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ABSTRACT

In financial markets, it is both important and challenging to forecast the daily direction of the stock mar-
ket return. Among the few studies that focus on predicting daily stock market returns, the data mining
procedures utilized are either incomplete or inefficient, especially when a large amount of features are
involved. This paper presents a complete and efficient data mining process to forecast the daily direction
of the S&P 500 Index ETF (SPY) return based on 60 financial and economic features. Three mature di-
mensionality reduction techniques, including principal component analysis (PCA), fuzzy robust principal
component analysis (FRPCA), and kernel-based principal component analysis (KPCA) are applied to the
whole data set to simplify and rearrange the original data structure. Corresponding to different levels of
the dimensionality reduction, twelve new data sets are generated from the entire cleaned data using each
of the three different dimensionality reduction methods. Artificial neural networks (ANNs) are then used
with the thirty-six transformed data sets for classification to forecast the daily direction of future market
returns. Moreover, the three different dimensionality reduction methods are compared with respect to
the natural data set. A group of hypothesis tests are then performed over the classification and simula-
tion results to show that combining the ANNs with the PCA gives slightly higher classification accuracy
than the other two combinations, and that the trading strategies guided by the comprehensive classifi-
cation mining procedures based on PCA and ANNs gain significantly higher risk-adjusted profits than the
comparison benchmarks, while also being slightly higher than those strategies guided by the forecasts
based on the FRPCA and KPCA models.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and methodology

(Enke & Thawornwong, 2005; Wang, Wang, Zhang, & Guo, 2011).
Each of these factors interacts in a very complex manner Yao, Tan,

Analyzing stock market movements is extremely challenging
for both investors and researchers. This is mainly due to the stock
market essentially being a dynamic, nonlinear, nonstationary,
nonparametric, noisy, and chaotic system (Deboeck, 1994; Yaser
& Atiya, 1996). In fact, stock markets are affected by many highly
interrelated factors. These factors include: 1) economic variables,
such as interest rates, exchange rates, monetary growth rates,
commodity prices, and general economic conditions; 2) industry
specific variables, such as growth rates of industrial production and
consumer prices; 3) company specific variables, such as changes
in company policies, income statements, and dividend yields; 4)
psychological variables of investors, such as investors’ expectations
and institutional investors’ choices; and 5) political variables, such
as the occurrence and the release of important political events
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& Poh, 1999. Above all, the efficient market hypothesis states that
current stock values reflect all available information in the market
at that moment, and that the public cannot make successful trades
based on that information, further adding to the difficulty of
understanding and predicting stock market movements.

