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In financial markets, it is both important and challenging to forecast the daily direction of the stock mar- 

ket return. Among the few studies that focus on predicting daily stock market returns, the data mining 

procedures utilized are either incomplete or inefficient, especially when a large amount of features are 

involved. This paper presents a complete and efficient data mining process to forecast the daily direction 

of the S&P 500 Index ETF (SPY) return based on 60 financial and economic features. Three mature di- 

mensionality reduction techniques, including principal component analysis ( PCA ), fuzzy robust principal 

component analysis ( FRPCA ), and kernel-based principal component analysis ( KPCA ) are applied to the 

whole data set to simplify and rearrange the original data structure. Corresponding to different levels of 

the dimensionality reduction, twelve new data sets are generated from the entire cleaned data using each 

of the three different dimensionality reduction methods. Artificial neural networks ( ANN s) are then used 

with the thirty-six transformed data sets for classification to forecast the daily direction of future market 

returns. Moreover, the three different dimensionality reduction methods are compared with respect to 

the natural data set. A group of hypothesis tests are then performed over the classification and simula- 

tion results to show that combining the ANN s with the PCA gives slightly higher classification accuracy 

than the other two combinations, and that the trading strategies guided by the comprehensive classifi- 

cation mining procedures based on PCA and ANN s gain significantly higher risk-adjusted profits than the 

comparison benchmarks, while also being slightly higher than those strategies guided by the forecasts 

based on the FRPCA and KPCA models. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction and methodology 

Analyzing stock market movements is extremely challenging

for both investors and researchers. This is mainly due to the stock

market essentially being a dynamic, nonlinear, nonstationary,

nonparametric, noisy, and chaotic system ( Deboeck, 1994; Yaser

& Atiya, 1996 ). In fact, stock markets are affected by many highly

interrelated factors. These factors include: 1) economic variables,

such as interest rates, exchange rates, monetary growth rates,

commodity prices, and general economic conditions; 2) industry

specific variables, such as growth rates of industrial production and

consumer prices; 3) company specific variables, such as changes

in company policies, income statements, and dividend yields; 4)

psychological variables of investors, such as investors’ expectations

and institutional investors’ choices; and 5) political variables, such

as the occurrence and the release of important political events
∗ Corresponding author. 
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 Enke & Thawornwong, 2005; Wang, Wang, Zhang, & Guo, 2011 ).

ach of these factors interacts in a very complex manner Yao, Tan,

 Poh, 1999 . Above all, the efficient market hypothesis states that

urrent stock values reflect all available information in the market

t that moment, and that the public cannot make successful trades

ased on that information, further adding to the difficulty of

nderstanding and predicting stock market movements. 

However, it is believed by some researchers that the markets

re inefficient, in part due to psychological factors of the various

arket participants, along with the inability of the markets to

mmediately respond to newly released information ( Jensen, 1978 ).

inancial variables, such as stock prices, stock market index values,

nd the prices of financial derivatives are therefore thought to be

redictable. This allows one to gain a return above the market

verage by examining information released to the general public,

ith results that are better than random ( Lo & MacKinlay, 1988 ).

or decades, investors and researchers have been attracted to try

nd make significant profit due to potential market inefficiencies

y improving trading strategies based on increasingly accurate

orecast of financial variables. 
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There exist different categorizations among previous stock

arket forecasting technologies. For instance, given the number of

nput variables, financial time series forecasting can be classified

s either univariate or multivariate analysis. In univariate analysis,

nly the financial time series itself is considered as the input,

hile in multivariate analysis the input variables can be a lagged

ime series, or another type of data, such as a technical, funda-

ental, or inter-market indicator. With regard to the techniques

sed to analyze the stock markets, both statistical and artificial

ntelligence methods have been explored. One group of statisti-

al approaches are based on the autoregressive moving average

 ARMA ), the autoregressive integrated moving average ( ARIMA ), the

eneralized autoregressive conditional heteroskedastic ( GARCH )

olatility ( Franses & Ghijsels, 1999 ), and the smooth transition

utoregressive model ( STAR ) ( Sarantis, 2001 ). These statistical

echniques also fall into the category of univariate analysis since

hey use the financial time series itself, as well as a lagged time

eries as input variables. Other types of statistical approaches of-

en employed include linear discriminant analysis ( LDA ), quadratic

iscriminant analysis ( QDA ), linear regression ( LR ), and support

ector machines ( SVM ), each of which usually includes multiple

nput variables. With the assumptions of linearity, stationarity, and

ormality, most of the statistical analysis methods listed above

ave been restricted within the area of financial forecasting. On

he contrary, artificial intelligence models, such as artificial neural

etworks ( ANN s), fuzzy systems, and genetic algorithms are driven

y multivariate data with no required assumptions. Many of these

ethodologies have been applied to forecast financial variables.

or instance, see Armano, Marchesi, and Murru (2005), Cao and

ay (2001), Chen, Leung, and Daouk (2003), Chun and Kim (2004) ,

hawornwong and Enke (2004) , Enke and Thawornwong (2005) ,

ansen and Nelson (2002) , Kim and Han (2000), Shen and Loh

2004), Ture and Kurt (2006), Vellido, Lisboa, and Meehan (1999),

ang (2002 ), and Zhang (2003) . A comprehensive review of

hese studies can be found in Atsalakis and Valavanis (2009) and

anstone and Finnie (2009) . Often, the developed price forecasting

nd stock market timing systems are used in conjunction with

rading rules to develop an intelligent, autonomous, and/or adap-

ive decision support system. For instance, see Barak, Dahooie,

nd Tichý (2015), Cervelló-Royo, Guijarro, and Michniuk (2015),

hen and Chen (2016), Chiang, Enke, Wu, and Wang (2016), Chour-

ouziadis and Chatzoglou (2016), Enke and Mehdiyev (2013),

aisinghani (2016), Kim and Enke (2016), Monfared and Enke

2014) , and Thawornwong, Enke, and Dagli (2001) . 

With nonlinear, data-driven, and easy-to-generalize char-

cteristics, multivariate analysis through the use of ANN s has

ecome a dominant and popular analysis tool in finance and

conomics. Refenes, Burgess, and Bentz (1997) and Zhang, Patuwo,

nd Hu (1998) provide a review of using ANN s as a forecasting

ethod in different areas of finance and investing, including

nancial engineering. Although ANN s seem to be suited for

nancial time series forecasting, they have some limitations.

aad, Prokhorov, and Wunsch (1998) question the robustness of

NN results. Hussain, Knowles, Lisboa, and El-Deredy (2007) and

am (2004) also state that it is crucial for the ANN s to achieve

ccurate results with a deliberate selection of the input variables

nd an optimal combination of the network parameters, including

he learning rate, momentum, number of hidden layers, and

umber of nodes in each layer. Atsalakis and Valavanis (2009),

ao, Leggio, and Schniederjans (2005) , and Thawornwong and

nke (2004) demonstrate that designing an ANN with the least

omplexity and the most relevant and influential input variables

an improve the efficiency and accuracy of financial time series

orecast. As mentioned earlier, stock markets are affected by

arious factors, many of which are utilized as possible input

ariables during the development of a stock market forecasting
ystem. Thus, it is necessary to choose the most influential and

epresentative inputs if an ANN is expected to produce an efficient

nd accurate prediction. This type of selection is the main task of

imensionality reduction technology. 

Strictly speaking, the dimensionality reduction can be per-

ormed in two different ways: either by selecting the most relevant

ariables from the original data set (usually called as feature selec-

ion) or by generating a smaller group of new variables, each being

 certain combination of the older input variables. Researchers

n Statistics, Computer Science and Applied Mathematics have

orked in this field for many years and developed a variety of

inear and nonlinear dimensionality reduction techniques. Van der

aaten, Postma, and Van den Herik (2009) present a review and

ystematic comparison of these techniques. Sorzano, Vargas, and

ascual-Montano (2014) also categorize the plethora of dimension

eduction techniques with the mathematical insight behind them. 

Principal component analysis ( PCA ) is the most classical and

ell-known statistical method for extracting important features

rom high-dimensional data space. This methodology dates back to

earson (1901) , and is based on the idea of defining a new co-

rdinate system or space where the raw data can be expressed

n terms of many less variables without a significant loss of in-

ormation. Nonetheless, there are some concerns that this lin-

ar technique cannot adequately handle complex nonlinear data.

herefore, a number of nonlinear techniques, including kernel-

ased principal component analysis ( KPCA ), have been proposed.

PCA is a kernel-based dimensionality reduction method that has

 broad application in pattern recognition and machine learning.

he KPCA method gained more interest after SVM was introduced

y Vapnik (1998) . Van der Maaten, Postma, and Van den Herik

2009) compare PCA with twelve front-ranked nonlinear dimen-

ionality reduction techniques, such as Multidimensional Scaling,

somap, Maximum Variance Unfolding, KPCA , Diffusion Maps, Mul-

ilayer Autoencoders, Locally Linear Embedding, Laplacian Eigen-

aps, Hessian LLE , Local Tangent Space Analysis, Locally Linear Co-

rdination, and Manifold Charting by performing each on artifi-

ial and natural tasks. The results show that although nonlinear

echniques do well on selected artificial data, none of them out-

erforms the traditional PCA using real-world data. However, they

lso point out that the selection of a proper kernel function is im-

ortant for the performance of KPCA . In general, the model se-

ection in kernel methods, including the specification of relevant

arameters, can lead to high computational costs. Consistently,

orzano et al. (2014) state that among the available dimensionality

eduction techniques, PCA and its different versions, such as stan-

ard PCA , robust PCA , sparse PCA , and KPCA are still the preferred

echniques given their simplicity and intuitiveness. Moreover,

an der Maaten, Postma, and Van den Herik (2009) demonstrate

he four main weaknesses of the popular dimensionality reduction

echniques, including: (1) the susceptibility to the curse of dimen-

ionality, (2) the problems in finding the smallest eigenvalues in

n eigenproblem, (3) overfitting, and (4) the presence of outliers. 

