2.233 × 10−33 1.732 × 10−6 2.465 × 10−8 8.421 × 10−35

Med 0.00 3.224 × 10−34 5.342 × 10−7 2.497 × 10−8 5.891 × 10−35

SD 0.00 6.133 × 10−33 2.316 × 10−6 3.898 × 10−9 9.789 × 10−35

F3

Min 0.00 2.575 × 10−32 70.8285 102.955 1.311 × 10−19

Max 0.00 2.452 × 10−17 267.0 468.616 3.499 × 10−13

Avg 0.00 8.182 × 10−19 789.1620 245.469 1.488 × 10−14

Med 0.00 1.871 × 10−24 619.4506 221.115 2.132 × 10−17

SD 0.00 4.468 × 10−18 746.2287 100.102 6.612 × 10−14

F4

Min 6.02 × 10−224 3.318 × 10−8 1.2610 2.312 × 10−9 9.716 × 10−16

Max 3.82 × 10−218 6.419 × 10−5 35.6743 5.123 × 10−9 2.332 × 10−13

Avg 6.27 × 10−219 1.222 × 10−5 9.3080 3.221 × 10−9 1.872 × 10−14

Med 7.98 × 10−220 2.110 × 10−6 6.9806 3.191 × 10−9 6.412 × 10−15

SD 0.00 1.717 × 10−5 8.0720 7.398 × 10−10 4.886 × 10−14

F5

Min 22.441 25.6273 27.3230 25.745 25.2273
Max 22.945 29.5430 49.5110 220.911 28.7294
Avg 22.646 28.4422 29.9106 42.2647 26.9256
Med 22.624 28.8115 29.0097 26.1443 27.1173
SD 0.163 0.7616 4.1508 45.4674 0.8418
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Table 4. Cont.

Fun. Index WEA TSA SCA GSA GWO

F6

Min 0.00 2.0585 3.4070 9.669 × 10−18 0.2466
Max 0.00 4.7791 4.4435 8.712 × 10−16 1.2619
Avg 0.00 3.6724 4.0360 3.123 × 10−17 0.6376
Med 0.00 3.5615 4.0572 2.889 × 10−17 0.7452
SD 0.00 0.6918 0.2954 6.214 × 10−18 0.3353

F7

Min 9.764 × 10−6 6.711 × 10−4 0.0015 0.0061 1.492 × 10−4

Max 1.459 × 10−4 0.0036 0.0431 0.0462 2.132 × 10−3

Avg 5.385 × 10−5 0.0018 0.0116 0.0237 7.885 × 10−4

Med 5.271 × 10−5 0.0018 0.0078 0.0222 7.111 × 10−4

SD 3.772 × 10−5 7.726 × 10−4 0.0101 0.0098 4.711 × 10−4

Table 5. Results of multimodal test problems.

Fun. Index WEA TSA SCA GSA GWO

F8

Min −1.242 × 104 −7.776 × 103 −5.341 × 103 −3.713 × 103 −8.964 × 103
Max −1.182 × 104 −5.324 × 103 −3.449 × 103 −2.122 × 103 −4.888 × 103
Avg −1.204 × 104 −6.598 × 103 −4.143 × 103 −2.654 × 103 −6.161 × 103
Med −1.193 × 104 −6.599 × 103 −3.886 × 103 −2.854 × 103 −6.155 × 103
SD 88.432 600.1324 341.645 359.543 848.243

F9

Min 0.00 77.7761 1.0560 × 10−6 8.9546 0.00
Max 0.00 254.9883 51.4451 21.8891 10.0548
Avg 0.00 151.4539 5.9694 15.6209 0.8853
Med 0.00 149.6596 9.3391 × 10−4 15.9193 0.00
SD 0.00 35.8717 12.2476 3.1043 2.4438

