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Abstract: This study investigated the potential of zeolites (NH4BETA, NH4ZSM-5, and NaY) to
remove two frequently used dyes, methylene blue (MB) and rhodamine B (RB), from an aqueous
environment. The removal of dyes with zeolites was performed via two mechanisms: adsorption
and photocatalysis. Removal of dyes through adsorption was achieved by studying the Freundlich
adsorption isotherms, while photocatalytic removal of dyes was performed under UV irradiation.
In both cases, the removal experiments were conducted for 180 min at two temperatures (283 K
and 293 K), and dye concentrations were determined spectrophotometrically. Additionally, after
photodegradation, mineralization was analyzed as chemical oxygen demand. A computational
analysis of the structures of MB and RB was performed to gain a deeper understanding of the obtained
results. The computational analysis encompassed density functional theory (DFT) calculations
and analysis of two quantum-molecular descriptors addressing the local reactivity of molecules.
Experimental results have indicated that the considered zeolites effectively remove both dyes through
both mechanisms, especially NH4BETA and NH4ZSM-5, due to the presence of active acidic centers
on the outer and inner surfaces of the zeolite. The lowest efficiency of dye removal was achieved in
the presence of NaY zeolite, which has a lower SiO2/Al2O3 ratio. A more efficient reduction was
completed for RB dye, which agrees with the computationally obtained information about reactivity.

Keywords: Methylene blue; Rhodamine B; BETA zeolite; ZSM-5 zeolite; NaY zeolite; water
purification; molecular modeling; DFT calculation

1. Introduction

Clean and unpolluted water is an irreplaceable resource that enables life on Earth.
Water quality has deteriorated yearly due to rapid economic and industrial progress [1–3].
The primary source of pollution is industrial, agricultural, and communal wastewater,
which may adversely affect the environment and human health when inadequately treated
before being discharged into the recipient [4]. Textile, graphic, food, pharmaceutical,
photographic, and cosmetic industries use dyes in the production process, producing
many colored wastewaters characterized by high oxygen consumption [5–8]. Even in
low concentrations in the water, the presence of dyes harms aquatic organisms’ life due
to their toxic, mutagenic, and carcinogenic properties [7–9]. In long-term contact with
humans, dyes can cause severe damage to the kidneys, liver, and central nervous system.
In addition, dyes may cause respiratory problems or the appearance of allergic reactions
and dermatitis [7,10–13].
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Methylene blue (MB) belongs to the group of xanthene dyes, and rhodamine B (RB) to
the group of thiazine dyes [14]. They are used for dyeing paper and in the textile industry
for dyeing cotton, leather, and wool. They have been widely used in medicine and the
pharmaceutical and cosmetic industries [15–17]. Due to the positive charge in the structures,
these dyes belong to cationic dyes [18], with the fact that RB in the aqueous environment at
pH < 3 is in the protonated (cationic) form, while at pH > 3, it is in the zwitterion form due
to the deprotonation of the carboxyl group [19–22]. The accumulation of cationic dyes in the
body may cause respiratory problems, rapid heartbeat, nausea, vomiting, abdominal pain,
and skin irritation [18,23]. They are hardly biodegradable and persist in the environment
in very high concentrations [17,24]. It is, therefore, necessary to remove or reduce them to a
minimum in wastewater before discharge into waterways.

Due to all the aforementioned, numerous physical, chemical, and biological methods
have been developed to remove dyes from the water environment [3,25–28]. Some of them
are: adsorption [4,29], membrane filtration [30], electrocoagulation [31], photochemical
decomposition [32], electrochemical oxidation [33], as well as advanced oxidation pro-
cesses [34,35]. In addition to many techniques used in the treatment of colored wastewater,
adsorption still takes an important place due to its simplicity, practicality, economy, and
high efficiency.

The adsorption efficiency mainly depends on the affinity of the adsorbate to the ad-
sorbent and the specific surface of the adsorbent [8,36–40]. Activated carbon is one of
the most frequently used adsorbents that dates back to ancient times. Carbon materials
are still used today to purify polluted waters thanks to the surface’s high porosity and
chemical reactivity [7,41]. Recently, advanced oxidation processes have been increasingly
used for wastewater treatment. Within this approach, highly reactive species, such as
hydroxyl radicals (•OH), are generated and may indiscriminately react with many organic
compounds by electrophilic addition to the double bond or electron-transfer reaction. The
formed intermediates can further react with dissolved molecular oxygen and increase
degradation efficiency to less toxic or non-toxic compounds [42–47]. Heterogeneous photo-
catalytic degradation, which can completely mineralize organic compounds to CO2, H2O,
and inorganic ions, has attracted particular attention [43,48].