However, it is believed by some researchers that the markets
are inefficient, in part due to psychological factors of the various
market participants, along with the inability of the markets to
immediately respond to newly released information (Jensen, 1978).
Financial variables, such as stock prices, stock market index values,
and the prices of financial derivatives are therefore thought to be
predictable. This allows one to gain a return above the market
average by examining information released to the general public,
with results that are better than random (Lo & MacKinlay, 1988).
For decades, investors and researchers have been attracted to try
and make significant profit due to potential market inefficiencies
by improving trading strategies based on increasingly accurate
forecast of financial variables.
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There exist different categorizations among previous stock
market forecasting technologies. For instance, given the number of
input variables, financial time series forecasting can be classified
as either univariate or multivariate analysis. In univariate analysis,
only the financial time series itself is considered as the input,
while in multivariate analysis the input variables can be a lagged
time series, or another type of data, such as a technical, funda-
mental, or inter-market indicator. With regard to the techniques
used to analyze the stock markets, both statistical and artificial
intelligence methods have been explored. One group of statisti-
cal approaches are based on the autoregressive moving average
(ARMA), the autoregressive integrated moving average (ARIMA), the
generalized autoregressive conditional heteroskedastic (GARCH)
volatility (Franses & Ghijsels, 1999), and the smooth transition
autoregressive model (STAR) (Sarantis, 2001). These statistical
techniques also fall into the category of univariate analysis since
they use the financial time series itself, as well as a lagged time
series as input variables. Other types of statistical approaches of-
ten employed include linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), linear regression (LR), and support
vector machines (SVM), each of which usually includes multiple
input variables. With the assumptions of linearity, stationarity, and
normality, most of the statistical analysis methods listed above
have been restricted within the area of financial forecasting. On
the contrary, artificial intelligence models, such as artificial neural
networks (ANNs), fuzzy systems, and genetic algorithms are driven
by multivariate data with no required assumptions. Many of these
methodologies have been applied to forecast financial variables.
For instance, see Armano, Marchesi, and Murru (2005), Cao and
Tay (2001), Chen, Leung, and Daouk (2003), Chun and Kim (2004),
Thawornwong and Enke (2004), Enke and Thawornwong (2005),
Hansen and Nelson (2002), Kim and Han (2000), Shen and Loh
(2004), Ture and Kurt (2006), Vellido, Lisboa, and Meehan (1999),
Wang (2002), and Zhang (2003). A comprehensive review of
these studies can be found in Atsalakis and Valavanis (2009) and
Vanstone and Finnie (2009). Often, the developed price forecasting
and stock market timing systems are used in conjunction with
trading rules to develop an intelligent, autonomous, and/or adap-
tive decision support system. For instance, see Barak, Dahooie,
and Tichy (2015), Cervell6-Royo, Guijarro, and Michniuk (2015),
Chen and Chen (2016), Chiang, Enke, Wu, and Wang (2016), Chour-
mouziadis and Chatzoglou (2016), Enke and Mehdiyev (2013),
Jaisinghani (2016), Kim and Enke (2016), Monfared and Enke
(2014), and Thawornwong, Enke, and Dagli (2001).

With nonlinear, data-driven, and easy-to-generalize char-
acteristics, multivariate analysis through the use of ANNs has
become a dominant and popular analysis tool in finance and
economics. Refenes, Burgess, and Bentz (1997) and Zhang, Patuwo,
and Hu (1998) provide a review of using ANNs as a forecasting
method in different areas of finance and investing, including
financial engineering. Although ANNs seem to be suited for
financial time series forecasting, they have some limitations.
Saad, Prokhorov, and Wunsch (1998) question the robustness of
ANN results. Hussain, Knowles, Lisboa, and El-Deredy (2007) and
Lam (2004) also state that it is crucial for the ANNs to achieve
accurate results with a deliberate selection of the input variables
and an optimal combination of the network parameters, including
the learning rate, momentum, number of hidden layers, and
number of nodes in each layer. Atsalakis and Valavanis (2009),
Cao, Leggio, and Schniederjans (2005), and Thawornwong and
Enke (2004) demonstrate that designing an ANN with the least
complexity and the most relevant and influential input variables
can improve the efficiency and accuracy of financial time series
forecast. As mentioned earlier, stock markets are affected by
various factors, many of which are utilized as possible input
variables during the development of a stock market forecasting

system. Thus, it is necessary to choose the most influential and
representative inputs if an ANN is expected to produce an efficient
and accurate prediction. This type of selection is the main task of
dimensionality reduction technology.

Strictly speaking, the dimensionality reduction can be per-
formed in two different ways: either by selecting the most relevant
variables from the original data set (usually called as feature selec-
tion) or by generating a smaller group of new variables, each being
a certain combination of the older input variables. Researchers
in Statistics, Computer Science and Applied Mathematics have
worked in this field for many years and developed a variety of
linear and nonlinear dimensionality reduction techniques. Van der
Maaten, Postma, and Van den Herik (2009) present a review and
systematic comparison of these techniques. Sorzano, Vargas, and
Pascual-Montano (2014) also categorize the plethora of dimension
reduction techniques with the mathematical insight behind them.