It is known that many well-accepted techniques are sensitive

o noisy data, especially outliers in the data. The quality and

erformance of such techniques can be significantly affected by

issing values and outliers, not to mention incorrect data and

ismatches that possibly exist in the data collected from different

ources. Properly handling outliers can improve the robustness and

ccuracy of the dimensionality reduction results and help keep any

ubsequent classifier from spending too much time trying to find

n effective solution. Moreover, if the number of outliers is large,

he data cannot be normal or symmetric based on the empirical

rinciple of normality, further reducing classification accuracy

or some techniques. Thus, in order to perform an efficient and

eliable analysis with reasonably accurate results, it is necessary

o conduct a careful data preprocessing at the beginning of any 
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data mining procedure. Yet, data preprocessing can be very time

consuming and somewhat tedious depending on the specific cases.

It is not unusual to spend 60–90% of the modeling and testing

on cleaning and preprocessing the raw data. Atsalakis and Vala-

vanis (2009) summarize that among the studies of stock market

forecasting, some researchers simply preprocess the data by using

a logarithmic data transformation or standardization of the raw

data, while others do not preprocess the data or give any further

details about cleaning the data. There are some techniques from

other fields aimed to alleviate and solve this issue. For example,

robustness theory is developed for solving problems subject to

model perturbation or added noise or outliers; and the theory of

fuzzy set proposed by Zadeh (1965) can reduce the effect of out-

liers or noises when applied to data sets with unmodeled charac-

teristics by assigning a fuzzy membership to each input data point

such that different input points can make different contributions

to the analyzing process. For almost four decades, statisticians

have investigated the robust algorithm of principal component

analysis. One outstanding idea is proposed by Xu and Yuille (1995) .

They adapt the statistical physics approach to define an objective

function with the consideration of outliers, and then generalize

several commonly used PCA self-organizing rules into robust ver-

sions. They demonstrate that their method can resist outliers very

well. However, it is difficult to choose a hard threshold in their

approach. Yang and Wang (1999) extend Xu and Yuille’s method

by defining a fuzzy objective function and using gradient descent

optimization. Their robust principal component analysis algorithm,

FRPCA , only needs to preset one parameter, the fuzziness variable,

which determines the influences of outliers on the results. They

developed their algorithm in three different ways based on updat-

ing the weights of the data points differently and called them FR-

PCA1, FRPCA2 , and FRPCA3 . Luukka (2011) develops a nonlinear ver-

sion of the FRPCA3 algorithm and claims that with outlier removal

his algorithm brings promising results in the study of medical

data sets. 

Data mining, or big data analytics, is focused on analyzing

large amounts of data efficiently and extracting important, useful,

and hidden information from the data by combining various

techniques in different areas, such as pattern recognition, decision

making, expert systems, knowledge database discovery, artifi-

cial intelligence, and statistics. The main types of data mining

include classification mining, cluster mining, association rule

mining, text mining, and image mining. Zhong (20 0 0, 20 04 ) and

Zhong, Ma, Yu, and Zhang (2001) demonstrate classification and

cluster mining in more detail. In general, stock market or financial

time series forecasting is focused on developing approaches to

successfully forecast or predict index values or stock prices so

that the investors can gain high profits using well-defined trad-

ing strategies according to the forecasting results. Atsalakis and

Valavanis (2009) state that the key to successful stock market

forecasting is achieving the best results with both the minimum

required input data and the least complex stock market model.

Therefore, it is natural to connect data mining with stock market

forecasting in order to mine historical data from stock markets to

help define better trading strategies. Given the technical challenges

and significant potential profits, many researchers find it worth-

while to seek a comprehensive data mining procedure that can

produce accurate, consistent, and reliable forecasting results with

potential profits. Since a stock market index contains numerous

individual stocks and reflects the broader market movement rather

than movement of any individual stock, forecasting stock market

indices has attracted the attention of many researchers. Some of

the studies target monthly data. For example, Thawornwong and

Enke (2004) , Enke and Thawornwong (2005) and Leung, Daouk,

and Chen (20 0 0) forecast the S&P 500 index using monthly data,

whereas Wang et al. (2011) analyze historical monthly data to pre-
ict the Shanghai Composite index. Other researchers have studied

aily data. For example, Guresen, Kayakutlu, and Daim (2011) ex-

lore daily data of NASDAQ Stock Exchange index, Kara, Boyacioglu,

nd Baykan (2011) attempt to predict the direction of movement

n the daily Istanbul Stock Exchange ( ISE ) National 100 Index,

’Connor and Madden (2006) predict the daily movements in the

ow Jones Industrial Average index, while Zhu, Wang, Xu, and

i (2008) use daily data to forecast NASDAQ , DJIA, and STI indices. A

ew research groups, such as Armano, Marchesi, and Murru (2005) ,

ao and Tay (2001) , and Niaki and Hoseinzade (2013) work on pre-

icting daily movements of the S&P 500 index. Both Thawornwong

nd Enke (2004) and Leung et al. (2000) conclude that trading

trategies guided by classification models generate higher risk-

djusted profits compared to the benchmark buy-and-hold strategy

nd those strategies directed by level-estimation based forecasts. 

In this paper, the daily direction of SPDR S&P 500 ETF (ticker

ymbol: SPY) is forecasted using a deliberately designed classi-

cation mining procedure. This will begin by preprocessing the

aw data to deal with missing values, outliers, and mismatched

amples. Three versions of PCA are applied next to the cleaned

nd complete data in order to select the most influential and

ncorrelated variables for classification. ANN s acting as classifiers

re then used with the transformed data sets to forecast the

irection of future market returns. 

The remainder of the paper is organized as follows. The data

escription and preprocessing will be discussed next in Section 2 ,

hile three different dimensionality reduction techniques will be

ntroduced in Section 3 . The proposed classifiers will be briefly

eviewed in Section 4 , and the data analysis and model develop-

ent will be illustrated in Section 5 . The modeling results will be

ummarized in Section 6 , with the simulation process described

n Section 7 . Concluding remarks are presented in Section 8 . The

ata sources and descriptions are included in the Appendix. 

. Data description and preprocessing 

.1. Data description 

The data set utilized for this study involves the daily direction

UP or DOWN) of the closing price of the SPDR S&P 500 ETF

ticker: SPY) as the output, along with 60 financial and economic

actors as the potential features. These daily data are collected

rom 2518 trading days between June 1, 2003 and May 31, 2013.

he 60 potential features can be divided into 10 groups, including

he SPY return for the current day and three previous days, the

elative difference in percentage of the SPY return, exponential

oving averages of the SPY return, Treasury bill (T-bill) rates,

ertificate of deposit rates, financial and economic indicators, the

erm and default spreads, exchange rates between the USD and

our other currencies, the return of seven world major indices

other than the S&P 500), SPY trading volume, and the return of

ight large capitalization companies within the S&P 500 (which

s a market cap weighted index and driven by larger capitaliza-

ion companies). Some of these features are being considered

or the first time, while others are a mixture of the features

onducted by various research groups ( Armano et al., 2005; Cao

 Tay, 2001 ; Thawornwong and Enke (2004) , Enke and Thaworn-

ong (2005) and Niaki & Hoseinzade, 2013 ), as long as their

alues were released without a gap of more than five continuous

rading days during the study period. The details of these 60 fi-

ancial and economic factors, including their descriptions, sources,

nd calculation formulas are given in Table A1 of the Appendix.

fter further analysis, only the most important and influential

rincipal components among all the linear combinations of the 60

actors determined using PCA, FRPCA , and KPCA will be input into

he classifiers to predict the direction of the SPY for the next day.  
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.2. Data preprocessing 

The data used for this study covers 60 factors over 2518 trading

ays. As to be expected, for such a large collection of data, there

re missing values, mismatching samples, and outliers existing

n the raw data. Using the 2518 trading days during the 10-year

eriod as criteria, the collected samples from other days should

e deleted. As for the missing values, if there are n values for

ny variable or column that are missing continuously, the average

f the n existing values on both sides of the missing values are

sed to fill in the n missing values. A simple statistical principle

s employed to detect the possible outliers ( Navidi, 2011 ). The

ossible outliers are then adjusted using a similar method to the

ne employed by Cao and Tay (2001) . Specifically, for each of the

0 factors or columns in the data, any value beyond the interval

( Q 1 − 1 . 5 ∗ IQR, Q 3 + 1 . 5 ∗ IQR ) is regarded as a possible outlier,

ith the factor value replaced by the boundary of the interval

loser to it. Here, Q 1 and Q 3 are the first and third quartile of

ll the values in that column, and IQR = Q 3 − Q 1 is the interquar-

ile of those values. The symmetry of all adjusted and cleaned

olumns can be checked using histograms or statistical tests. For

xample, Fig. 1 includes the histograms of factor SPY t (i.e., the SPY

urrent daily return), before and after data preprocessing. It can

e observed that the outliers are removed and the symmetry is

chieved after the adjustments. 

In this study, the ANN s are used as classifiers. At the start of the

lassification mining procedure, the cleaned data are sequentially

artitioned into three parts: training data (the first 70% data),

alidation data (the last 15% of the first 85% data), and testing

ata (the last 15% data). The reason for having validation data

s to decrease the possibility of overfitting the data, which often

appens in ANN analysis. Additional details about how the data

as used for classification are provided in Section 5.2 . 

. Dimensionality reduction using PCA, FRPCA , and KPCA 

.1. PCA 

A number of linear or nonlinear techniques have been devel-

ped to embed high-dimensional data into a lower dimensional
pace without much loss of the information. Among them, PCA is

he most popular unsupervised linear technique for dimensionality

eduction. Jolliffe (1986) gives an authoritative and accessible

ccount of this methodology. As one of the earliest multivariate

echniques, PCA is aimed to construct a low-dimensional repre-

entation of the data while keeping the maximal variance and

ovariance structure of the data. In order to achieve this goal, a

inear mapping W that can maximize W 

T var ( X ) W , where var ( X )

s the variance-covariance matrix of the data X , is needed. It is

hown that W is formed by the principal eigenvectors of var ( X ).

hus, PCA turns out to be an eigenproblem v ar(X ) W = λW , where

represents the eigenvalues of var ( X ). In addition, it is known that

orking on the raw data X instead of standardized data with PCA

ends to give more emphasis to those variables that have higher

ariances compared to those variables that have very low vari-

nces, especially if the units at which the variables are measured

re not consistent. In this study, not all variables are measured at

he same units. Thus, PCA is applied to the standardized version

f the cleaned data X . In other words, the linear mapping W ∗ is

earched such that 

or r ( X ) W 

∗ = λ∗W 

∗, (1) 

here corr ( X ) is the correlation matrix of the data X . 