F10

Min 8.882 × 10−16 1.5099 ×
10−14 1.5579 × 10−5 2.612 × 10−9 1.321 × 10−14

Max 4.441 × 10−15 4.3125 20.2198 4.325 × 10−9 2.314 × 10−14

Avg 2.664 × 10−15 2.4095 14.3622 3.513 × 10−9 1.623 × 10−14

Med 2.664 × 10−15 2.9381 20.1275 3.524 × 10−9 1.445 × 10−14

SD 1.872 × 10−15 1.3920 8.9778 5.211 × 10−10 2.643 × 10−15

F11

Min 0.00 0.00 4.8381 × 10−7 1.6952 0.00
Max 0.00 0.0159 0.7703 10.6642 0.0140
Avg 0.00 0.0077 0.1368 4.2510 0.0014
Med 0.00 0.0082 0.0032 3.5667 0.00
SD 0.00 0.0057 0.2218 2.0234 0.0041

F12

Min 1.571 × 10−32 0.2738 0.2631 8.203 × 10−2 0.0121
Max 1.909 × 10−32 13.8088 5.6300 0.1037 0.0920
Avg 1.626 × 10−32 6.3735 0.9568 0.0198 0.0364
Med 1.578 × 10−32 6.7411 0.4964 1.3512 0.0329
SD 1.086 × 10−33 3.4586 1.1497 0.0400 0.0201

F13

Min 1.342 × 10−32 1.7796 1.8452 1.291 × 10−18 0.1006
Max 2.046 × 10−31 4.1077 22.5849 0.022 1.0416
Avg 6.44 × 10−32 2.8976 3.4211 7.198 × 10−4 0.5280
Med 3.075 × 10−32 2.8914 2.3552 2.034 × 10−18 0.5238
SD 7.528 × 10−32 0.6436 3.9911 3.011 × 10−3 0.2359



Sustainability 2022, 14, 10673 13 of 28

4.1. Exploitation Validation

Unimodal test problems can be used to assess an optimization algorithm’s exploitation
capabilities [86,87]. In order to assess the WEA’s ability to exploit encouraging regions,
seven unimodal benchmark problems presented in Table 1 are considered. The findings are
compared to other approaches in Table 4. The findings presented in this table suggest that the
WEA might offer a better solution for all unimodal tasks. The WEA also reached the global
optima for four functions (F1, F2, F3, F6). In comparison to other optimization methods, the
obtained results suggest that the novel approach has a vast potential search capacity.

4.2. Exploration Verification

Multiple local optima in multimodal benchmark functions examined the capacity of an
optimization approach to properly explore the search area [86,87]. There is a minimization
of six multimodal functions (F8 to F13) in this study using the presented method. Table 5
show that the Best and Mean values obtained by the WEA for all problems are much
better than those obtained by the other methods. Additionally, when compared to the
other strategies, the findings indicate that the WEA is a more reliable method in terms of
standard deviation.

Based on the results of the investigation, the WEA either outperforms or performs
almost equally with the other algorithms. The consistent performance of the new tech-
nique across such a wide range of multi-modal benchmark functions confirms its superior
exploration capabilities.

4.3. Convergence Ability

A successful optimization technique needs to reach the global best solution rather
than settling for a local optimum in early iterations. In Figure 4, the convergence progress
curves of the WEA are compared to GSA, SCA, TSA, and GWO for certain benchmark test
functions. The curves are displayed versus the number of iterations, which ranges from
hundreds to thousands.

In most problems, the WEA outperforms the other algorithms, as seen in the graph.
The test function optimization curves reveal that the WEA is proficient in exploring the
search space and discovering the problem’s area in fewer iterations.
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5. Retaining Structure Analysis

One of the essential issues in civil engineering is the seismic evaluation of the retaining
structures. Reinforced concrete retaining walls are one of the most widely used structures in
various projects such as supporting excavations, road construction, and bridge abutments.
However, when seismic loads are applied, it will be more difficult to assess the precise
behavior of these structures. Therefore, to evaluate how the structure will respond to
seismic loads, an efficient pseudo-static approach will be used.