Principal component analysis (PCA) is the most classical and
well-known statistical method for extracting important features
from high-dimensional data space. This methodology dates back to
Pearson (1901), and is based on the idea of defining a new co-
ordinate system or space where the raw data can be expressed
in terms of many less variables without a significant loss of in-
formation. Nonetheless, there are some concerns that this lin-
ear technique cannot adequately handle complex nonlinear data.
Therefore, a number of nonlinear techniques, including kernel-
based principal component analysis (KPCA), have been proposed.
KPCA is a kernel-based dimensionality reduction method that has
a broad application in pattern recognition and machine learning.
The KPCA method gained more interest after SVM was introduced
by Vapnik (1998). Van der Maaten, Postma, and Van den Herik
(2009) compare PCA with twelve front-ranked nonlinear dimen-
sionality reduction techniques, such as Multidimensional Scaling,
[somap, Maximum Variance Unfolding, KPCA, Diffusion Maps, Mul-
tilayer Autoencoders, Locally Linear Embedding, Laplacian Eigen-
maps, Hessian LLE, Local Tangent Space Analysis, Locally Linear Co-
ordination, and Manifold Charting by performing each on artifi-
cial and natural tasks. The results show that although nonlinear
techniques do well on selected artificial data, none of them out-
performs the traditional PCA using real-world data. However, they
also point out that the selection of a proper kernel function is im-
portant for the performance of KPCA. In general, the model se-
lection in kernel methods, including the specification of relevant
parameters, can lead to high computational costs. Consistently,
Sorzano et al. (2014) state that among the available dimensionality
reduction techniques, PCA and its different versions, such as stan-
dard PCA, robust PCA, sparse PCA, and KPCA are still the preferred
techniques given their simplicity and intuitiveness. Moreover,
Van der Maaten, Postma, and Van den Herik (2009) demonstrate
the four main weaknesses of the popular dimensionality reduction
techniques, including: (1) the susceptibility to the curse of dimen-
sionality, (2) the problems in finding the smallest eigenvalues in
an eigenproblem, (3) overfitting, and (4) the presence of outliers.

It is known that many well-accepted techniques are sensitive
to noisy data, especially outliers in the data. The quality and
performance of such techniques can be significantly affected by
missing values and outliers, not to mention incorrect data and
mismatches that possibly exist in the data collected from different
sources. Properly handling outliers can improve the robustness and
accuracy of the dimensionality reduction results and help keep any
subsequent classifier from spending too much time trying to find
an effective solution. Moreover, if the number of outliers is large,
the data cannot be normal or symmetric based on the empirical
principle of normality, further reducing classification accuracy
for some techniques. Thus, in order to perform an efficient and
reliable analysis with reasonably accurate results, it is necessary
to conduct a careful data preprocessing at the beginning of any
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data mining procedure. Yet, data preprocessing can be very time
consuming and somewhat tedious depending on the specific cases.
It is not unusual to spend 60-90% of the modeling and testing
on cleaning and preprocessing the raw data. Atsalakis and Vala-
vanis (2009) summarize that among the studies of stock market
forecasting, some researchers simply preprocess the data by using
a logarithmic data transformation or standardization of the raw
data, while others do not preprocess the data or give any further
details about cleaning the data. There are some techniques from
other fields aimed to alleviate and solve this issue. For example,
robustness theory is developed for solving problems subject to
model perturbation or added noise or outliers; and the theory of
fuzzy set proposed by Zadeh (1965) can reduce the effect of out-
liers or noises when applied to data sets with unmodeled charac-
teristics by assigning a fuzzy membership to each input data point
such that different input points can make different contributions
to the analyzing process. For almost four decades, statisticians
have investigated the robust algorithm of principal component
analysis. One outstanding idea is proposed by Xu and Yuille (1995).
They adapt the statistical physics approach to define an objective
function with the consideration of outliers, and then generalize
several commonly used PCA self-organizing rules into robust ver-
sions. They demonstrate that their method can resist outliers very
well. However, it is difficult to choose a hard threshold in their
approach. Yang and Wang (1999) extend Xu and Yuille’s method
by defining a fuzzy objective function and using gradient descent
optimization. Their robust principal component analysis algorithm,
FRPCA, only needs to preset one parameter, the fuzziness variable,
which determines the influences of outliers on the results. They
developed their algorithm in three different ways based on updat-
ing the weights of the data points differently and called them FR-
PCA1, FRPCA2, and FRPCA3. Luukka (2011) develops a nonlinear ver-
sion of the FRPCA3 algorithm and claims that with outlier removal
his algorithm brings promising results in the study of medical
data sets.