Thanks to their high adsorption capacity, thermal and mechanical stability, and unique
and precisely defined crystal structure, zeolites have been widely applied in adsorption, ion
exchange, and catalysis. Recently, zeolites have been used in photodegradation processes,
often as carriers of photocatalysts [49–51]. The nanoporous aluminosilicate zeolite lattice,
which consists of tetrahedral units TO4 (T = Al, Si) interconnected by oxygen atoms, is
negatively charged, and cations and water molecules are placed in the channels and cavities
to achieve electroneutrality [7,52,53].

The properties of zeolites, such as adsorption, ion exchange, etc., are determined by
the internal and external surface and by the SiO2/Al2O3 ratio [52]. The surfaces of high-
silicate zeolites have a pronounced organophilic-hydrophobic character, unlike low-silicate
and medium-silicate zeolites that are suitable adsorbents for water, ammonia, and other
polar molecules and are also often used for the removal of heavy metals [51,54]. Synthetic
zeolites that belong to the group of high-silicate zeolites are BETA (from the BEA group),
ZSM-5 (from the MFI group), and Y (from the FAU group), which has a significantly lower
SiO2/Al2O3 ratio.

The three-dimensional structure of the BETA zeolite is characterized by two mutually
vertically flat channels (0.76 × 0.64 nm) and a sinusoidal channel with a diameter of
0.55 × 0.55 nm. In contrast, the porous structure of ZSM-5 zeolite is characterized by the
flat channels of an elliptical cross-section (0.51 × 0.55 nm), which are interspersed with a
sinusoidal channel of a circular cross-section (0.54 nm) [55,56]. Zeolite Y (from the FAU
group) has high thermal stability and is characterized by 0.74 nm-diameter pores and a
1.2 nm central cavity [55].

This study observed the removal efficiency of MB and RB dyes from the aqueous envi-
ronment by adsorption on NH4BETA, NH4ZSM-5, and NaY zeolite and by photodegrada-
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tion under the influence of UV radiation in the presence of these zeolites. After photodegra-
dation, the degree of mineralization was analyzed as chemical oxygen demand (COD) to
gain a better insight into the photocatalytic process efficiency. Quantum-mechanical calcu-
lations within the density functional theory (DFT) approach gave us important insights
into the reactivity of MB and RB, which helped us to interpret the obtained results, and
explain the difference in degradation efficiency of these two dyes.

2. Results and Discussion
2.1. Results of Adsorption Observation

The Freundlich isotherm and specific adsorption parameters describe the adsorption
suspension of RB-zeolites and MB-zeolites. To establish the most appropriate adsorption
equilibrium correlation and the accuracy in parameter prediction of non-linear isotherm
models were compared and discussed (Figures 1–6).
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The Freundlich adsorption isotherm is mainly used for expressing the adsorption
of non-idealized systems where the adsorbent surface is energetically heterogeneous,
indicating the formation of multilayers. During adsorption from the solution, the expression
applies:

qe= KF·c1/n

where qe is the equilibrium amount of adsorbed substance per unit mass of adsorbent (x/m),
c is the equilibrium concentration, and KF and n are specific empirical constants [14,50,57].
The experimental results of adsorption observation of RB from the aqueous environment
on NH4BETA, NH4ZSM-5, and NaY zeolite are presented in Figures 1–3 and 7 (where x/m
is the amount of adsorbed substance in equilibrium, γe is the adsorbate concentration at
equilibrium, and γo is the initial concentration of adsorbate). Adsorption parameters (k,
n, ∆adsHm presented in Tables S1 and S2) were determined from the graphs of functional
dependence ln x/m vs. lnγe (Figures S1–S12).

Based on the obtained results regarding the adsorption of RB (Figures 1–3) and MB
(Figures 4–6) on NH4BETA, NH4ZSM-5, and NaY zeolites, one may determine that the ad-
sorption isotherms pass through several plateaus (type of Freundlich adsorption isotherm),
and according to Giles belong to S4 group, indicating multi-layered physical adsorption.
The only exception occurs for the RB-NH4ZSM-5 suspension, at 293 K, where one plateau
is registered, which suggests that the adsorption is a monolayer and that, in addition to
physical adsorption, chemisorption also occurs.

Physical adsorption results from weak intermolecular interactions, while chemisorp-
tion is based on the exchange of valence electrons between the adsorbent and adsorbate.
One may not always set the boundary between physisorption and chemisorption. Ob-
serving RB and MB’s adsorption on zeolites can provide interesting information about
possible interactions with the zeolite surface. The results show that NaY zeolite was the
worst adsorbent for RB and MB dye. Obtained results can be explained by the fact that the
acidity of the surface was decisive for adsorption, i.e., the presence of Lewis and Brønsted
active centers located on the outer and inner zeolite surfaces.