The Mononobe-Okabeh (M-O) is a common pseudo-static technique for determining
the distribution of earthquake pressure [88]. A one-meter-long retaining structure subject
to general forces is shown in Figure 5. The active and passive earth pressures under
earthquake loads are shown in this figure as PAE and PPE, respectively. H stands for the
wall’s overall height, β for the angle of backfill slope, D for the soil depth, q for the surcharge
load, and qmin and qmax for the contact pressure’s minimum and maximum values.
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The analysis of retaining structures begins with a determination of the active and
passive earth pressure applied on a wall. The M-O theory states that the following equations
can be used to determine a total active earth force [88]:

PAE =
1
2

γH2(1− KV)KAE (5)

KAE =
sin2(∅+ α− θ)

cos(θ)sin2(α)sin(α− δ− θ)

[
1 +

√
sin(δ+∅) sin(∅−θ−β)
sin(α−δ−θ) sin(α+β)

]2 (6)

where, α denotes the angle of the wall’s back face and θ denotes the angle of seismic inertia
that can be obtained by:

θ = tan−1
(

Kh
1− KV

)
(7)

According to the definitions below, KV and Kh represent the vertical and horizontal
acceleration constants:

Kh =
horizontal earthquake acceleration component

acceleration due to gravity (g)
(8)

KV =
vertical earthquake acceleration component

acceleration due to gravity (g)
(9)

The M-O theory states that the following formula can be applied to calculate the total
passive earth force under earthquake loads [88]:

PPE =
1
2

γH2(1− KV)KPE (10)

KPE =
sin2(α−∅− θ)

cos(θ) sin2(α) sin(α + δ− θ)

[
1−

√
sin(δ+∅) sin(∅+β−θ)
sin(α+δ−θ) sin(α+β)

]2 (11)

6. Optimization of Retaining Structure

In the optimal design problem, the objective function f is to be minimized while taking
into account the constraints g, which are represented by Equation (12)

minimize f (X) X = [x1, x2, . . . , xn] (12)

subject to gi(X) ≤ 0 i = 1, 2, . . . . mXL ≤ X ≤ XU

where, X is a vector containing the n design variables; g(X) is a vector containing the m
inequality constraints. The design variables’ lower and upper bounds are represented by
the two vectors, XL and XU, respectively. The design variables, the objective function, and
the design constraints related to the optimization of retaining structures are presented in
the following.

6.1. Objective Function

In the present research, the embedded CO2 emission and construction price of the
structure that is subject to both static and dynamic loads are taken into consideration
as objective functions. Therefore, the goal is to reduce the value of one of these two
objective functions. The volume of concrete, excavation, compacted backfill, formwork,
and reinforcing steel are considered by both objective functions. The following equation
shows the structure’s overall cost:

fcost = CsWst + CcVc + CeVe + C f A f + CbVb (13)
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where, Vc, Ve, and Vb represent the volumes of concrete, excavation, and backfill, and
Wst is the steel bars weight. Af displays the formwork area. The unit prices of excavation
(Ce), formwork (Cf), reinforcement (Cs), backfill (Cb), and concrete (Cc), are presented in
Table 6 [12].

Table 6. Retaining walls assembly unit price.

Item Notaition Unit CO2 Emission Unit Cost

Excavation Ve m3 13.16 Kg 11.41 $
Formwork Af m2 31.66 Kg 37.08 $

Reinforcement Wst kg 2.82 Kg 1.51 $
Backfill Vb m3 27.20 Kg 38.10 $

Concrete Vc m3 224.34 Kg 99.49 $

The following equation is a form of the next objective, which quantifies the total CO2
emissions of retaining walls:

fco2 = EsWst + EcVc + EeVe + E f A f + EbVb (14)

Table 6 presents the unit CO2 emissions of excavation (Ee), formwork (Ef), reinforce-
ment (Es), backfill (Eb), and concrete (Ec) [12].

6.2. Design Variables

The eight continuous design variables taken into account in this study include three
variables that represent the steel reinforcement of various structural components and five
others that relate to the geometry of the structure shown in Figure 5. In this figure, X1
represents the heel’s width, X2 stand for the top stem thickness, X3 for the bottom stem
thickness, X4 for the toe’s width, and X5 represents the base slab’s thickness. S1 represents
the stem’s vertical reinforcement, S2 represents the toe’s horizontal reinforcement, and S3
represents the heel’s horizontal reinforcement.