Data mining, or big data analytics, is focused on analyzing
large amounts of data efficiently and extracting important, useful,
and hidden information from the data by combining various
techniques in different areas, such as pattern recognition, decision
making, expert systems, knowledge database discovery, artifi-
cial intelligence, and statistics. The main types of data mining
include classification mining, cluster mining, association rule
mining, text mining, and image mining. Zhong (2000, 2004) and
Zhong, Ma, Yu, and Zhang (2001) demonstrate classification and
cluster mining in more detail. In general, stock market or financial
time series forecasting is focused on developing approaches to
successfully forecast or predict index values or stock prices so
that the investors can gain high profits using well-defined trad-
ing strategies according to the forecasting results. Atsalakis and
Valavanis (2009) state that the key to successful stock market
forecasting is achieving the best results with both the minimum
required input data and the least complex stock market model.
Therefore, it is natural to connect data mining with stock market
forecasting in order to mine historical data from stock markets to
help define better trading strategies. Given the technical challenges
and significant potential profits, many researchers find it worth-
while to seek a comprehensive data mining procedure that can
produce accurate, consistent, and reliable forecasting results with
potential profits. Since a stock market index contains numerous
individual stocks and reflects the broader market movement rather
than movement of any individual stock, forecasting stock market
indices has attracted the attention of many researchers. Some of
the studies target monthly data. For example, Thawornwong and
Enke (2004), Enke and Thawornwong (2005) and Leung, Daouk,
and Chen (2000) forecast the S&P 500 index using monthly data,
whereas Wang et al. (2011) analyze historical monthly data to pre-

dict the Shanghai Composite index. Other researchers have studied
daily data. For example, Guresen, Kayakutlu, and Daim (2011) ex-
plore daily data of NASDAQ Stock Exchange index, Kara, Boyacioglu,
and Baykan (2011) attempt to predict the direction of movement
in the daily Istanbul Stock Exchange (ISE) National 100 Index,
O’Connor and Madden (2006) predict the daily movements in the
Dow Jones Industrial Average index, while Zhu, Wang, Xu, and
Li (2008) use daily data to forecast NASDAQ, DJIA, and STI indices. A
few research groups, such as Armano, Marchesi, and Murru (2005),
Cao and Tay (2001), and Niaki and Hoseinzade (2013) work on pre-
dicting daily movements of the S&P 500 index. Both Thawornwong
and Enke (2004) and Leung et al. (2000) conclude that trading
strategies guided by classification models generate higher risk-
adjusted profits compared to the benchmark buy-and-hold strategy
and those strategies directed by level-estimation based forecasts.

In this paper, the daily direction of SPDR S&P 500 ETF (ticker
symbol: SPY) is forecasted using a deliberately designed classi-
fication mining procedure. This will begin by preprocessing the
raw data to deal with missing values, outliers, and mismatched
samples. Three versions of PCA are applied next to the cleaned
and complete data in order to select the most influential and
uncorrelated variables for classification. ANNs acting as classifiers
are then used with the transformed data sets to forecast the
direction of future market returns.

The remainder of the paper is organized as follows. The data
description and preprocessing will be discussed next in Section 2,
while three different dimensionality reduction techniques will be
introduced in Section 3. The proposed classifiers will be briefly
reviewed in Section 4, and the data analysis and model develop-
ment will be illustrated in Section 5. The modeling results will be
summarized in Section 6, with the simulation process described
in Section 7. Concluding remarks are presented in Section 8. The
data sources and descriptions are included in the Appendix.