That is, suppose the data X has the format X = ( X 1 X 2 · · · X M 

) ,

hen cor r (X ) = ρ is a M × M matrix where M is the dimensionality

f the data, and the ij th element of the correlation matrix is 

or r 
(
X i , X j 

)
= ρi j = 

σi j 

σi σ j 

, 

here 

i j = cov 
(
X i , X j 

)
, σi 

= 

√ 

v ar ( X i ) , σ j = 

√ 

v ar 
(
X j 

)
, and i, j = 1 , 2 , . . . , M. (2) 

Essentially, the principal components are the linear com-

inations of all the factors with the coefficients equaling the

lements of the eigenvectors, correspondingly. Different amounts

f principal components can explain different proportions of the

ariance-covariance structure of the data. The eigenvalues can

e used to rank the eigenvectors based on how much of the 
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variation of the data is captured by each principal component.

In more detail, let λ∗ = { λ∗
i 
} M 

i =1 
denote the eigenvalues of the

correlation matrix corr ( X ) such that λ∗
1 

≥ λ∗
2 

≥ · · · ≥ λ∗
M 

. Also,

let the vectors e T 
i 

= ( e i 1 e i 2 · · · e iM 

) denote the eigenvectors of

cor r (X ) corresponding to the eigenvalues λ∗
i 
, i = 1 , 2 , . . . , M.

It turns out that the elements of these eigenvectors are the

coefficients of the principal components. That is, the principal

components of the standardized data 

Z = ( Z 1 Z 2 · · · Z M 

) , 

where 

Z 

T 
w 

= ( Z 1 w 

Z 2 w 

· · · Z Nw 

) , Z v w 

= 

X v w 

− μw 

σw 

, v = 1 , 2 , . . . , N, and w = 1 , 2 , . . . , M, (3)

can be written as 

 i = 

M ∑ 

j=1 

e i j Z j , i = 1 , 2 , . . . , M. (4)

Moreover, it is proven that 

v ar ( Y i ) = 

M ∑ 

k =1 

M ∑ 

l=1 

e ik cor r ( X k , X l ) e il = e T i ρe i = λ∗
i (5)

and 

cov 
(
Y i , Y j 

)
= 

M ∑ 

k =1 

M ∑ 

l=1 

e ik cor r ( X k , X l ) e jl = e T i ρe j = 0 (6)

using the Spectral Decomposition Theorem 

ρ = 

M ∑ 

i =1 

λ∗
i e i e 

T 
i (7)

and the fact that both e T 
i 

e i = 

∑ M 

j=1 e 
2 
i j 

= 1 and the different eigen-

vectors are perpendicular to each other such that e T 
i 

e j = 0 . Thus,

the variance of the i th (largest) principal component is equal

to the i th largest eigenvalue, and the principal components are

uncorrelated with one another. 

Since the total variation of Z is defined as the trace of the

correlation matrix ρ, that is, trace (ρ) = 

∑ M 

i =1 λ
∗
i 
, the proportion

of variation explained by the i th principal component is defined

to be λ∗
i 
/trace (ρ) , where i = 1 , 2 , . . . , M. The proportion of

variation explained by the first k principal components is defined

to be the sum of the first k eigenvalues divided by trace ( ρ), that

is, 
∑ k 

i =1 λ
∗
i 

/ 
∑ M 

i =1 λ
∗
i 

. Theoretically, if the proportion of variation

explained by the first k principal components is large, not much

information is lost by reducing the dimensionality of the data

space from M to k . 

Please note that in general the population variance-covariance

matrix var ( X ) is unknown and we may estimate it by the sample

variance-covariance matrix S such as 

S = 

1 

N − 1 

N ∑ 

v =1 

(
X v − X̄ 

)(
X v − X̄ 

)T 
. (8)

Then estimate the correlation matrix ρ by estimating

σ ij as S( X i , X j ) , σ i as 
√ 

S( X i ) , and σ j as 
√ 

S( X j ) , where

i, j = 1 , 2 , . . . , M. The remaining procedure and the inter-

pretations are the same as described before. 

To determine how many and which principal components

should be used as inputs to the classifier, it is necessary to find a

balance among the expected or required forecasting accuracy, the

cost (time and others), and the complexity of the system. That is,

the principle components that are chosen must explain the data

the best while simplifying the data structure as much as possible.

In practice, it is reasonable to consult experts to help determine

the proper balance. 
.2. FRPCAs 

Given the data X = { x 1 , x 2 , . . . , x n } , Yang and Wang (1999)

ropose an optimization function in terms of the data cluster and

 noise cluster: 

E = 

n ∑ 

i =1 

( u i ) 
m e ( x i ) + η

n ∑ 

i =1 

(1 − u i ) 
m , (9)

here u i ∈ [0, 1] and m ∈ [1, ∞ ). u i is the membership of

 i belonging to the data cluster and (1 − u i ) represents the mem-

ership of x i belonging to the noise cluster. m is the fuzziness

ariable and the weighting exponent, which determines the influ-

nce of small u i compared to large u i . e ( x i ) is used to measure the

rror or distance between x i and the cluster center, and it can be

ne of the following functions: 

 1 ( x i ) = || x i − w 

T x i w | | 2 , (10)

 2 ( x i ) = || x i | | 2 − || w 

T x i | | 2 
|| w | | 2 . (11)

This optimization function actually follows the fuzzy clustering

pproach and essentially calculates the weighted sum of distances

etween the data and the cluster center, which is equal to 0 in

he data set. If m = 1 and u i ∈ {0, 1}, expression (9) becomes the

ptimization function proposed by Xu and Yuille (1995) . 

Since u i ∈ [0, 1] in expression (9) is continuous, the optimiza-

ion difficulty caused by the mixture of discrete and continuous

ariables in Xu and Yuille (1995) is avoided. Using the gradient

escent approach, Yang and Wang (1999) derive their robust

lgorithms of principal component analysis. 

FRPCA1 algorithm 

Step 1. Initially set the iteration count t = 1 , iteration bound

T, learning coefficient α0 ε( 0 , 1 ] , soft threshold η to a small

positive value and randomly initialize the weight w . There

is no general rule for the setting of m , most papers set

m = 2 for the reason of simplicity. 

Step 2. While t is less than T , do Step 3–9. 

Step 3. Compute αt = α0 ( 1 − t/T ) , set i = 1 and σ = 0 . 

Step 4. While i < n , do Step 5–8. 

Step 5. Compute y = w 

T x i , u = yw, v = w 

T u. 

Step 6. Update the weight: 

w 

new = w 

old + αT β( x i ) [ y ( x i − u ) + ( y − v ) x i ] , 

where 

β( x i ) = 

(
1 

1 + ( e 1 ( x i ) /η) 
1 / ( m −1 ) 

)m 

. (12)

Step 7. Update the temporary count: σ = σ + e 1 ( x i ) . 

Step 8. i = i + 1 . 

Step 9. Compute η = σ/n and t = t + 1 . 

FRPCA2 algorithm 

The same as FRPCA1 except Step 6–7. 

Step 6. Update the weight: 

w 

new = w 

old + αT β( x i ) 

(
x i y −

w 

w 

T w 

y 2 
)
, 

 



X. Zhong, D. Enke / Expert Systems With Applications 67 (2017) 126–139 131 

 

 

 

 

 

3

 

c  

i  

s  

t  

b  

l  

t  

o  

n  

i  

h

 

t  

t  

t  

k  

p  

f

k

 

c  

b  

d

α

 

b  

s

y

w  

Y  

o

 

t  

d  

a  

o  

s  

o  

o  

f  

H  

o  

f  

c  

i  

i  

t

κ

w

 

s

κ

w  

d

 

a  

n

κ

w

 

k  

p  

m  

p  

p  

e  

d  

A

κ

w

 

M  

P

4

 

h  

 

where 

β( x i ) = 

(
1 

1 + ( e 2 ( x i ) /η) 
1 / ( m −1 ) 

)m 

. (13) 

Step 7. Update the temporary count: σ = σ + e 2 ( x i ) . 

FRPCA3 algorithm 

The same as FRPCA1 except Step 6–7 and e ( x i ) below could be

set as e 1 ( x i ) or e 2 ( x i ). 

Step 6. Update the weight: 

w 

new = w 

old + αT β( x i ) 
(
x i y − w y 2 

)
, 

where 

β( x i ) = 

(
1 

1 + ( e ( x i ) /η) 
1 / ( m −1 ) 

)m 

. (14) 

Step 7. Update the temporary count: σ = σ + e ( x i ) . 

The weight updating rule in FRPCA3 is called the one-unit Oja’s

algorithm ( Oja, 1985 ). Based on a weight updating rule for

classical nonlinear PCA, as proposed by Luukka (2011), Oja

(1995) developed a nonlinear version of FRPCA3 : 

New Nonlinear FRPCA3 algorithm 

The same as FRPCA3 except Steps 6–7. 

Step 6. Calculate g(y ) , F = 

d 
dy 

( g(y ) ) , e 3 ( x i ) = x i − w 

old g(y ) , and

update the weight: 

w 

new = w 

old + αT β( x i ) 
(
x i e 3 ( x i ) 

T w 

old F + e 3 ( x i ) g ( y ) 
)
, 

where 

β( x i ) = 

(
1 

1 + ( e 3 ( x i ) /η) 
1 / ( m −1 ) 

)m 

and g ( y )is chosen to be a quite sharp sigmoidal like function 

g ( y ) = tanh ( 10 y ) . (15) 

Step 7. Update the temporary count: σ = σ + e 3 ( x i ) . 

.3. KPCA 

KPCA is based on the kernel methods through which the data

an almost always be linearly separated and gain independence

n a high enough dimensional space if they cannot be linearly

eparated in lower dimensional space. The transformation from

he low dimensional space to the high dimensional space is done

y an appropriate kernel function. The kernel function can be

inear or nonlinear. If it is linear, then there is no difference be-

ween standard PCA and KPCA . In general, KPCA is a reformulation

f linear PCA in a high-dimensional space constructed using a

onlinear kernel function. This nonlinear extension of PCA can

mprove the quality of dimensionality reduction of the data that

ave certain types of nonlinearity involved. 