The higher ratio of SiO2/Al2O3 in NH4BETA and NH4ZSM-5 zeolites indicates the
presence of active sites of the acidic character of different strengths, which favor a better
interaction with these dyes. The surface of high-silicate zeolites is more homogeneous
with an organophilic nature, in contrast to the zeolite surface with a lower content of
SiO2/Al2O3, which is more selective for water and other polar molecules [51,54,58].

The greater degree of removal of RB (Figure 7) and MB (Figure 8) dyes by adsorption
on NH4BETA zeolite compared to NH4ZSM-5 zeolite can be explained by the larger specific
surface area of NH4BETA zeolite, and this is supported by the value of the constant k
(Tables S1 and S2), which is the highest for the suspension MB-NH4BETA (k = 54.87) and
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RB-NH4BETA (k = 15.35); this shows a very high affinity between this adsorbent and
adsorbates. Based on the value of the constant n (Tables S1 and S2), it can be concluded
that there is a relatively strong interaction between the active centers of adsorbents and
adsorbates and that it is the strongest at the temperature of 293 K for the RB-NH4ZSM-5
suspension.
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With the increase in temperature, the adsorption capacity of NH4BETA and NH4ZSM-
5 zeolites for RB dye also increases, as indicated by the total number of adsorbed molecules
(by 8% on NH4ZSM-5; for I plateau by 63%, and for II plateau by 45% on NH4BETA).
This could mean that the dye molecules, in addition to weak van der Waals interactions,
partially bonded to the adsorbent surface even by chemical bonding. The value of the
adsorption heat also confirms this for NH4ZSM-5 zeolite, which, although it remained
within the limits of physisorption, increased with the temperature increase. RB molecules
were probably attached to the active centers of the zeolite by hydrogen bonds via hydrogen
atoms from hydroxide groups located on the surface of the zeolite and electronegative
nitrogen or oxygen atoms in the dye structure.

The calculated value Q (Table S1) indicates that most molecules of RB dye were ad-
sorbed to the surface of the NH4ZSM-5 zeolite and that the number of adsorbed molecules
increases with the increase in temperature (from 53 to 58%). In endothermic reactions, with
an increasing temperature, the number of adsorbed species increases because their mobility
increases. The total number of adsorbed molecules of RB dye on the NH4BETA zeolite at
293 K amounted to 29%, which indicates that the dye molecules on the NH4BETA zeolite
became bonded to the active centers on the outer surface and that the large molecules of
RB dye could not reach the inner surface of the zeolite, which is composed of pores and
cavities.
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With the increase in reaction temperature, the quantity of adsorbed RB molecules on
NaY zeolite decreases, which indicates physical adsorption, and the value of adsorption
heat also confirms this. Based on the data presented in Table S2, it can be noticed that the
adsorption capacity of NH4BETA for MB dye increases with an increasing temperature
(I plateau by 23%). In contrast, the adsorption capacity of other zeolites decreases with the
increase in temperature, which can also be seen based on the total number of adsorbed
MB molecules on the zeolite surface. The highest value of Q is for the MB-NH4ZSM-5
suspension at 283 K, but this value decreased with the temperature increase. Additionally,
the number of total adsorbed MB molecules on the surface of the NaY zeolite decreased by
37% with the increased adsorption temperature, indicating that the adsorbate molecules
became tied to the active centers by van der Waals forces or dipole bonds. This is also
confirmed by the calculated values of adsorption heat (∆adsHm), which decreased with the
increase in adsorption temperature.

When we compare RB and MB dyes, the higher degree of RB removal in the presence
of NH4ZSM-5 zeolite can be explained by the greater possibilities of binding to the outer
zeolite surface because at pH > 3, RB dye behaves both as a weak base and as a weak acid.
The high degree of MB dye removal in the presence of NH4BETA and NaY zeolites can be
explained by the smaller dimensions of the MB molecules, which, in addition to binding to
the outer surface, are most probably also bound to the active centers of the inner zeolite
surface [17,49,59].

2.2. Photodegradation and Mineralization

When considering the photocatalytic activity of zeolites, many studies focus on zeolites
containing framework heteroatoms or a modification of zeolites with oxides or metal ions
precisely because of the improvement in photocatalytic capabilities [60]. This is evident
from research in which zeolites were used as supports for TiO2 photocatalysts [61,62] or
zeolite-based composites were doped with metal ions [62], whereby a higher efficiency
of dye degradation was achieved than in the presence of zeolites and TiO2 individually.
However, one must not ignore the fact that zeolites are crystalline aluminosilicates built
from tetrahedra of silicon and aluminum interconnected through oxygen atoms, and it
is generally known that porous SiO2 exhibits photocatalytic activity via siloxane bridges,
which generate siloxy radicals under the influence of UV radiation (below 390 nm) [63,64]
accordingly, in this manuscript, the photocatalytic activity of the original samples of
synthetic zeolites in the removal of RB and MB dyes was tested.

