light box
امتیاز 2.58 تجزیه و تحلیل پیش بینی زلزله در هند با استفاده از طبقه بندی کننده های">

نوع فایل : word
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش : 22
تعداد کلمات : 6800
مجله : sustainability
انتشار : 2021
ترجمه متون داخل جداول : ترجمه شده است
درج جداول در فایل ترجمه : درج شده است
منابع داخل متن : به صورت فارسی درج شده است
کیفیت ترجمه : طلایی
دسته بندی :
برچسب ها : ، ، ، ، ، ، ، ، ، ، ، ، ، ،

عنوان فارسی مقاله:تجزیه و تحلیل پیش بینی زلزله در هند با استفاده از طبقه بندی کننده های یادگیری ماشینی نظارت شده

 چکیده

  زلزله یکی از مخرب ترین انواع مخاطرات طبیعی است. در نتیجه، مدیریت موفقیت آمیز شرایط ناشی از آن، بسیار مهم است. در اثر زلزله، جان بسیاری از افراد به خطر می افتد و اثرات مخربی بر اقتصاد نیز دارد. توانایی پیش بینی زلزله یکی از بزرگترین مسائل در علم زمین است. فناوری یادگیری ماشینی می تواند نقش حیاتی در زمینه علوم زمین برای پیش بینی زلزله ایفا کند. هدف ما توسعه روشی برای پیش‌بینی دامنه بزرگی زمین‌لرزه‌ها با استفاده از الگوریتم‌های طبقه‌بندی‌کننده یادگیری ماشین است. سه محدوده مختلف طبقه بندی شده است: زلزله شدید. زلزله متوسط؛ و زلزله خفیف. به منظور تمایز بین این طبقه بندی ها، از هفت الگوریتم طبقه بندی کننده یادگیری ماشین مختلف برای ساخت مدل استفاده شده است. برای آموزش مدل، از شش مجموعه داده مختلف از هند و مناطق نزدیک به هند استفاده شده است. الگوریتم های شبکه بیزی،  درخت تصادفی، لجستیک ساده، جنگل تصادفی،  درخت مدل لجستیک  ، ZeroR و رگرسیون لجستیک برای هر مجموعه داده اعمال شده است. همه مدل ها با استفاده از ابزار Weka توسعه داده شده اند و نتایج ذکر شده است. مشاهده شد که طبقه بندی کننده های ساده لجستیک و LMT در هر مورد عملکرد خوبی داشتند(تجزیه و تحلیل پیش بینی زلزله).

Title: Analysis of Earthquake Forecasting in India Using Supervised Machine Learning Classifiers

Abstract

 Earthquakes are one of the most overwhelming types of natural hazards. As a result, successfully handling the situation they create is crucial. Due to earthquakes, many lives can be lost, alongside devastating impacts to the economy. The ability to forecast earthquakes is one of the biggest issues in geoscience. Machine learning technology can play a vital role in the field of geoscience for forecasting earthquakes. We aim to develop a method for forecasting the magnitude range of earthquakes using machine learning classifier algorithms. Three different ranges have been categorized: fatal earthquake; moderate earthquake; and mild earthquake. In order to distinguish between these classifications, seven different machine learning classifier algorithms have been used for building the model. To train the model, six different datasets of India and regions nearby to India have been used. The Bayes Net, Random Tree, Simple Logistic, Random Forest, Logistic Model Tree (LMT), ZeroR and Logistic Regression algorithms have been applied to each dataset. All of the models have been developed using the Weka tool and the results have been noted. It was observed that Simple Logistic and LMT classifiers performed well in each case.

      دیدگاهها بسته است.

      محصولات مشابه
      کمبود(نقص) توجه و علائم ADHD در بزرگسالان مبتلا به بیماری فابری – یک مطالعه آزمایشی
      خـریـد محـصـول
      مرزهای جدید در مدیریت سرطان رکتوم اولیه و پیشرفته
      خـریـد محـصـول
      ریسک میوکاردیت و پریکاردیت در بزرگسالان جوان به دنبال واکسیناسیون mRNA COVID-19
      خـریـد محـصـول
      بروز میوکاردیت و پریکاردیت در بیماران واکسینه نشده پس از کووید-۱۹
      خـریـد محـصـول
      الگوریتم ازدحام آفتاب پرست کارآمد برای مسئله توزیع بار اقتصادی
      خـریـد محـصـول
      فرآیند بازآفرینی شهری: مورد یک مجتمع مسکونی در حومه رم، ایتالیا
      خـریـد محـصـول
      رابطه پویا بین شاخص سهام و قیمت دارایی: تجزیه و تحلیل بلندمدت
      خـریـد محـصـول
      تشخیص بیماری پوسیدگی طوقه در گندم در شرایط محیطی کنترل شده
      خـریـد محـصـول
      بکارگیری بهینه سازی برای حمایت از مدیریت تطبیقی آب رودخانه ها
      خـریـد محـصـول
      ارزیابی تأثیر آموزش زیست محیطی بر رفتار سازگار با محیط زیست
      خـریـد محـصـول
      ثبت اختراع یا انتشار مقاله

      در اولین مرحله از شروع یک تحقیق جدید نیاز است منابع مختلفی جستجو شود تا جدید بودن ایده مورد بررسی قرار گیرد. یکی از بهترین منابع جهت جستجو، لیست اختراع های ثبت شده است. پایگاه های جستجوی پتنت به محقق کمک میکند پیشینه تحقیق خود را مورد بررسی قرار دهد تا مطمئن شود کار تکراری انجام نمیدهد. سامانه جستجوگر مالکیت فکری دارکوب به تازگی از پایگاه جستجو علائم تجاری خود نیز رونمایی کرده است که دارای امکانات تخصصی فراوانی می باشد.

      ثبت اختراع یا انتشار مقاله کدام اول باید انجام شود؟ پژوهشگران منابع مالی و غیر مالی بسیاری را صرف انجام تحقیقات و پژوهش ها میکنند و امکان دارد تعدادی از آنها تبدیل به دستاوردها و فناوری های نو گردد. محققان این نتایج را به سرعت در مقالات علمی ملی و بین المللی منتشر و به آن افتخار میکنند. اما باید مد نظر داشت، چنانچه دستاورد پژوهشی امکان تبدیل شدن به یک محصول یا فرآیند قابل استفاده و تولید در صنعت را داشته باشد، هر گونه انتشار عمومی از جمله مقاله باعث از دست رفتن شرط جدید بودن و در نتیجه عدم امکان ثبت فناوری به عنوان اختراع خواهد شد.

      در نتیجه محققان و پژوهشگران باید پیش از هرگونه افشاء عمومی آن دسته از نتایج تحقیقاتی که شرایط ثبت اختراع را دارا می باشد به صورت اظهارنامه اختراع در اداره مربوطه ثبت و سپس نسبت به انتشار آنها اقدام کنند. امکان دارد مراحل ثبت اختراع چندین ماه به طول بیانجامد که انتشار مقاله (و مانند آن) پس از تاریخ ثبت اظهارنامه اختراع مشکلی را در فرآیند ثبت اختراع بوجود نمی آورد.

      از آنجا که برخی دستاورد ها مانند روشهای تشخیص بیماری و نوآوری های مدیریتی قابلیت ثبت اختراع بین المللی و ملی را ندارند، محققان بدون نگرانی میتوانند انتشار در مقالات داخلی و خارجی را به عنوان اولین گزینه جهت کسب افتخار دست یابی به این قبیل پژوهشها انتخاب کنند.

       
      برو بالا