6.3. Design Constraints

The restrictions on stability and strength imposed by the American Concrete Institute’s
design code (ACI 318−05) [89], taken into account in the retaining structures optimization
are presented below:

Overturning Stability Constraint:

total resistant moments
total overturning moments

≥ FSOdesign (15)

where, FSOdesign is prescribed factors of safety against overturning.
Sliding stability constraint:

total horizontal resistant f orces
total horizontal driving f orces

≥ FSSdesign (16)

where, FSSdesign is prescribed factors of safety against sliding.
Bearing capacity constraint:

qu

qmax
≥ FSBdesign (17)

where, qu is the ultimate bearing capacity obtained by the Meyerhof Bearing Capacity
Theory [90]; qmax is the maximum applied bearing stress. The maximum and minimum
contact pressure are defined in the following equation:

qmax,min =
∑ V

B

(
1± 6e

B

)
(18)
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where, ∑V denotes the total vertical forces, B denotes the width of foundation, and e
denotes the load’s eccentricity.
No tension at the foundation:

qmin ≥ 0 (19)

Moment capacity of toe, heel and bottom of stem:

Mu ≤ 0.9As fy

(
d− 0.5×

As fy

0.85 fcb

)
(20)

where, Mu is the ultimate bending moment, fc is the compressive concrete strength, and fy
is the steel yield strength.
Shear capacity of toe, heel, and stem:

Vu ≤
1
6

0.75
√

fcbd (21)

where, Vu is ultimate shearing force
Limitation of flexural reinforcement:

ρmin ≤ ρ ≤ ρmax , ρ =
As

bd
, ρmin =

1.4
f y

, ρmax =

(
0.852 fc

fy

)(
600

600 + fy

)
(22)

In this research, a penalty function approach is employed to take into account the
above restrictions and convert a constrained optimization to an unconstrained problem
based on the following equation:

F(X) = f (X) + r
p

∑
i=1

max{0, gi(X)}l (23)

where, F(X) represents the penalized objective function, f (X) denotes the the pictures.problem’s
original objective function as stated in Equation (13) and Equation (14), and g(X) represents
the problem’s constraints. The penalty factor, r, is considered equal to 1000, and the power
of the penalty function, l, is considered equal to 2.

7. Model Validation

In this section, to validate the performance of the proposed method, a numerical example
of a retaining structure is considered from the literature [58]. Table 7 lists the input parameters.

The big bang-big crunch optimization (BB-BC) was used by Camp and Akin [58]
to solve this problem. Moreover, the interior search algorithm (ISA) was developed by
Gandomi et al. [91] to find the answer. However, these studies found the solution subjected
to the static loads. In the aforementioned studies, the following objective function is
considered, which is based on the cost of steel and concrete:

fcost = CsWst + CcVc (24)
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Table 7. Input parameters for numerical investigation.

Parameter Unit Symbol Value

Height of stem m H 3.0
Internal friction angle of retained soil degree ϕ 36

Internal friction angle of base soil degree ϕ’ 0.0
Unit weight of retained soil kN/m3 γs 17.5

Unit weight of base soil kN/m3 γ’s 18.5
Unit weight of concrete kN/m3 γc 23.5

Unit weight of steel kN/m3 γsteel 78.5
Cohesion of base soil kPa c 125

Depth of soil in front of wall m D 0.5
Surcharge load kPa q 20

Backfill slop degree β 10
Concrete cover cm dc 7.0

Yield strength of reinforcing steel MPa fy 400
Compressive strength of concrete MPa fc 21

Shrinkage and temporary reinforcement percent - ρst 0.002
Design load factor - LF 1.7

Factor of safety for overturning stability - FSO 1.5
Factor of safety against sliding - FSS 1.5

Factor of safety for bearing capacity - FSB 3.0

To justify the accuracy of the presented technique for optimization of retaining walls,
the problem is solved based on the objective function presented in Equation (24) using the
proposed WEA and the results are compared with BB-BC and ISA in Table 8.

Table 8. Comparison of the optimum results of different algorithms.