First, the photolysis of RB and MB was examined under UV radiation to see the
contribution of adding zeolites to these systems (Figure S13). Slightly higher efficiency of
direct photolysis was observed at a higher temperature in the case of both dyes. However,
direct photolysis is significantly less efficient in the case of both dyes compared to the
system with zeolites (Figures 9 and 10). The results of photodegradation of RB and MB
dyes in the presence of NH4BETA, NH4ZSM-5, and NaY zeolites, under the influence of
UV radiation for 180 min, are given in Figures 9 and 10.

Molecules 2022, 27, x FOR PEER REVIEW 8 of 19 
 

 

to the outer surface, are most probably also bound to the active centers of the inner zeolite 
surface [17,49,59]. 

2.2. Photodegradation and Mineralization 
When considering the photocatalytic activity of zeolites, many studies focus on 

zeolites containing framework heteroatoms or a modification of zeolites with oxides or 
metal ions precisely because of the improvement in photocatalytic capabilities [60]. This 
is evident from research in which zeolites were used as supports for TiO2 photocatalysts 
[61,62] or zeolite-based composites were doped with metal ions [62], whereby a higher 
efficiency of dye degradation was achieved than in the presence of zeolites and TiO2 
individually. However, one must not ignore the fact that zeolites are crystalline 
aluminosilicates built from tetrahedra of silicon and aluminum interconnected through 
oxygen atoms, and it is generally known that porous SiO2 exhibits photocatalytic activity 
via siloxane bridges, which generate siloxy radicals under the influence of UV radiation 
(below 390 nm) [63,64] accordingly, in this manuscript, the photocatalytic activity of the 
original samples of synthetic zeolites in the removal of RB and MB dyes was tested. 

First, the photolysis of RB and MB was examined under UV radiation to see the 
contribution of adding zeolites to these systems (Figure S13). Slightly higher efficiency of 
direct photolysis was observed at a higher temperature in the case of both dyes. However, 
direct photolysis is significantly less efficient in the case of both dyes compared to the 
system with zeolites (Figures 9 and 10). The results of photodegradation of RB and MB 
dyes in the presence of NH4BETA, NH4ZSM-5, and NaY zeolites, under the influence of 
UV radiation for 180 min, are given in Figures 9 and 10. 

 
Figure 9. Degree of photodegradation of RB dye in the presence of selected zeolites under the UV 
radiation at two temperatures after 180 min. 

 

Figure 9. Degree of photodegradation of RB dye in the presence of selected zeolites under the UV
radiation at two temperatures after 180 min.



Molecules 2022, 27, 6582 8 of 17

Molecules 2022, 27, x FOR PEER REVIEW 8 of 19 
 

 

to the outer surface, are most probably also bound to the active centers of the inner zeolite 
surface [17,49,59]. 

2.2. Photodegradation and Mineralization 
When considering the photocatalytic activity of zeolites, many studies focus on 

zeolites containing framework heteroatoms or a modification of zeolites with oxides or 
metal ions precisely because of the improvement in photocatalytic capabilities [60]. This 
is evident from research in which zeolites were used as supports for TiO2 photocatalysts 
[61,62] or zeolite-based composites were doped with metal ions [62], whereby a higher 
efficiency of dye degradation was achieved than in the presence of zeolites and TiO2 
individually. However, one must not ignore the fact that zeolites are crystalline 
aluminosilicates built from tetrahedra of silicon and aluminum interconnected through 
oxygen atoms, and it is generally known that porous SiO2 exhibits photocatalytic activity 
via siloxane bridges, which generate siloxy radicals under the influence of UV radiation 
(below 390 nm) [63,64] accordingly, in this manuscript, the photocatalytic activity of the 
original samples of synthetic zeolites in the removal of RB and MB dyes was tested. 

First, the photolysis of RB and MB was examined under UV radiation to see the 
contribution of adding zeolites to these systems (Figure S13). Slightly higher efficiency of 
direct photolysis was observed at a higher temperature in the case of both dyes. However, 
direct photolysis is significantly less efficient in the case of both dyes compared to the 
system with zeolites (Figures 9 and 10). The results of photodegradation of RB and MB 
dyes in the presence of NH4BETA, NH4ZSM-5, and NaY zeolites, under the influence of 
UV radiation for 180 min, are given in Figures 9 and 10. 

 
Figure 9. Degree of photodegradation of RB dye in the presence of selected zeolites under the UV 
radiation at two temperatures after 180 min. 

 
Figure 10. Degree of photodegradation of MB dye in the presence of selected zeolites under the UV
radiation at two temperatures after 180 min.