2. Data description and preprocessing
2.1. Data description

The data set utilized for this study involves the daily direction
(UP or DOWN) of the closing price of the SPDR S&P 500 ETF
(ticker: SPY) as the output, along with 60 financial and economic
factors as the potential features. These daily data are collected
from 2518 trading days between June 1, 2003 and May 31, 2013.
The 60 potential features can be divided into 10 groups, including
the SPY return for the current day and three previous days, the
relative difference in percentage of the SPY return, exponential
moving averages of the SPY return, Treasury bill (T-bill) rates,
certificate of deposit rates, financial and economic indicators, the
term and default spreads, exchange rates between the USD and
four other currencies, the return of seven world major indices
(other than the S&P 500), SPY trading volume, and the return of
eight large capitalization companies within the S&P 500 (which
is a market cap weighted index and driven by larger capitaliza-
tion companies). Some of these features are being considered
for the first time, while others are a mixture of the features
conducted by various research groups (Armano et al.,, 2005; Cao
& Tay, 2001; Thawornwong and Enke (2004), Enke and Thaworn-
wong (2005) and Niaki & Hoseinzade, 2013), as long as their
values were released without a gap of more than five continuous
trading days during the study period. The details of these 60 fi-
nancial and economic factors, including their descriptions, sources,
and calculation formulas are given in Table A1 of the Appendix.
After further analysis, only the most important and influential
principal components among all the linear combinations of the 60
factors determined using PCA, FRPCA, and KPCA will be input into
the classifiers to predict the direction of the SPY for the next day.
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Fig. 1. Histogram of SPY current return (on the left); Histogram of adjusted SPY current return (on the right).

2.2. Data preprocessing

The data used for this study covers 60 factors over 2518 trading
days. As to be expected, for such a large collection of data, there
are missing values, mismatching samples, and outliers existing
in the raw data. Using the 2518 trading days during the 10-year
period as criteria, the collected samples from other days should
be deleted. As for the missing values, if there are n values for
any variable or column that are missing continuously, the average
of the n existing values on both sides of the missing values are
used to fill in the n missing values. A simple statistical principle
is employed to detect the possible outliers (Navidi, 2011). The
possible outliers are then adjusted using a similar method to the
one employed by Cao and Tay (2001). Specifically, for each of the
60 factors or columns in the data, any value beyond the interval
(Q; —1.5%IQR,Q3 +1.5%IQR) is regarded as a possible outlier,
with the factor value replaced by the boundary of the interval
closer to it. Here, Q; and Q3 are the first and third quartile of
all the values in that column, and IQR = Q3 — Q; is the interquar-
tile of those values. The symmetry of all adjusted and cleaned
columns can be checked using histograms or statistical tests. For
example, Fig. 1 includes the histograms of factor SPY; (i.e., the SPY
current daily return), before and after data preprocessing. It can
be observed that the outliers are removed and the symmetry is
achieved after the adjustments.

In this study, the ANNs are used as classifiers. At the start of the
classification mining procedure, the cleaned data are sequentially
partitioned into three parts: training data (the first 70% data),
validation data (the last 15% of the first 85% data), and testing
data (the last 15% data). The reason for having validation data
is to decrease the possibility of overfitting the data, which often
happens in ANN analysis. Additional details about how the data
was used for classification are provided in Section 5.2.

3. Dimensionality reduction using PCA, FRPCA, and KPCA
3.1. PCA

A number of linear or nonlinear techniques have been devel-
oped to embed high-dimensional data into a lower dimensional

space without much loss of the information. Among them, PCA is
the most popular unsupervised linear technique for dimensionality
reduction. Jolliffe (1986) gives an authoritative and accessible
account of this methodology. As one of the earliest multivariate
techniques, PCA is aimed to construct a low-dimensional repre-
sentation of the data while keeping the maximal variance and
covariance structure of the data. In order to achieve this goal, a
linear mapping W that can maximize W'var(X)W, where var(X)
is the variance-covariance matrix of the dataX, is needed. It is
shown that W is formed by the principal eigenvectors ofvar(X).
Thus, PCA turns out to be an eigenproblem var(X)W = AW, where
A represents the eigenvalues of var(X). In addition, it is known that
working on the raw data X instead of standardized data with PCA
tends to give more emphasis to those variables that have higher
variances compared to those variables that have very low vari-
ances, especially if the units at which the variables are measured
are not consistent. In this study, not all variables are measured at
the same units. Thus, PCA is applied to the standardized version
of the cleaned dataX. In other words, the linear mapping Wik is
searched such that

corr(X)W* = A*W*, (1)

where corr(X) is the correlation matrix of the dataX.