Design Variable Unit
Optimum

Values WEA
(Current Study)

Optimum
Values BB-BC

[58]

Optimum
Values ISA

[91]

heel’s width (X1) m 0.65 0.8732 0.8023
top stem thickness (X2) m 0.2 0.2 0.2

bottom stem thickness (X3) m 0.272 0.2678 0.2875
toe’s width (X4) m 0.68 0.6017 0.7536

base slab’s thickness (X5) m 0.2722 0.2722 0.27
stem’s vertical

reinforcement (S1) cm2/m 12 12 13

toe’s horizontal
reinforcement (S2) cm2/m 8 8 7

heel’s horizontal
reinforcement (S3) cm2/m 8 8 7

Best Cost $/m 68.76 70.96 73.05

As per the findings reported in Table 8, the optimal solution found by WEA is
68.76 $/m, which is slightly less costly than the design evaluated by BB-BC [58] and
5% cheaper than the ISA method. The results verify the new algorithm’s efficacy for
optimization of retaining structures.

8. Model Application and Parametric Study

In this section, a numerical example of retaining structure optimization is considered
from the study of Camp and Akin [58]. The input parameters are presented in Table 7. This
experiment considers two objective functions as presented in Equation (13) and Equation
(14): CO2 emission and construction cost. The results of the cost and emission optimization
are compared with each other. To investigate the effect of the horizontal and vertical
acceleration coefficients on the total cost and CO2 emission of the wall, a set of six different
combinations of Kh and KV have been considered as presented in Table 9.
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Table 9. Horizontal and vertical acceleration coefficient combinations.

Case No. Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Kh 0.0 0.1 0.1 0.2 0.2 0.2
KV 0.0 0.0 0.1 0.0 0.1 0.2

The problem is solved using the WEA algorithm for different combinations of hori-
zontal and vertical acceleration coefficients as presented in Table 9. The algorithm is run
thirty times, and the optimum results for low-cost and low-CO2 objectives are presented in
Tables 10 and 11, respectively.

Table 10. Optimization result for cost objective function.

Design
Variable Unit

Optimum
Values
Case 1

Optimum
Values
Case 2

Optimum
Values
Case 3

Optimum
Values
Case 4

Optimum
Values
Case 5

Optimum
Values
Case 6

X1 m 0.5513 0.6539 0.613 0.7923 0.7887 0.7672
X2 m 0.2 0.2 0.2 0.2 0.2 0.2
X3 m 0.3567 0.0.3743 0.3686 0.3617 0.3364 0.3387
X4 m 0.7778 0.7632 0.7778 0.7778 0.7778 0.7778
X5 m 0.2727 0.2847 0.2821 0.2995 0.2997 0.2921
S1 cm2/m 8 8 8 9 9 8
S2 cm2/m 8 9 8 11 10 10
S3 cm2/m 8 9 10 11 10 10

Best Cost $/m 572.74 599.3 593.1 641.3 631.91 622.73

Table 11. Optimization result for CO2 objective function.

Design
Variable Unit

Optimum
Values
Case 1

Optimum
Values
Case 2

Optimum
Values
Case 3

Optimum
Values
Case 4

Optimum
Values
Case 5

Optimum
Values
Case 6

X1 m 0.6074 0.7113 0.6835 0.862 0.7993 0.7825
X2 m 0.2 0.2 0.2 0.2 0.2 0.2
X3 m 0.2929 0.304 0.3064 0.2841 0.3251 0.32
X4 m 0.7631 0.7635 0.75 0.7735 0.7777 0.7778
X5 m 0.2728 0.2775 0.2734 0.2907 0.2928 0.2901
S1 cm2/m 10 10 10 11 9 9
S2 cm2/m 8 9 9 11 10 10
S3 cm2/m 8 9 9 11 10 10

Best CO2 kg/m 740.1 773.33 762.09 822.35 812.35 805.11

The results of Table 10 indicate that the best price for the first case (no seismic loading)
is 572.74 $/m. By increasing the Kh to 0.1 (case 2), the price will rise by 4.7%. When KV is
equal to 0.1 (case 3), the best cost slightly decreases, as it was predicted from Equation (1).
In addition, by increasing Kh from 0 to 0.2 (case 4), the best cost increases by 12%, approxi-
mately. In cases 5 and 6, by increasing the value of KV to 0.2, the construction cost will be
decreased by up to 1.5%. According to these results, ignoring the KV is acceptable under
the general seismic optimization conditions for the retaining structure.