One of the critical roles in the process of photocatalytic degradation is played by
adsorption, which mainly depends on the affinity of the catalyst for the substrate, the
specific surface area of the catalyst, and the nature of the solvent. After adsorption, the
photodegradation of adsorbed molecules commences under the influence of radiation.
As already mentioned, zeolites with high SiO2/Al2O3 content, such as NH4BETA and
NH4ZSM-5, show a high affinity for removing dyes.

The obtained results of photodegradation of MB and RB dyes under UV radiation
(Figures 9 and 10) indicate that the highest efficiency of photodegradation at 283 K was
achieved in the presence of NH4ZSM-5 zeolite, then NH4BETA, and finally NaY zeolite. It
can be seen in Table S3 that NH4ZSM-5 zeolite has the highest ratio of SiO2 and NaY has
the lowest.

The presence of acid-base centers in the zeolite structure, which have electron donor
and electron acceptor properties, prevents the possible recombination of electrons and
holes, leading to a higher photodegradation efficiency. The results of the photodegradation
of MB dye in the presence of zeolite at 293 K follow the same trend as at 283 K. The increase
in temperature did not significantly affect the degree of degradation of MB dye in the
presence of NH4BETA zeolite. In contrast, in the presence of NH4ZSM-5 and NaY zeolite,
there is an insignificant decrease in the degree of degradation, which is probably the effect
of the physisorption of the dye molecules on the catalyst surface. In the case of RB dye, the
highest efficiency of photodegradation at 293 K was achieved in the presence of NH4BETA
zeolite (83.3%). It can be observed that the degree of removal of RB is increased by the
increase in temperature reaction, which is most likely the effect of the increased frequency
of molecular collisions in the solution.

The photodegradation of MB and RB molecules in the presence of zeolite under UV
radiation includes the generation of electron and hole pairs. Electrons in the conduction
zone are unstable and pass to adsorbed oxygen molecules, where superoxide radicals
are formed, while holes in the valence zone can be captured by the molecules of dye or
water, creating •OH. The adsorbed dye molecules can be degraded by radical species and
mineralized into less toxic products.

Based on the structures of RB and MB dyes, it can be expected that depending on the
degree of mineralization, in addition to CO2 and H2O, inorganic ions NH+

4 , NO+
3 , and SO2−

4
are also formed. According to the results shown in Figures 11 and 12, it can be concluded
that the highest degree of mineralization of MB dye (at 283 K) and RB dye (at 283 K and
293 K) was achieved in the presence of NH4ZSM-5, then NH4BETA, and the lowest degree
of mineralization was achieved in the presence of the NaY zeolite. The obtained results
of mineralization agree with the results of photodegradation. The mineralization degree
is lower than the degree of photodegradation, which indicates the presence of various
intermediates, whose mineralization is often slower than the degradation of the initial
compound. In the case of MB dye, the degree of mineralization at 293 K is the highest in
NH4ZSM-5 zeolite and the lowest in NH4BETA zeolite.
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Figure 12. Mineralization degree of MB dye in the presence of selected zeolites after 180 min under
UV radiation at two temperatures.

The presence of multiple intermediates is also indicated by the change in the pH
value of the solution during the photocatalytic process. As seen in Table 1, during the
photodegradation of RB dye in the presence of all zeolites, the pH value decreases (due to
the formation of acidic intermediates), except in the presence of NaY zeolite at 293 K, where
the pH value increases. During the decomposition of MB dye, the pH value decreases in
the presence of NH4ZSM-5 zeolite, as well as NH4BETA (283 K), while in the presence of
the NaY zeolite, the pH value increases due to the formation of base intermediates.

Table 1. The change in pH value of the solution during the photodegradation dyes (1.0 mg/dm3) in
the presence of 5.0 mg/cm3 zeolite under UV radiation.

Time (min) RB pH
at 283 K

pH
at 293 K MB pH

at 283 K
pH

at 293 K
0

NH4BETA

7.3 7.2

NH4BETA

7.0 6.9
60 7.0 6.9 6.9 6.9
180 6.8 6.9 6.9 7.0

0

NH4ZSM-5

7.1 7.1

NH4ZSM-5

6.3 6.6
60 6.1 6.9 6.1 5.8
180 6.2 6.9 6.2 5.8

0

NaY

8.7 8.5

NaY

8.5 8.4
60 8.4 8.2 8.7 8.8
180 8.3 8.6 8.7 9.0

During the decomposition of RB dye, radical species probably first attack nitrogen
atoms (N-deethylation process), whereby various intermediates with an aromatic ring
are formed. After that, reactive radicals attack carbon atoms, resulting in the cleavage of
chromophores and oxidation of intermediates to carboxylic acids, preventing the increase
of pH value, as per the results presented in Table 1. Decomposition of a -C-S=S- functional
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group starts with the electrophilic attack of radical species on the -C-S=S- functional group
in the structure of the MB dye molecule, where sulfate ions are formed through sulfoxide,
sulfone, and sulfonic acid. In addition, the attack of radicals on nitrogen atoms can lead to
the formation of substituted anilines, phenols, aldehydes, or carboxylic acids, which can
further be mineralized to CO2 and H2O. The degree of mineralization of RB dye is lower
than that of MB dye (except for RB-NH4BETA at 293 K), which is probably a consequence
of its forming a more significant number of intermediates. The appearance of a more
significant number of intermediates in the case of RB dye is expected, given that the RB
molecule is larger than the MB dye.