Assuming the number of the observations or the instances of

he data X is N , instead of directly calculating the eigenvectors of

he variance-covariance matrix of the data X , KPCA first transforms

he data X into another high-dimensional space generated by the

ernel function κ by computing the kernel matrix K of the data

oints or vectors x i such as k i j = κ( x i , x j ) , where κ is a kernel

unction; then centers K by the following formula 

 i j = k i j −
1 

N 

N ∑ 

l=1 

k il −
1 

N 

N ∑ 

l=1 

k jl + 

1 

N 

2 

N ∑ 

l=1 

N ∑ 

m =1 

k lm 

. (16) 

Now, the N eigenvectors v i of the centered N × N kernel matrix

an be calculated. It is proved that there is a correspondence

etween v i and the eigenvectors of the covariance matrix of the

ata transformed into the kernel space αi via 

i = 

1 √ 

λi 

X v i . (17) 
a  
Finally, the lower dimensional representation Y can be obtained

y projecting the data X onto the kernel space spanned by αi ∗ ,

uch that i ∗ = 1 , 2 , . . . , d, as follows 

 i = 

{ 

N ∑ 

j=1 

α j 
1 
k ji , . . . , 

N ∑ 

j=1 

α j 

d 
k ji 

} 

here α j 
i ∗ represents the j th value of the eigenvector αi ∗ . Note that

 is a N × d matrix and d < N is the number of the dimensions to

utput. 

It is obvious that the size of the kernel matrix is proportional

o N 

2 , the square of the number of observations or instances of the

ata set. This is considered as an important weakness of KPCA . In

ddition, there are many kernel functions that have been devel-

ped in the literature, such as simple or linear, polynomial, Gaus-

ian, Cauchy, ANOVA , Bayesian, wave, wavelet, Laplacian, and so

n. Most of them require a selection of parameters. The influence

f different kernels chosen for KPCA and various values selected

or the relevant parameters on the final results can be significant.

owever, there is no direct way to make an appropriate selection

f the parameters; a large number of experiments are usually per-

ormed and tested to identify the best choice. The computational

ost can be increased to certain level accordingly. Therefore, choos-

ng an appropriate kernel function with the best parameter setting

s critical but difficult for the efficiency of a KPCA procedure. The

hree most commonly used kernels can be expressed as 

Linear Kernel: (
x i , x j 

)
= x ′ i x j + c, (18) 

here c is a constant. 

The linear kernel is the simplest kernel function, which is the

ame as standard PCA theoretically. 

Polynomial Kernel: (
x i , x j 

)
= 

(
αx ′ i x j + c 

)d 
, (19) 

here α is the slope, c is a constant, and d is the polynomial

egree. 

The polynomial kernel is a nonstationary kernel. Such kernels

re well suited for problems where all the training data are

ormalized. 

Gaussian Kernel: (
x i , x j 

)
= exp 

(
− | | x i − x j | | 2 

2 σ 2 

)
, (20) 

here σ is the bandwidth. 

The Gaussian kernel is an example of radial basis function

ernel. The adjustable parameter σ plays a major role in the

erformance of the Gaussian kernel. The larger the bandwidth, the

ore linear the function. That is, if σ is overestimated, the ex-

onential will behave almost linearly and the higher-dimensional

rojection will start to lose its nonlinear power; if σ is under-

stimated, the Gaussian kernel will lack regularization and the

ecision boundary will be highly sensitive to noise afterwards.

lternatively, it could also be implemented using (
x i , x j 

)
= exp 

(
−γ || x i − x j | | 2 

)
, (21) 

here γ is the parameter to select. 

More details about KPCA can be found in Schölkopf, Smola, and

üller (1998), Shawe-Taylor and Christianini (2004) , and Turk and

entland (1991) . 

. The ANN classifiers 

Artificial Neural Networks ( ANN s) were invented to mimic the

uman brain by carefully defining and designing the network

rchitecture, including the number of network layers, the types 
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Hidden Layer
Input Layer Output layer

Class 

Fig. 2. A three-layer feed-forward neural network used for classification. 
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of connections among the network layers, the numbers of the

neurons in each layer, the learning algorithm, the learning rate,

weights between neurons, and the various neuron activation func-

tions. ANN s function like a black box that can output prediction or

classification results based on the input information. 

An efficient ANN system usually includes three phases. First, the

weights of the connections among the layers and the neurons are

adjusted over the training data to achieve a reasonably accurate

and reliable prediction or classification result. Second, to avoid

overfitting the data and improve the generalization of the ANN ,

validation data are used to determine when the training phase

should stop based on an early-stopping rule. Third, the testing

data can be input to the trained ANN to provide an independent

measure of network performance. 

There are numerous types of ANN that have been explored.

They can be categorized according to different aspects, such as the

network architecture, the learning algorithm, and the application

( Amornwattana, Enke, & Dagli, 20 07; Bao & Yang, 20 08; Bogullu,

Enke, & Dagli, 2002; Chavarnakul & Enke, 2008; Enke, Ratanapan,

& Dagli, 20 0 0; Patel, Shah, Thakkar, & Kotecha, 2015; Rather,

Agarwal, & Sastry, 2015 ). Among them, the multi-layer feed-

forward ANN model with a backpropagation learning algorithm

is recognized as one of the most popular financial forecasting

tools for its simplicity and efficiency ( Vellido, et al., 1999 ). The

configuration of a three-layer feed-forward neural network that

is used for classification in this research is given in Fig. 2 . In the

model, various selected variables, X 1 to X n , are provided as input

to the network. These input variables are selected as discussed

in Sections 3 and 4 . The network outputs represent the chosen

result, which in this study will be the classification of the market

direction as either rising or falling over the next period. Neurons

in the network will contain a specific activation function, and each

neuron will be connected to other neurons in subsequent layers

using a weight. The backpropagation learning process will be used

to update the individual connection weights to achieve the desired

classification accuracy. Further detail of the training, validation,

and testing of the ANN that is used for classification in this study

is provided in Section 5.2 . 

As mentioned in Section 1 , trading strategies guided by classi-

fication models usually generate higher risk-adjusted profits ( Enke

& Thawornwong, 20 05; Leung et al., 20 0 0 ). Therefore, this study

will also compare classification-based forecasts through ANN s

against two defined benchmarks. The specific results can be found

in Section 7 . 

5. Data analysis and model development 

5.1. Use PCA, FRPCA, and KPCA to reduce the dimensionality 

Background modeling details for the PCA, FRPCA, and KPCA

dimensionality reduction techniques are provided in Sections 3.1 ,

3.2 , and 3.3 , respectively. The following sections apply each

previously described technique to the datasets being tested. 
.1.1. Apply PCA to the data 

Using PCA , the 60 principal components of the entire data can

e generated. The resulting number of principal components that

an explain almost 100% ( > 99.9999%) variation of the data set is

7. More details about the cumulative proportions of variation of

he entire data set that can be explained by a different number of

rincipal components corresponding to the data set can be found

n Table 1 . These principal components are ordered based on their

mportance or weights. Each principal component corresponds to

n eigenvalue of the correlation matrix of the data set. The first

rincipal component listed on the table represents the most influ-

ntial principal component that is determined by the eigenvector

orresponding to the largest eigenvalue of the correlation matrix.

his is the same for the subsequent components. 

Each principal component is a linear combination of all 60

eatures. The coefficients or the weights of the 60 features for

ach principal component imply the level of their importance or

nfluence in the data set. The absolute value of the weight that

 feature has will characterize the importance or relevance of

hat feature to the principal component. Thus, by checking the

oefficients of the principal components we can tell which features

xplain the data better. From Table 1 , we observe that the number

f principal components that can explain almost 99% variation of

he data set is 11. Thus, by observing the coefficients of the first

1 principal components for the data set, a number of conclusions

an be drawn. Four groups, including the relative changes in the

xchange rates between USD and four other currencies, the SPY

eturn for the current and three previous days, the return of the

ther seven world major indices, and the return of the eight large

arket capitalization companies in S&P 500 are important. The

roup of financial and economic indicators are less important,

hereas the other groups, such as the relative difference in per-

entage of the SPY return, exponential moving averages of the

PY return, T-bill rates, certificate of deposit rates, the term and

efault spreads, and the SPY trading volume have the least impact,

nd almost zero effect on the first 11 principal components. More

pecifically, the USD_CNY, i.e., the relative change in the exchange

ate between US dollar and Chinese Yuan (Renminbi), is the one

eature that plays a much more significant role than the other

eatures in the first principal component of each case. The first

rincipal component can actually explain the majority of the varia-

ion for each data set. Table 2 illustrates the coefficients of the first

1 principal components generated from the correlation matrices

f the entire data with the size 2518, where the level of impor-

ance of each group of features is indicated by different numbers

n the leftmost column: 1 = least important; 2 = less important;

 = important. The PCA results are obtained with the MATLAB

unction pcacov , using the methodology described in Section 3.1 . 

.1.2. Apply FRPCA to the data 

In Section 3.2 , four algorithms regarding FRPCA are introduced

ith details. In this paper, the New Nonlinear FRPCA3 algorithm

s applied to the clean and preprocessed data. As with using PCA

or dimensionality reduction, certain numbers of principal compo-

ents are chosen and input to the ANN classifier for forecasting in

ection 5.2 . 

.1.3. Apply KPCA to the data 

As described in Section 3.3 , the polynomial kernel is a nonsta-

ionary kernel and is well suited for normalized data. In this paper,

he polynomial kernel is used in KPCA procedure since the prepro-

essed data with outlier removal is roughly normal as shown in

ig. 1 . Nonetheless, there is no direct way to choose the relevant

arameter of the polynomial kernel. To save the computational

ost and for the simplicity, we specify α = 1 , c = 1 , and d = 0 . 5 in

xpression (19) . The same numbers of principal components, as 
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Table 1 

The results of PCA over the entire data. 