That is, suppose the data X has the format X = (X; X, ---Xy),
then corr(X) = p is a M x M matrix where M is the dimensionality
of the data, and the ij" element of the correlation matrix is

O','j
corr(X;, Xj) = pij = 0,0’

where

Ojj = COU(X,', X]), O

= Jvar(X;), o;=,/var(X;), and i, j=1. 2, ...

Essentially, the principal components are the linear com-
binations of all the factors with the coefficients equaling the
elements of the eigenvectors, correspondingly. Different amounts
of principal components can explain different proportions of the
variance-covariance structure of the data. The eigenvalues can
be used to rank the eigenvectors based on how much of the

. Mo (2)

e
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variation of the data is captured by each principal component.
In more detail, let k*:{)\;‘}f‘i denote the eigenvalues of the
correlation matrix corr(X) such that A} =A% =>-..>A;. Also,
let the vectors eiT = (ej1 ep --- ejy) denote the eigenvectors of
corr(X) corresponding to the eigenvalues Af, i=1, 2, ..., M.
It turns out that the elements of these eigenvectors are the
coefficients of the principal components. That is, the principal
components of the standardized data

Z=(Z12, - Zy),

where
Zz;' = (le Loy --- ZNW)# Zyw
K —Hw o g N andw=1. 2. ... M. (3)
Ow
can be written as
M
Yi=) ejZ; i=1.2, ... M. (4)
j=1
Moreover, it is proven that
M M
var(Y;) =Y > eycorr (X X))ey = €] pe; = A7 (5)
k=1 I=1
and
M M
cov(Y;. Y ) =" eycorr(Xy. Xp)ej = ef pe; =0 (6)
k=1 1=1
using the Spectral Decomposition Theorem
M
p=> Aeel (7)
i=1

and the fact that both ele; = Z)}/’: 1 eizj =1 and the different eigen-

vectors are perpendicular to each other such that eiTej = 0. Thus,
the variance of the ith (largest) principal component is equal
to the ith largest eigenvalue, and the principal components are
uncorrelated with one another.

Since the total variation of Z is defined as the trace of the
correlation matrix p, that is, trace(p) = Zf‘il A}, the proportion
of variation explained by the ith principal component is defined
to be Af/trace(p), where i=1, 2, ..., M. The proportion of
variation explained by the first k principal components is defined
to be the sum of the first k eigenvalues divided by trace(p), that
is, YK, Af /M, A; . Theoretically, if the proportion of variation
explained by the first k principal components is large, not much
information is lost by reducing the dimensionality of the data
space from M tok.

Please note that in general the population variance-covariance
matrix var(X)is unknown and we may estimate it by the sample
variance-covariance matrix Ssuch as

1 O . "
s= mg(xv—x)(xv—x)T. 8)

Then estimate the correlation matrix o by estimating
o as S(X;, Xj), o; as /S(Xy), and o; as /S(Xj), where
i, j=1, 2, ..., M. The remaining procedure and the inter-
pretations are the same as described before.

To determine how many and which principal components
should be used as inputs to the classifier, it is necessary to find a
balance among the expected or required forecasting accuracy, the
cost (time and others), and the complexity of the system. That is,
the principle components that are chosen must explain the data
the best while simplifying the data structure as much as possible.
In practice, it is reasonable to consult experts to help determine
the proper balance.

3.2. FRPCAs

Given the data X = {xy,X,....Xp}, Yang and Wang (1999)
propose an optimization function in terms of the data cluster and
a noise cluster:

RE =" (u)™e(x;) +n)_ (1—u)™, 9)
i1 i1

where u; € [0, 1] and m € [1, o). u;is the membership of
x;belonging to the data cluster and (1 —u;) represents the mem-
bership of x;belonging to the noise cluster. m is the fuzziness
variable and the weighting exponent, which determines the influ-
ence of small u; compared to large u;. e(x;) is used to measure the
error or distance between x; and the cluster center, and it can be
one of the following functions:

er1(x) = ||xi — wixw||?, (10)
WTX' 2
ex(x) = ||xf||2—w. (1)

This optimization function actually follows the fuzzy clustering
approach and essentially calculates the weighted sum of distances
between the data and the cluster center, which is equal to 0 in
the data set. If m=1 andu; € {0, 1}, expression (9) becomes the
optimization function proposed by Xu and Yuille (1995).