2.3. Computational Analysis

To better understand the experimental results, the influence of the structure of the
tested dyes was analyzed. MB and RB are dyes that consist of cation and Cl anion. The
starting geometries of MB and RB have been taken from the ChemSpider library and
subjected to geometrical optimizations. Since there is a noncovalent interaction between
the cation and anion in these cases, we had to apply the dispersion-corrected variant of the
B3LYP functional. The geometrically optimized structures of MB and RB are presented in
Figure 13, with the indicated distances between the cation and Cl anion.
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In both cases, the Cl anion was placed near the cations’ positively charged atoms. This
means that in the case of the MB, the Cl anion was placed above the sulfur atom, while
in the case of the RB, the Cl anion was placed above the nitrogen atom. In the case of
the MB, the Cl anion moved significantly to the plane corresponding to the central ring
and shifted to interact with the nearby hydrogen atom noncovalently. In the case of the
RB, the Cl anion practically remained in the vicinity of the positively charged nitrogen,
which disagrees with the finding reported by Delgado and Selsby [65]. Namely, in their
computational study, the Cl anion shifted towards the central part of the RB. However,
the disagreement between these results is expected since they applied the Hartree–Fock
method for geometrical optimizations, which is the level of theory that neglects the electron
correlation. There is a significant difference in terms of the shortest distance between the Cl
anion and the cationic fragment since the Cl anion is much closer to the cationic fragment
in the case of the MB dye.

Computational analysis in this work encompassed calculations of the MEP and ALIE
quantities, two well-known quantum molecular descriptors describing the local reactivity
of the molecules. The MEP descriptor is one of the most frequently calculated quantities
to identify molecules’ sites with electron abundance or deficiency. Another popular de-
scriptor for addressing the local reactivity of molecules is the ALIE quantity. MEP is a
substantial quantity that reveals which molecular sites are prone to interact with other
molecules based on electrostatic interactions. One molecule’s electron-abundant site would
react with the electron-deficient site of the other molecule. An equally important but
somewhat less frequently applied descriptor is ALIE, which reveals the molecular sites
where the lowest amount of energy is required to remove an electron. In other words, this
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descriptor indicates the molecular sites sensitive to electrophilic attacks. Essentially, both
MEP and ALIE descriptors were introduced into practice by Professor Politzer and his
coworkers [66–70]. The most practical way to analyze the values of MEP and ALIE descrip-
tors is by their mapping to the electron density surface, which was performed in this work.
MEP and ALIE surfaces of the MB and RB dyes are presented in Figure 14.
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The analysis of the minimal and maximal values of the MEP descriptor provides a
further understanding of the results related to dye removal via adsorption. Namely, the
lowest MEP values for both MB and RB dyes are practically the same and are equal to
−75.73 kcal/mol and −72.91 kcal/mol, respectively. The similar lowest MEP values are
expected since the Cl anion bears the negative charge in both cases. However, there is a huge
difference in the maximal MEP values in favor of the RB dye. Namely, the MB dye’s highest
MEP value is 34.35 kcal/mol, while the RB dye’s highest MEP value is 56.16 kcal/mol. This
discrepancy in the highest MEP values between the MB and RB dyes shows that the RB
dye is far more prone to interact with other structures based on electrostatic interactions.
Indeed, the adsorption study in this work indicates that the RB dye is removed to a greater
extent than the MB, which agrees with the computational results. Conversely, the minimal
and maximal ALIE values of MB and RB dyes are very similar, so they are expected to have
comparable sensitivity toward electrophilic attacks.

3. Materials and Methods
3.1. Chemicals and Solutions

The standard dye solutions (0.5–5 mg/dm3) of MB and RB (products of the Merck
company, Germany) were prepared by diluting the basic solutions. Thehe absorption max-
ima were then determined, and calibration curves were constructed (Figures S14 and S15).
Synthetic zeolites were used during the work (products of Zeolyst International company,
Kansas City, KS, USA): NH4BETA (from the BEA group, mark CP 814E), NH4ZSM-5 (from
the MFI group, mark CBV 3024E), and NaY (from the FAU group, mark CBV 100).
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3.2. Structural Analysis of Zeolites

All zeolites’ specific surfaces (Sp) were determined by the BET method on the Flowsorb
II–2300 instrument (Table S3).