PCs Cumulative proportion PCs Cumulative proportion PCs Cumulative proportion PCs Cumulative proportion 

1 0 .930842 11 0 .990272 21 0 .998352 31 0 .999981 

2 0 .947948 12 0 .991921 22 0 .998711 32 0 .999987 

3 0 .961163 13 0 .993275 23 0 .999035 33 0 .99999 

4 0 .9696 14 0 .994235 24 0 .999233 34 0 .999993 

5 0 .974644 15 0 .995146 25 0 .999423 35 0 .999996 

6 0 .978549 16 0 .995968 26 0 .999604 36 0 .999999 

7 0 .981723 17 0 .996543 27 0 .999742 37 1 

8 0 .984181 18 0 .997069 28 0 .999841 38 1 

9 0 .986476 19 0 .997575 29 0 .999933 39 1 

10 0 .988453 20 0 .99797 30 0 .999962 40 1 
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n the cases of PCA and FRPCA , are selected and used for the

orecasting of daily return with the ANN classifier in Section 5.2 . 

.2. Use ANN to classify the data 

The Neural Network toolbox available in MATLAB is used to

evelop the artificial neural network that is applied to perform the

lassification in this study. A three-layered feedforward ANN struc-

ure was used. The network was trained using a scaled conjugate

radient backpropagation algorithm. The number of neurons in the

idden layer was set to 10 based on trial-and-error experience,

nd for the purpose of comparison. A tangent sigmoid transfer

unction was selected for the hidden layer. There were two nodes

n the output layer representing two classes (UP or DOWN). The

utput values are actually the probabilities of each input value

elonging to the two classes. The larger probability is chosen as

he winner. A logistic sigmoid transfer function was used in the

utput layer. Different numbers of principal components were

sed as inputs for each cluster and the entire data set. 

The Mean Squared Error (MSE) and the confusion matrix were

sed to evaluate the performance of the ANN classifier. MSE is the

verage squared difference between outputs and targets. Lower

alues are better. Zero means no error. The confusion matrix

onsists of four correctness percentages for training, validation,

esting, and the total data set that were provided as inputs to the

NN classifier. The percent of correctness indicates the fraction of

amples that are correctly classified. A value of 0 means no correct

lassification, whereas 100 indicates maximum correct classifica-

ions. In particular, the Neural Network toolbox in MATLAB func-

ions in the following way. The training data are input to train the

NN model, and the validation data are input to control the ANN ’s

verfitting problem almost simultaneously. That is, as the ANN is

rained using the training data, the MSE obtained from classifying

he validation data with the trained ANN model gets decreased at

rst and continues to fall for certain amount of time; the MSE of

he validation will start to increase when the ANN model is having

n overfitting problem, resulting in the need for the training phase

o be terminated. Thus, the ANN model can be trained best in the

ense that the validation phase achieves its lowest MSE with the

rained model. After the ANN is trained and selected, all training

ata, validation data, and testing data (untouched) are input to

nd classified by the trained model separately. The percentage of

orrectly predicted or classified daily directions corresponding to

ach category can be obtained and recorded. 

This study focuses on predicting the daily direction of SPY for

ext day. The direction can be either UP or DOWN. That is, the out-

ut or the response (random) variable has a Bernoulli distribution.

n addition, for each selected dimensionality reduction technique,

welve new data sets can be generated by transforming the original

leaned and preprocessed data based on the different number of

rincipal components chosen. In other words, the twelve data sets

re a reflection of the original 60-dimensional data in twelve data
paces with various dimensions lower than 60. To show the in-

uence of dimensionality reduction with PCA, FRPCA , and KPCA on

he daily direction classification, ANN s are applied to each of the

hirty-six transformed data sets. The results are listed in Table 3. 

. Results 

The performance of the ANN classifier is measured with the

ate or percentage of times correctly predicting the direction

f the SPY for the next day. Table 3 includes four sections. The

eftmost section lists twelve values; each of these values repre-

ents the number of principal components based on which one

f the twelve new data sets with respect to each of the three

imensionality reduction methods is generated. Moreover, each

f the twelve numbers is selected from Table 1 according to the

umulative proportion of variation of the entire data that can be

xplained by this specific number of principal components. Each

ow of the other three sections of Table 3 contains classification

ates measured for each training, validation, testing, and total data

et considered in this study based on PCA, FRPCA , and KPCA . Each

ombination of the four rates is chosen from the training results.

he criteria of the selection include: all four classification rates

re among the highest rates in each of the four categories; all four

ates are close to each other as much as possible with the paired

ifference less than or around 5%. 

The rate or percentage of correctness for the testing phase

s considered the most important measure to determine the

rediction accuracy of the ANN s. In order to make a comparison

egarding the prediction accuracy among the combining proce-

ures of the ANN s and each of the three different dimensionality

eduction techniques, a group of paired t -tests are performed over

he population means of the correctness rates or percentages for

ll classification models considered in this study. The P -values are

sed as the criteria to draw a conclusion. The hypothesis testing

esults are given in Table 4. 

Assuming the significance level is 0.05 for any hypothesis test,

e reject the null hypothesis if the P- value is less than 0.05 and

avor the alternative hypothesis if the P- value is greater than

.05; the smaller the P -value, the more favorable the alternative

ypothesis. Therefore, from Table 4 , we can conclude that the

hree PCA s do not give significantly different results in average.

owever, based on the P -values, it is fair to say that the standard

CA performs slightly better than FRPCA , and FRPCA performs

lightly better than KPCA in average. This is consistent with the

esults demonstrated by Van der Maaten, Postma, and Van den

erik (2009) . 

In addition, for each version of PCA involved, the number of

he principal components used as the inputs does not have much

mpact on the prediction accuracy for the ANN s. For example,

hen standard PCA is considered, even if using only the first prin-

ipal component as the input, the (testing) prediction accuracy for

NN s is 56.8% compared to the highest percentage 58.1%, which 
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Table 2 

The allocation of the coefficients of the first 11 PCA s from the entire data with size 2518. 

Level Group Factors PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 

3 SPY return in current and three previous days SPYt −0 .0019 −0 .0402 −0 .2349 0 .2763 0 .0646 0 .1976 0 .0032 −0 .2156 0 .2969 −0 .4925 0 .6027 

SPYt1 −0 .0047 0 .4022 −0 .0010 0 .0546 −0 .1247 −0 .0095 0 .0075 −0 .0013 −0 .2143 −0 .0876 0 .0500 

SPYt2 −0 .0014 0 .0096 0 .0048 −0 .0391 0 .6157 −0 .0160 −0 .0468 0 .50 0 0 −0 .2365 −0 .0956 0 .0701 

SPYt3 0 .0 0 07 −0 .0138 0 .0052 0 .0203 −0 .0551 −0 .0087 0 .9841 0 .0792 0 .0739 0 .0275 −0 .0118 

1 Relative difference in percentage of SPY return RDP5 0 .0 0 0 0 0 .0 0 08 −0 .0 0 05 0 .0 0 07 0 .0010 0 .0 0 03 0 .0018 0 .0 0 08 −0 .0 0 01 −0 .0014 0 .0014 

RDP10 0 .0 0 0 0 0 .0 0 04 −0 .0 0 03 0 .0 0 03 0 .0 0 06 0 .0 0 01 0 .0 0 09 0 .0 0 04 0 .0 0 0 0 −0 .0 0 08 0 .0 0 06 

RDP15 0 .0 0 0 0 0 .0 0 03 −0 .0 0 02 0 .0 0 03 0 .0 0 04 0 .0 0 01 0 .0 0 06 0 .0 0 03 0 .0 0 0 0 −0 .0 0 05 0 .0 0 05 

RDP20 0 .0 0 0 0 0 .0 0 02 −0 .0 0 02 0 .0 0 02 0 .0 0 03 0 .0 0 01 0 .0 0 05 0 .0 0 03 0 .0 0 0 0 −0 .0 0 04 0 .0 0 03 

1 Exponential moving averages of SPY return EMA10 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 

EMA20 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 

EMA50 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 

EMA200 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 

1 T-bill rates T1 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 01 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 0 .0 0 01 0 .0 0 01 

T3 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 01 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 0 .0 0 01 0 .0 0 01 

T6 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 0 .0 0 01 0 .0 0 01 

T60 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 0 .0 0 0 0 0 .0 0 01 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 02 0 .0 0 01 0 .0 0 01 

T120 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 0 .0 0 0 0 0 .0 0 01 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 −0 .0 0 02 0 .0 0 01 0 .0 0 01 

1 Certificate of deposit rates CD1 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 −0 .0 0 01 −0 .0 0 01 0 .0 0 02 0 .0 0 0 0 

CD3 0 .0 0 0 0 −0 .0 0 01 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 −0 .0 0 01 −0 .0 0 01 0 .0 0 02 0 .0 0 0 0 

CD6 0 .0 0 0 0 −0 .0 0 01 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −−0 .0 0 01 −0 .0 0 01 −0 .0 0 01 0 .0 0 02 0 .0 0 0 0 

2 Financial and economical indicators oil −0 .0014 0 .0055 −0 .0865 0 .0417 −0 .0172 0 .0396 −0 .0086 0 .0117 −0 .0429 0 .0615 0 .0812 

gold −0 .0019 0 .0151 −0 .2005 −0 .1119 −−0 .0065 0 .0667 0 .0069 −0 .0256 −0 .1725 0 .7209 0 .6107 

CTB3M 0 .0014 0 .0 0 08 −0 .0022 0 .0555 0 .0136 0 .0 0 08 0 .0074 −0 .0060 −0 .0126 −0 .0831 0 .1065 

CTB6M 0 .0018 −0 .0055 0 .0 0 07 0 .0854 −0 .0040 −0 .0109 0 .0080 −0 .0103 −0 .0150 −0 .0919 0 .1217 

CTB1Y 0 .0010 −0 .0099 0 .0042 0 .0974 −0 .0028 −0 .0086 0 .0064 −0 .0015 −0 .0054 −0 .0795 0 .1075 

CTB5Y −0 .0 0 02 −0 .0054 −0 .0077 0 .0499 0 .0 0 09 0 .0030 −0 .0060 −0 .0031 0 .0 0 06 −0 .0318 0 .0272 

CTB10Y −0 .0 0 03 −0 .0044 −0 .0104 0 .0473 0 .0012 0 .0035 −0 .0062 −0 .0037 0 .0 0 09 −0 .0306 0 .0248 

AAA −0 .0 0 02 −0 .0052 −0 .0120 0 .0418 −0 .0 0 09 0 .0017 −0 .0059 −0 .0049 −0 .0043 −0 .0252 0 .0159 

BAA −0 .0 0 03 −0 .0068 −0 .0109 0 .0447 −0 .0036 0 .0054 −0 .0136 −0 .0056 −0 .0031 −0 .0263 0 .0186 

1 The term and default spreads TE1 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 0 .0 0 01 0 .0 0 0 0 −0 .0 0 01 0 .0 0 02 −0 .0 0 01 −0 .0 0 01 