Similarly, in the case of CO2 optimization, the results of Table 11 reveal that the total
amount of CO2 emissions will be increased by up to 4.5% and 11.1%, whereas the horizontal
acceleration coefficient varies from zero to 0.1 and 0.2, respectively.

A sensitivity analysis was performed on a set of different wall heights from 3 to 11 m with
increments of 1 m to assess the impact of the horizontal acceleration coefficient on the cost and
CO2 emission when the vertical acceleration coefficient is equal to zero. Figures 6 and 7 show
the parabolic curves of cost and CO2 emission versus different wall heights, respectively.
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As shown in Figure 6, the construction cost increases drastically as the height of the
wall increases. However, the intensity of variation will be increased while Kh is equal to
0.2. The construction cost adjusts to Cost = 64.25H2 − 234.8H + 755.2 with R2 = 0.9994 for
Kh = 0.0 and it is equal to Cost = 130.2H2 − 770H + 1951 with R2 = 0.9953 for Kh = 0.2. The
results of CO2 emissions presented in Figure 7 are also comparable with the results of the
cost objective function. As shown in this figure, by increasing the height of the wall to 11m,
the differences between the amount of CO2 emission increases by up to 60%.

Figures 8 and 9 show the low-CO2 emission and low-cost designs of a wall with a
height of 3 m for various values of Kh as the friction angle of the retained soil varies from
28 to 36 degrees. Over this range, for Kh equal to 0.0 and 0.2, both the low-cost and low-
CO2 emission designs decrease by approximately 19% as the friction angle increases.
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Figure 9. Effects of friction angle on low- CO2 emission designs (H = 3 m).

Figures 10 and 11 depict the low-CO2 emission and low-cost designs of a 6 m-height
wall for various values of the friction angle of the retained soil. As shown in these figures,
the low-cost designs decrease by 26% as the friction angle increases, whereas the low-CO2
emission designs decrease by 30%. These findings indicate that, by increasing the height of
the wall, the effect of the friction angle on the optimum design becomes more significant.
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9. Conclusions and Further Research

In this work, a novel alternative metaheuristic method called the white-tailed eagle al-
gorithm is developed for global optimization problems and low-cost and low-CO2 emission
designs of retaining structures. This approach mimics the natural behavior of white-tailed
eagles. The optimization processes of the WEA are divided into two main phases: exploring
the search space effectively and exploiting within a converged search space based on the
position of the best eagle (i.e., the best position obtained so far). Several experiments are
used to validate the new method’s performance. To study the exploitation, exploration,
and convergence speed of the proposed algorithm, a set of diverse benchmark functions
were examined. In addition, the findings were compared against GSA, SCA, TSA, and
GWO, four well-known and recently created algorithms. According to the findings of the
presented study, the following conclusions are obtained:

• The major features of the WEA include its simplicity with just two main parameters,
which are ease of coding and ease of implementation;

• Based on the statistical outcomes of the benchmark test problems, the WEA could
produce either superior or relatively close results to other well-known competitors;
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• Among thirteen considered benchmark problems, the new WEA reached the global opti-
mum for six problems and in early iterations, indicating the robustness of the new method;

• The performance of the new algorithm for optimizing retaining structures subjected to
both static and dynamic loading conditions indicates that the WEA design is nearly
5% less expensive than the previous approach;

• The numerical investigations show that, when compared to the other techniques, the
newly proposed algorithm for the optimization of retaining structures is quite reliable
and effective;

• Finally, seismic optimization results reveal that by increasing the horizontal accelera-
tion coefficient to 0.2, the best cost and best CO2 emission designs will be increased by
up to 12% and 11.1%, respectively.

In future research, the binary version of the WEA can be developed to handle dis-
continuous problems. In addition, it is expected to develop the multi-objective WEA.
Moreover, the WEA may also be applied to address several optimization issues in various
fields, including feature selection, neural networks, structural optimization, photovoltaic
models, power system stabilization, big data applications, and so on.
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