Additionally, the FT-IR spectra of all zeolites were recorded on the Thermo Scientific
Nicolet iS10 FT-IR Spectrometer with a resolution of 4 cm−1 and 32 scans to identify the
surface acidity of the zeolite (Figures S16–S18).

3.3. Adsorption Experiments

Adsorption experiments of the dyes MB and RB from the aqueous environment on
NH4BETA, NH4ZSM-5, and the NaY zeolite were performed at 283 K and 293 K for
180 min. iThe reaction suspension was always thermostated (Thermostat: WiseCircu WCR,
model WCR-P22, Witeg, Wertheim, Germany). The adsorbent mass was 0.25 g (exact
weight ±10−4 g) in contact with 50cm3 of adsorbate solutions of different concentrations
(0.5–5 mg/dm3). The results are presented as curves of functional dependence x/m on
the concentration at equilibrium γe., from which the quantity of adsorbed dye on one
adsorption monolayer was read, i.e., on the plateau. The amount of adsorbed dye (x)
was calculated from the difference in concentrations before and after adsorption, while
x/m represents the quantity of adsorbed dye per adsorbent mass unit. Other adsorption
parameters, the number of adsorbed molecules on individual plateaus (N) and their total
surface (S), as well as the parameter Q, which represents the ratio of the surface of adsorbed
molecules and the specific surface of the zeolite, were calculated. The parameters k and
n, as well as the adsorption heat (∆Hads), were determined by calculations and graphic
presentation (from the diagram of dependence ln x/m vs. ln γe).

3.4. Photodegradation

Photodegradation of the dyes MB (1 mg/dm3) and RB (1 mg/dm3) under UV radiation
was performed in a photochemical cell made of double-walled Pyrex glass in the presence
of NH4BETA, NH4ZSM-5, and the NaY zeolite. Into the cell, 20 cm3 of the aqueous
solution of dye and 0.1 g of zeolite were weighed (exact weight ±10−4 g), followed by
sonification in an ultrasonic bath for 15 min, to achieve a uniform size of the catalyst
particles. The photochemical cell was placed on a magnetic stirrer, and the suspension was
continuously mixed during the irradiation with a constant oxygen flow. Photodegradation
was performed at 283 K and 293 K for 180 min and a high-pressure mercury lamp with a
suitable concave mirror was used as a source of UV radiation (Philips, HPL-N, 125 W, with
emission bands in the area of UVA radiation at 304, 314, 335 and 366 nm, with an emission
maximum at 366 nm).

3.5. Analytical Procedures

Dye concentrations before and after adsorption were determined spectrophotometri-
cally on the Perkin Elmer UV/VIS Spectrometer Lambda 25 instrument.

The concentration of dyes in specific time intervals after photodegradation was deter-
mined on the double-beam T80 + UV-vis Spectrometer (UK), at a fixed slit width (2 nm),
using a 1 cm quartz cell and computer-loaded UV Win 5 data software.

The pH value of standard dye solutions was determined using a glass electrode
(AmpHel pH electrode, Hanna Instruments, Cluj Napoca, Romania) connected to the pH
meter (Bench pH meters, Hanna Instruments, Cluj Napoca, Romania). For monitoring the
pH during the degradation, a combined glass electrode (pH-Electrode SenTix 20, Xylem
Analytics Germany Sales GmbH & Co. KG, WTW, Weilheim, Germany) connected to the
pH meter was used (pH/Cond 340i, Xylem Analytics Germany Sales GmbH & Co. KG,
WTW, Weilheim, Germany).

The COD was determined according to Standard Method 410.4 declared by EPA,
United States Environmental Protection Agency. The calibration curve was obtained using
HOOCC6H4COOK as a standard solution, and R2 was 0.995 (Figure S19). Aliquots of
2.5 cm3 were taken from the reaction mixture after 90 min of photodegradation experi-
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ments. The COD concentration was determined spectrophotometrically by measuring
the absorbance of the formed Cr3+ at a fixed slit width (2 nm) using a quartz cell (1 cm
optical length) and computer-loaded UV Win 5 data software. Absorbance was recorded
on a double-beam T80 + UV-vis Spectrometer. The evolution of absorbance of the digested
solution was recorded at 600 nm. The samples were digested at 150 ◦C for 2 h.

3.6. Computational Methods

Molecular DFT calculations on the RB and MB were performed by applying the dis-
persion corrected version of a B3LYP functional [71], namely the B3LYP-D3 variant [71,72],
in combination with the 6–31G(d,p) basis set [73,74]. At the mentioned level of theory, the
structures of RB and MB were first geometrically optimized to reach the ground states. Fre-
quency calculations were further performed to ensure that the actual equilibrium states were
identified, confirmed by the inexistence of the imaginary frequencies. After obtaining the
ground states of the MB and RB, molecular electrostatic potential (MEP) and average local
ionization energy (ALIE) were calculated to analyze the local reactivity properties of dyes,
using the M06-2X functional [75] and the same basis set.