TE2 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 02 −0 .0 0 01 −0 .0 0 01 

TE3 0 .0 0 0 0 0 .0 0 01 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 02 −0 .0 0 02 −0 .0 0 01 

TE5 0 .0 0 03 −0 .0 0 01 0 .0012 0 .0013 0 .0 0 01 0 .0022 −0 .0011 −0 .0030 −0 .0011 −0 .0 0 07 −0 .0 0 03 

TE6 0 .0 0 01 −0 .0 0 04 0 .0 0 07 0 .0 0 05 −0 .0 0 05 0 .0012 −0 .0015 −0 .0016 0 .0 0 0 0 0 .0 0 07 −0 .0 0 08 

DE1 0 .0 0 0 0 −0 .0 0 01 0 .0 0 02 −0 .0 0 03 −0 .0 0 03 0 .0 0 02 −0 .0 0 02 −0 .0 0 01 0 .0 0 05 0 .0 0 01 −0 .0 0 06 

DE2 0 .0 0 0 0 −0 .0 0 01 0 .0 0 02 −0 .0 0 03 −0 .0 0 03 0 .0 0 02 −0 .0 0 02 −0 .0 0 01 0 .0 0 05 0 .0 0 01 −0 .0 0 06 

DE4 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 02 −0 .0 0 01 −0 .0 0 01 

DE5 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 −0 .0 0 01 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 02 −−0 .0 0 01 −0 .0 0 01 

DE6 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 −0 .0 0 01 −0 .0 0 01 0 .0 0 01 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 02 −0 .0 0 01 −0 .0 0 01 

DE7 −0 .0 0 02 −0 .0 0 07 0 .0 0 03 −0 .0010 −0 .0 0 08 0 .0 0 05 −0 .0016 −0 .0 0 07 0 .0 0 02 0 .0023 −0 .0021 

3 Exchange rate between USD and four other currencies USD_Y 0 .0013 −0 .1147 0 .0669 0 .8829 0 .04 4 4 −0 .3448 −0 .0196 0 .0323 −0 .0938 0 .2267 −0 .0731 

USD_GBP 0 .0027 −0 .0441 0 .6888 0 .1819 0 .0071 0 .6861 0 .0037 0 .0213 −0 .0762 0 .0855 0 .0669 

USD_CAD −0 .0 0 02 −0 .0016 0 .6439 −0 .2181 −0 .0208 −0 .6016 −0 .0048 −0 .1016 0 .0885 −0 .0858 0 .3690 

USD_CNY 0 .9999 0 .0117 −0 .0024 −0 .0 0 03 0 .0016 −0 .0010 −0 .0 0 05 0 .0 0 05 0 .0 0 05 0 .0 0 01 0 .0022 

3 The return of the other seven world major indices HSI −0 .0021 0 .0827 −0 .0070 −0 .0131 0 .3530 −0 .0308 0 .0866 0 .2539 −0 .0986 −0 .1207 0 .0871 

SSE Composite −0 .0 0 08 0 .0282 −0 .0051 −0 .0186 0 .1616 −0 .0191 0 .0723 0 .1428 −0 .0973 −0 .1113 0 .1487 

FCHI −0 .0029 0 .2522 0 .0253 0 .0114 0 .2961 0 .0033 0 .0140 −0 .2532 0 .1875 0 .1137 −0 .0767 

FTSE −0 .0036 0 .3070 0 .0334 0 .0187 0 .3919 0 .0153 0 .0162 −0 .3262 0 .2417 0 .1489 −0 .1197 

GDAXI −0 .0033 0 .2562 0 .0199 0 .0214 0 .2888 0 .0054 0 .0422 −0 .2443 0 .1863 0 .1238 -0 .0762 

DJI −0 .0043 0 .4239 0 .0064 0 .0624 −0 .1451 −0 .0045 0 .0211 0 .0406 −0 .1777 −0 .0700 0 .0352 

IXIC −0 .0032 0 .3070 −0 .0031 0 .0483 −0 .0858 −0 .0170 0 .0086 −0 .0122 −0 .2347 −0 .0671 0 .0417 

1 SPY trading volume V 0 .0 0 0 0 −0 .0 0 02 0 .0015 −0 .0024 0 .0011 −0 .0016 0 .0 0 01 0 .0015 −0 .0 0 07 0 .0016 −0 .0057 

3 The return of the eight big companies in S&P 500 AAPL −0 .0010 0 .1002 −0 .0082 0 .0134 −0 .0383 −0 .0125 0 .0085 0 .0155 −0 .1364 −0 .0233 0 .0090 

MSFT −0 .0023 0 .2092 0 .0023 0 .0310 −0 .0886 −0 .0114 −0 .0027 −0 .0081 −0 .1133 −0 .0314 0 .0306 

XOM −0 .0044 0 .2196 0 .0053 0 .0192 −0 .0972 −0 .0027 0 .0083 0 .0069 −0 .1035 −0 .0368 −0 .0091 

GE −0 .0027 0 .2210 −0 .0 0 02 0 .0295 −0 .0714 0 .0175 0 .0055 0 .0178 −0 .0931 −0 .0637 0 .0015 

JNJ −0 .0039 0 .3129 0 .0261 0 .0684 −0 .2218 0 .0095 −0 .1121 0 .6026 0 .6577 0 .1486 0 .0502 

WFC −0 .0011 0 .1722 0 .0079 0 .0224 -0 .1032 0 .0101 0 .0024 −0 .0504 −0 .1042 −0 .0649 0 .0050 

AMZN −0 .0012 0 .1034 0 .0016 0 .0130 −0 .0330 0 .0 0 06 −0 .0023 0 .0106 −0 .0955 −0 .0218 0 .0396 

JPM −0 .0013 0 .1624 0 .0 0 09 0 .0228 −0 .0811 −0 .0052 0 .0025 −0 .0329 −0 .1119 −0 .0703 0 .0065 
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Table 3 

The ANN classification results of the 36 transformed data sets based on three PCA s. 

PCs PCA FPCA KPCA 

Training Validation Testing Total Training Validation Testing Total Training Validation Testing Total 

1 54 .8 53 .6 56 .8 54 .9 54 .8 53 .3 57 54 .9 55 .3 53 .3 57 55 .2 

3 55 .2 53 .3 57 .3 55 .2 55 .2 53 .8 56 .8 55 .2 55 .8 53 .6 57 55 .6 

6 54 .9 53 .6 57 .3 55 57 .1 53 .6 57 56 .6 55 .6 53 .3 57 55 .5 

10 56 .4 54 .6 57 .3 56 .3 57 .1 56 .5 56 .8 57 56 .7 54 .6 58 .1 56 .6 

15 56 .3 53 .3 57 .6 56 55 .3 55 .4 57 .8 55 .7 56 54 .9 57 .6 56 

22 55 .2 54 .6 58 .1 55 .5 56 .2 54 .9 57 .8 56 .2 56 .6 56 57 .8 56 .7 

26 55 .1 53 .1 58 .1 55 .2 56 .8 56 .5 58 .6 57 55 .4 54 .1 57 .8 55 .6 

31 57 .5 57 .3 58 .1 57 .5 56 .2 54 .4 59 .2 56 .4 55 .7 54 .1 57 .3 55 .7 

34 56 .2 56 57 .3 56 .4 56 53 .8 58 .1 56 55 .5 54 .4 56 .8 55 .5 

37 55 54 .4 57 55 .2 56 .3 54 .1 57 .8 56 .2 55 .7 53 .1 57 .3 57 .6 

40 56 .2 56 .2 56 .2 56 .2 56 54 .1 57 .8 56 55 .8 59 .2 57 .6 56 .6 

60 57 .5 54 .1 58 .1 57 .1 56 .5 54 .4 57 .3 56 .3 57 .4 54 .9 58 .4 57 .1 

Table 4 

The paired t -test results used for the comparison of dif- 

ferent classification models with respect to the PCA s. 

Null hypothesis Alternative hypothesis P -value 

μPCA = μFRPCA μPCA � = μFRPCA 0 .2989 

μPCA = μKPCA μPCA � = μKPCA 0 .8163 

μFRPCA = μKPCA μFRPCA � = μKPCA 0 .4727 

μPCA = μFRPCA μPCA > μFRPCA 0 .8505 

μPCA = μKPCA μPCA > μKPCA 0 .5918 

μFRPCA = μKPCA μFRPCA > μKPCA 0 .2363 
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an be achieved in much higher dimensional data spaces. This

henomenon may be interpreted by considering Table 1 . From

olumn 2 of Table 1 we see that the first (and the largest) prin-

ipal component of the entire cleaned data set can explain 93.08%

ariation of the data, such that there is not much space left for

mprovement for the remaining 59 smaller principal components. 

. Trading simulation 

After using the ANN s to predict the daily SPY direction, it

s natural to carry out a trading simulation to see if the higher

redictability implies higher profitability. Given that this research

tudy is based on predicting the direction of S&P 500 ETF (SPY)

aily returns, we modified the trading strategy for classification

odels defined by Enke and Thawornwong (2005) as follows: 

If U P t+1 = 1 , fully invest in stocks or maintain, and receive the

ctual stock return for the day t + 1 (i.e., SP Y t+1 ); if U P t+1 = 0 ,

ully invest in one-month T-bills or maintain, and receive the

ctual one-month T-bill return for the day t + 1 (i.e., T1 H t+1 ) . 

Here UP is the direction of the SPY daily return as predicted by

he models described in this paper. The actual one-month T-bill

eturn for the day t + 1 is: 

 1 H t+1 = 

discount rate 

100 

∗ term 

360 days 

= 

T 1 t+1 

100 

∗ 28 days 

360 days 
= 

T 1 t+1 

100 

∗ 7 

90 

, (22) 

here T 1 t+1 is the one-month T-bill discount rate (or risk-free

ate) in percentage on the secondary market for business day t + 1 .

Specifically, at the beginning of each trading day, the investor

ecides to buy the SPY portfolio or the one-month T-bill according

o the forecasted direction of the SPY daily return. For simplicity, it

s assumed in this paper that the money invested in either a stock

ortfolio or T-bills is illiquid and detained in each asset during

he entire trading day. Dividends and transaction costs are also
 a  
ot considered. Moreover, both leveraging and short selling when

nvesting are forbidden. The two benchmarks used to measure

ow well the models can perform include investing in a stock

ortfolio (i.e., buy-and-hold) and purchasing a one-month T-bill at

he start of the testing period, and closing the trading at the end

f the testing period. The trading simulation is done for all the

lassification models over each testing period, including 376 sam-

les (excluding the first day of the 377-day testing period because

f the lack of direction prediction for that day) of the thirty-six

ransformed data sets corresponding to the number of principal

omponents involved. The resulting mean, standard deviation or

olatility, and Sharpe ratio of the daily returns on investment

enerated from each forecasting model over each testing data are

hen calculated. The results are presented in Table 5 . In addition

o the trading simulation results of the three models for each of

he twelve principals components, the 376-day return for both the

uy-and-hold and T-bill benchmarks are provided for comparison. 

As shown in Table 5 , the return from the buy-and-hold

enchmark is much higher than one-month T-bill benchmark. By

ultiplying the mean of the daily return column by 376 and then

omparing with the two benchmarks, this comparison indicates

hat: for all thirty-six transformed data sets, the trading strategies

ased on the classification models generate higher returns than

he one-month T-bill benchmark; the trading strategies based

n the ANN s combining PCA generate higher returns than the

uy-and-hold benchmark except for three data sets (PCs = 3, 22,

nd 31) where the returns are slightly less than the buy-and-hold

enchmark; the returns from the trading strategies based on the

NN s combining FRPCA generate higher returns than the buy-and-

old benchmark except for four data sets (PCs = 1, 3, 10, and 60);

nd the returns from the trading strategies based on the ANN s

ombining KPCA generate higher returns than the buy-and-hold

enchmark except for six data sets (PCs = 1, 3, 6, 26, 31, and 34).

ix paired t -tests are carried out to make a comparison of the

ean of daily return from three different model combinations.

he results are given in Table 6. 

Since all the P -values are greater than 0.05, there is no sig-

ificant difference among the mean of daily returns generated by

he models involving PCA, FRPCA , and KPCA given the thirty-six

ransformed natural data sets. However, with more careful obser-

ation of the P -values listed in Table 6 , it seems that on average

CA performs slightly better than FRPCA and KPCA , while FRPCA

erforms slightly better than KPCA . 

The Sharpe ratio is calculated by dividing the mean daily

eturn by the standard deviation of the daily returns. The higher

he Sharpe ratio, the higher the return and the lower the standard

eviation or volatility, the better the trading strategy. Therefore,

nother six paired t -tests over the Sharpe ratio are performed to
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Table 5 

Trading simulation results. 

Benchmarks 376-Day return 

Buy-and-hold 3.08E-01 

T-bill 3.89E-04 

PCs Models Mean of daily return Std. of daily return Sharpe ratio PCs Models Mean of daily return Std. of daily return Sharpe ratio 

1 PCA 8.40E-04 0 .0079 0 .1011 26 PCA 8.24E-04 0 .0077 0 .1069 

FRPCA 7.93E-04 0 .0079 0 .1006 FRPCA 8.81E-04 0 .0077 0 .1149 

KPCA 7.93E-04 0 .0079 0 .1006 KPCA 7.52E-04 0 .0075 0 .1008 

3 PCA 7.97E-04 0 .0079 0 .1012 31 PCA 8.02E-04 0 .0077 0 .1036 

FRPCA 7.88E-04 0 .0079 0 .1 FRPCA 8.56E-04 0 .0078 0 .1097 

KPCA 7.93E-04 0 .0079 0 .1006 KPCA 7.95E-04 0 .0078 0 .1019 

6 PCA 8.47E-04 0 .0078 0 .1086 34 PCA 8.61E-04 0 .007 0 .1235 

FRPCA 9.75E-04 0 .0069 0 .141 FRPCA 9.00E-04 0 .0077 0 .1173 

KPCA 7.93E-04 0 .0079 0 .1006 KPCA 7.83E-04 0 .0079 0 .0994 

10 PCA 8.37E-04 0 .0077 0 .1084 37 PCA 8.41E-04 0 .0074 0 .1134 

FRPCA 8.00E-04 0 .0073 0 .1099 FRPCA 8.89E-04 0 .0077 0 .1152 

KPCA 9.04E-04 0 .0077 0 .118 KPCA 8.27E-04 0 .0078 0 .1055 

15 PCA 8.21E-04 0 .0079 0 .1045 40 PCA 9.61E-04 0 .0071 0 .1357 

FRPCA 8.53E-04 0 .0077 0 .1111 FRPCA 8.97E-04 0 .0078 0 .1157 

KPCA 8.78E-04 0 .0073 0 .1196 KPCA 0 .001 0 .007 0 .1478 

22 PCA 8.07E-04 0 .0076 0 .1067 60 PCA 9.21E-04 0 .0073 0 .1264 

FRPCA 9.59E-04 0 .0076 0 .1269 FRPCA 8.00E-04 0 .0079 0 .1016 

KPCA 8.63E-04 0 .0077 0 .1122 KPCA 8.88E-04 0 .0077 0 .1177 

Table 6 

The paired t -test results used for the comparison of dif- 

ferent models with respect to mean of daily return. 

Null hypothesis Alternative hypothesis P -value 

μPCA = μFRPCA μPCA � = μFRPCA 0 .4139 

μPCA = μKPCA μPCA � = μKPCA 0 .6256 

μFRPCA = μKPCA μFRPCA � = μKPCA 0 .3538 

μPCA = μFRPCA μPCA > μFRPCA 0 .7931 

μPCA = μKPCA μPCA > μKPCA 0 .3128 

μFRPCA = μKPCA μFRPCA > μKPCA 0 .1769 

Table 7 

The paired t -test results used for the comparison of dif- 

ferent classification models with respect to Sharpe ratio. 

Null hypothesis Alternative hypothesis P -value 

μPCA = μFRPCA μPCA � = μFRPCA 0 .6633 

μPCA = μKPCA μPCA � = μKPCA 0 .6924 

μFRPCA = μKPCA μFRPCA � = μKPCA 0 .5561 

μPCA = μFRPCA μPCA > μFRPCA 0 .6684 

μPCA = μKPCA μPCA > μKPCA 0 .3462 

μFRPCA = μKPCA μFRPCA > μKPCA 0 .2781 
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compare the three dimensionality reduction technique-relevant

forecasting models. The results are listed in Table 7. 

The same pattern of P -values can be detected from Table 7 as

Table 6 . Thus, there is no significant difference among the trading

strategies generated from three different model combinations,

although it seems that PCA -relevant strategies perform insignif-

icantly better than the other two, and FRPCA-relevant strategies

perform a bit better than the KPCA case. This is consistent with

the conclusion drawn from Table 6 . That is, among the three

dimensionality reduction methods, the classification model that

is based on PCA gives slightly better trading strategy performance

with respect to mean of daily return and Sharpe ratio over the

thirty-six transformed data sets. 

In order to make a statistically meaningful comparison between

the returns from the ANN - PCA -based trading strategies and the

return from the buy-and-hold benchmark, a t -test is conducted

at the significance level of 0.05. Dividing the 376-day return from

buy-and-hold benchmark by 376 gives 0.0 0 0 819. Therefore, we
efine the test as 

H 0 : μANN = 0 . 0 0 0 819 ;
H a : μANN > 0 . 0 0 0 819 . 

Under H 0 , the value of the t -test statistic T is 
x̄ ANN −0 . 0 0 0 819 

s ANN / 
√ 

12 
,

here x̄ ANN is the sample average of the ANN mean daily returns

rom the twelve testing data sets or testing periods and s ANN is the

ample standard deviation of the twelve mean daily returns, which

quals 1.9586. Then, the P -value = P (T > 1 . 9586) , where T ∼ t 11

iven H 0 is true. Using the t -table or online distribution calculator,

he P -value = 0.038. Since the P -value is smaller than 0.05, we

eject the null hypothesis and conclude that the ANN - PCA -based

rading strategies generate significantly higher (mean) daily return

han the benchmark buy-and-hold passive trading strategy. 

. Conclusion 

For this research a comprehensive and efficient daily direction

f the stock market return forecasting process is presented. The

rocess starts with data cleaning and data preprocessing, and con-

ludes with an analysis of forecasting and simulation results. Often,

esearchers look to apply the simplest set of algorithms to the least

mount of data with both the most accurate forecasting results and

he highest risk-adjusted profits. To achieve this goal, three dimen-

ionality reduction techniques, including PCA, FRPCA , and KPCA are

ntroduced and applied to the natural data set involving 60 finan-

ial and economic features before the ANN classification procedure.

In summary, the mining process using the ANN - PCA models

ives slightly higher prediction accuracy for the daily direction of

PY for next day compared to the mining process involving FRPCA

nd KPCA . Moreover, the trading strategies based on the ANN - PCA

odels gain significantly higher risk-adjusted profits than the

omparison benchmarks, and slightly higher than those strate-

ies guided by the forecasts based on FRPCA and KPCA -relevant

odels. All classification models-based trading strategies generate

igher returns than the benchmark one-month T-bill strategy. As

eveloped, tested, and discussed, analysis has shown that data

ollection and preprocessing is critical and can help improve the

erformance of many techniques, such as PCA and ANN , while

ecreasing the complexity of the mining procedure and achieving

easonable accuracy and high risk-adjusted profits.  
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In this study, a natural data set is collected and analyzed. The

NN classifiers combing PCA are recognized as the simplest, but

elatively more accurate procedure. The trading strategies based

n this procedure generate slightly higher risk-adjusted profits

han the ones based on combing the ANN s with either FRPCA
Table A1 

The 60 financial and economic features of the raw data. 