Molecular DFT calculations related to geometrical optimizations and vibrational
analysis were performed with an ORCA 5.0.3. package [76–79]. Input files for ORCA
were made with the atomistica.online web application [80]. Calculations of the MEP and
ALIE were performed with the Jaguar program [81–83], as implemented in the Schrödinger
Materials Science Suite 2022-2. SAPT0 calculations were performed with the PSI4 modeling
program [84–86].

4. Conclusions

Zeolites have a significant place among the most commonly used adsorbents thanks
to their specific crystal structure consisting of pores, channels, and cavities of different
dimensions, which results in a large internal surface area available for the removal of
various organic pollutants, including dyes. The properties of zeolite are determined,
among other things, by active centers of different acidity (Lewis and Brønsted type) located
on the outer and inner surfaces of the zeolite. Recently, zeolites have increasingly been
used as catalysts in photodegradation processes. This study observed the adsorption
and photodegradation of the selected organic dyes, MB and RB, in the presence of zeolite
material from BEA, MFI, and FAU groups. The characterization of all adsorption suspension
s is given through the Freundlich adsorption isotherm, and the corresponding parameters
were determined. The results showed that adsorption is still one of the leading methods
in wastewater treatment because a high degree of dye removal was achieved under these
experimental conditions. NH4BETA and NH4ZSM-5 zeolites are very effective adsorbents
for these dyes due to acid centers of different strengths responsible for the adsorption,
while the NaY zeolite proved to be the least effective. The higher degree of adsorption
on the NH4BETA zeolite compared to NH4ZSM-5 can be attributed to a higher specific
surface area (about 40% higher). Adsorption of dyes on all zeolites occurs according to the
principle of multi-layer physical adsorption, except for the RB dye on NH4ZSM-5, where
chemisorption partially occurs. In addition, the high efficiency of removing these organic
pollutants was achieved by heterogeneous photocatalysis, where the highest degree of
photodegradation of dyes was performed in the presence of a NH4ZSM-5 zeolite (highest
SiO2/Al2O3) primarily and secondarily in the presence of a NH4BETA zeolite, probably due
to the formation of siloxy radicals. Siloxy radicals with hydroxyl and superoxide radicals
contributed to a high degree of dye degradation. Compared to the photodegradation
efficiency of dyes, the lower degree of mineralization could be explained by the formation
of various decomposition intermediates, which requires a longer irradiation time.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27196582/s1, Table S1: Summary overview of parameters
for adsorption of RB from the aqueous environment on selected zeolites at two temperature; Table S2:
Summary overview of parameters for adsorption of MB from the aqueous environment on selected
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zeolites at two temperature; Table S3: Characterization of zeolites; Figure S1: Functional dependence
ln x/m of ln γe for the suspension RB-NH4BETA at 283 K; Figure S2: Functional dependence ln x/m
of ln γe for the suspension RB-NH4BETA at 293 K; Figure S3: Functional dependence ln x/m of ln γe
for the suspension RB-NH4ZSM-5 at 283 K; Figure S4: Functional dependence ln x/m of ln γe for
the suspension RB-NH4ZSM-5 at 293 K; Figure S5: Functional dependence ln x/m of ln γe for the
suspension RB-NaY at 283 K; Figure S6: Functional dependence ln x/m of ln γe for the suspension
RB-NaY at 293 K; Figure S7: Functional dependence ln x/m of ln γe for the suspension MB-NH4BETA
at 283 K; Figure S8: Functional dependence ln x/m of ln γe for the suspension MB-NH4BETA at
293 K; Figure S9: Functional dependence ln x/m of ln γe for the suspension MB-NH4ZSM-5 at 283 K;
Figure S10: Functional dependence ln x/m of ln γe for the suspension MB-NH4ZSM-5 at 293 K;
Figure S11: Functional dependence ln x/m of ln γe for the suspension MB-NaY at 283 K; Figure S12:
Functional dependence ln x/m of ln γe for the suspension MB-NaY at 293 K; Figure S13: Degree
of photolytic degradation of RB and MB dye under the UV radiation at two temperatures after
180 min radiation; Figure S14: Calibration curve of MB dye; Figure S15: Calibration curve of RB dye;
Figure S16: FT-IR spectra NH4BETA zeolite; Figure S17: FT-IR spectra NH4ZSM-5 zeolite; Figure S18:
FT-IR spectra NaY zeolite; Figure S19: Calibration curve for determination of COD.
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