Group Name Description 

Date_SPY trading dates considered 

Close_SPY closing prices of SPY on the trading d

SPY return in current and 

three previous days 

SPYt The return of the SPDR S&P 500 ETF 

SPYt1 The return of the SPY in day t-1. 

SPYt2 The return of the SPY in day t-2. 

SPYt3 The return of the SPY in day t-3. 

Relative difference in 

percentage of the SPY 

return 

RDP5 The 5-day relative difference in perce

RDP10 The 10-day relative difference in perc

RDP15 The 15-day relative difference in perc

RDP20 The 20-day relative difference in perc

SPY. 

Exponential moving averages 

of the SPY return 

EMA10 The 10-day exponential moving avera

EMA20 The 20-day exponential moving avera

EMA50 The 50-day exponential moving avera

EMA200 The 200-day exponential moving ave

T-bill rates (day t) T1 1-month T-bill rate (in percentage), s

business days, discount basis. 

T3 3-month T-bill rate, secondary marke

discount basis. 

T6 6-month T-bill rate, secondary marke

discount basis. 

T60 5-year T-bill constant maturity rate, s

business days. 

T120 10-year T-bill constant maturity rate,

market, business days. 

Certificate of deposit rates 

(day t) 

CD1 Average rate on 1-month neogtiable 

deposit (secondary market), quoted

investment basis. 

CD3 Average rate on 3-month neogtiable 

deposit (secondary market), quoted

investment basis. 

CD6 Average rate on 6-month neogtiable 

deposit (secondary market), quoted

investment basis. 

Financial and economical 

indicators (day t) 

Oil Relative change in the price of the cr

OK WTI Spot Price FOB (dollars pe

Gold Relative change in the gold price 

CTB3M Change in the market yield on US Tre

at 3-month constant maturity, quo

basis. 
r KPCA. Nonetheless, the selection of a proper kernel function

s important for the performance of KPCA . In the future, a more

elicate selection of the kernel functions and the relevant kernel

arameters are suggested. 

ppendix 

 

Source/Calculation 

finance.yahoo.com 

ays finance.yahoo.com 

(SPY) in day t. finance.yahoo.com / (p(t) - p(t-1))/p(t-1) 

finance.yahoo.com / (p(t-1) - p(t-2))/p(t-2) 

finance.yahoo.com / (p(t-2) - p(t-3))/p(t-3) 

finance.yahoo.com / (p(t-3) - p(t-4))/p(t-4) 

ntage of the SPY. (p(t) - p(t-5))/p(t-5) ∗ 100 

entage of the SPY. (p(t) - p(t-10))/p(t-10) ∗ 100 

entage of the SPY. (p(t) - p(t-15))/p(t-15) ∗ 100 

entage of the (p(t) - p(t-20))/p(t-20) ∗ 100 

ge of the SPY. p(t) ∗(2/(10 + 1)) + EMA10 (t-1) ∗(1-2/(10 + 1)) 

ge of the SPY. p(t) ∗(2/(20 + 1)) + EMA20 (t-1) ∗(1-2/(20 + 1)) 

ge of the SPY. p(t) ∗(2/(50 + 1)) + EMA50 (t-1) ∗(1-2/(50 + 1)) 

rage of the SPY. p(t) ∗(2/(200 + 1)) + EMA200 (t-1) ∗(1-2/(200 + 1)) 

econdary market, H. 15 Release - Federal Reserve Board of Governors ( https: 

//research.stlouisfed.org/fred2/series/DGS5/downloaddata ) 

t, business days, H. 15 Release - Federal Reserve Board of Governors ( https: 

//research.stlouisfed.org/fred2/series/DGS5/downloaddata ) 

t, business days, H. 15 Release - Federal Reserve Board of Governors ( https: 

//research.stlouisfed.org/fred2/series/DGS5/downloaddata ) 

econdary market, H. 15 Release - Federal Reserve Board of Governors ( https: 

//research.stlouisfed.org/fred2/series/DGS5/downloaddata ) 

 secondary H. 15 Release - Federal Reserve Board of Governors 

( https://research.stlouisfed.org/fred2/series/DGS10?catbc= 

1&utm _ expid=19978471-Srcl7QpGidAURO4vg _ Q. 

1&utm _ referrer=https%3A%2F%2Fresearch.stlouisfed.org% 

2Ffred2%2Frelease%3Frid%3D18 ) 

certificates of 

 on an 

H. 15 Release - Federal Reserve Board of Governors 

certificates of 

 on an 

H. 15 Release - Federal Reserve Board of Governors 

certificates of 

 on an 

H. 15 Release - Federal Reserve Board of Governors 

ude oil (Cushing, 

r barrel)). 

Energy Inormation Administration, 

http://tonto.eia.doe.gov/dnav/pet/hist/rwtcd.htm (work on 

cleaning the price column first using the SPY dates as 

control, then calculate the relative change) 

usagold.com (use Firefox to Select All, then copy and paste to 

an Excel file) (the dates used by USAGOLD are not matching 

with the SPY prices from yahoo.finance. For example, after 

06/09/2004. We still clean/estimate/delete the gold prices 

based on the dates of SPY prices from finance.yahoo.com . 

Use the same procedure in the whole data set: Take the 

average of the two closest data with the missing one in the 

middle. Then delete the mismatching one, and calculate the 

relatvie difference as before. Another example, the data in 

2011, all Friday’s prices were recorded as Sunday’s prices, so 

we estimated Friday’s prices with the average of Thursday 

and Sunday’s prices. Then deleted Sunday’s prices. If there 

are n continuous values missing, then take the average of 

the n available values on each side of these n missing values, 

use the average for all n missing values) 

asury securities 

ted on investment 

H. 15 Release - Federal Reserve Board of Governors 

( continued on next page )  

http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com
https://research.stlouisfed.org/fred2/series/DGS5/downloaddata
https://research.stlouisfed.org/fred2/series/DGS5/downloaddata
https://research.stlouisfed.org/fred2/series/DGS5/downloaddata
https://research.stlouisfed.org/fred2/series/DGS5/downloaddata
https://research.stlouisfed.org/fred2/series/DGS10?catbc=1&utm_expid=19978471-Srcl7QpGidAURO4vg_Q.1&utm_referrer=https%3A%2F%2Fresearch.stlouisfed.org%2Ffred2%2Frelease%3Frid%3D18
http://tonto.eia.doe.gov/dnav/pet/hist/rwtcd.htm
http://finance.yahoo.com
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Table A1 ( continued ) 

Group Name Description Source/Calculation 

CTB6M Change in the market yield on US Treasury securities 

at 6-month constant maturity, quoted on investment 

basis. 

H. 15 Release - Federal Reserve Board of Governors 

CTB1Y Change in the market yield on US Treasury securities 

at 1-year constant maturity, quoted on investment 

basis. 

H. 15 Release - Federal Reserve Board of Governors 

CTB5Y Change in the market yield on US Treasury securities 

at 5-year constant maturity, quoted on investment 

basis. 

H. 15 Release - Federal Reserve Board of Governors 

CTB10Y Change in the market yield on US Treasury securities 

at 10-year constant maturity, quoted on investment 

basis. 

H. 15 Release - Federal Reserve Board of Governors 

AAA Change in the Moody’s yield on seasoned corporate 

bonds - all industries, Aaa. 

H. 15 Release - Federal Reserve Board of Governors 

BAA Change in the Moody’s yield on seasoned corporate 

bonds - all industries, Baa. 

H. 15 Release - Federal Reserve Board of Governors 

The term and default spreads TE1 Term spread between T120 and T1. TE1 = T120 - T1 

TE2 Term spread between T120 and T3. TE2 = T120 - T3 

TE3 Term spread between T120 and T6. TE3 = T120 - T6 

TE5 Term spread between T3 and T1. TE5 = T3 - T1 

TE6 Term spread between T6 and T1. TE6 = T6 - T1 

DE1 Default spread between BAA and AAA. DE1 = BAA - AAA 

DE2 Default spread between BAA and T120. DE2 = BAA - T120 

DE4 Default spread between BAA and T6. DE4 = BAA - T6 

DE5 Default spread between BAA and T3. DE5 = BAA - T3 

DE6 Default spread between BAA and T1. DE6 = BAA - T1 

DE7 Default spread between CD6 and T6. DE7 = CD6 - T6 

Exchange rate between USD 

and four other currencies 

(day t) 

USD_Y Relative change in the exchange rate between US 

dollar and Japanese yen. 

http://www.investing.com/currencies/usd-jpy-historical-data 

USD_GBP Relative change in the exchange rate between US 

dollar and British pound. 

http://www.investing.com/currencies/gbp- usd- historical- data 

(then, take the opposites to the changes) 

USD_CAD Relative change in the exchange rate between US 

dollar and Canadian dollar. 

http://www.investing.com/currencies/usd- cad- historical- data 

USD_CNY Relative change in the exchange rate between US 

dollar and Chinese Yuan (Renminbi). 

http://www.investing.com/currencies/usd-cny-historical-data 

The return of the other seven 

world major indices (day t) 

HSI Hang Seng index return. finance.yahoo.com 

SSE Composite Shang Hai Stock Exchange Composite index return. finance.yahoo.com 

FCHI CAC 40 index return. finance.yahoo.com 

FTSE FTSE 100 index return. finance.yahoo.com 

GDAXI DAX index return. finance.yahoo.com 

DJI Dow Jones Industrial Average index return. finance.yahoo.com (no download function for this one); 

measuringworth.com/datasets/DJA/result.php 

IXIC NASDAQ Composite index return. finance.yahoo.com 

SPY trading volume (day t) V Relative change in the trading volume of S&P 500 

index (SPY) 

finance.yahoo.com 

The return of the eight big 

companies in S&P 500 (day 

t) 

AAPL Apple Inc stock return. finance.yahoo.com 

MSFT Microsoft stock return. finance.yahoo.com 

XOM Exxon Mobil stock return. finance.yahoo.com 

GE General Electric stock return. finance.yahoo.com 

JNJ Johnson and Johnson stock return. finance.yahoo.com 

WFC Wells Fargo stock return. finance.yahoo.com 

AMZN Amazon.com Inc stock return. finance.yahoo.com 

JPM JPMorgan Chase & Co stock return. finance.yahoo.com 
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