Since u; € [0, 1] in expression (9) is continuous, the optimiza-
tion difficulty caused by the mixture of discrete and continuous
variables in Xu and Yuille (1995) is avoided. Using the gradient
descent approach, Yang and Wang (1999) derive their robust
algorithms of principal component analysis.

FRPCA1 algorithm

Step 1. Initially set the iteration count t =1, iteration bound
T, learning coefficient «ge (0, 1], soft threshold 7 to a small
positive value and randomly initialize the weight w. There
is no general rule for the setting of m, most papers set
m = 2 for the reason of simplicity.

Step 2. While ¢ is less than T, do Step 3-9.

Step 3. Compute oy = ag(1 —t/T), seti=1and o =0.

Step 4. While i < n, do Step 5-8.

Step 5. Compute y =w'x; , u=yw, v=w'u.

Step 6. Update the weight:

W' =w o () [y —u) + (v — V)X,

where
1 m
Bxi) = ( - ) . (12)
1+ (ex (xp)/m) /™Y
Step 7. Update the temporary count: o = o + e (x;).
Step 8.i=1i+1.

Step 9. Compute n =o/nand t =t + 1.

FRPCA2 algorithm
The same as FRPCA1 except Step 6-7.

Step 6. Update the weight:

w
wre = w o B (x;) (xiy - rrwyz),
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where

1 m
Pl = <1+<ez<xf)/n>”<m‘”> '

Step 7. Update the temporary count: o = o + e5(X;).

FRPCA3 algorithm

The same as FRPCA1 except Step 6-7 and e(x;) below could be
set as eq(x;) or ey(x;).

Step 6. Update the weight:
W = w o arf(x) (xiy — wy?),

where

1 m
P = <1+(e(xf)/n)”‘"’”> '

Step 7. Update the temporary count: 0 = o + e(x;).

The weight updating rule in FRPCA3 is called the one-unit Oja’s
algorithm (Oja, 1985). Based on a weight updating rule for
classical nonlinear PCA, as proposed by Luukka (2011), Oja
(1995) developed a nonlinear version of FRPCA3:

New Nonlinear FRPCA3 algorithm

The same as FRPCA3 except Steps 6-7.

Step 6. Calculate g(y), F = %(g(y)), es3(x;) = x; —wg(y), and
update the weight:

W = W o B (x) (xies () WUF + e3(x)g(y)).
where

1 m
Pl = <1 + (ea(xi)/ﬂ)]/(m_]))

and g(y)is chosen to be a quite sharp sigmoidal like function

g(y) = tanh (10y). (15)
Step 7. Update the temporary count: o = o + e3(x;).

(14)

3.3. KPCA

KPCA is based on the kernel methods through which the data
can almost always be linearly separated and gain independence
in a high enough dimensional space if they cannot be linearly
separated in lower dimensional space. The transformation from
the low dimensional space to the high dimensional space is done
by an appropriate kernel function. The kernel function can be
linear or nonlinear. If it is linear, then there is no difference be-
tween standard PCA and KPCA. In general, KPCA is a reformulation
of linear PCA in a high-dimensional space constructed using a
nonlinear kernel function. This nonlinear extension of PCA can
improve the quality of dimensionality reduction of the data that
have certain types of nonlinearity involved.

Assuming the number of the observations or the instances of
the data X is N, instead of directly calculating the eigenvectors of
the variance-covariance matrix of the data X, KPCA first transforms
the data X into another high-dimensional space generated by the
kernel function k¥ by computing the kernel matrix K of the data
points or vectors x; such as k;; = k(x;,x;), where k is a kernel
function; then centers K by the following formula

1N 1N 1 NN
k,j=kij—NZ’(“—NZRJ»,—FWZZI(M.
=1 I=1

I=1 m=1

(16)

Now, the N eigenvectors v; of the centered N x Nkernel matrix
can be calculated. It is proved that there is a correspondence
between v;and the eigenvectors of the covariance matrix of the
data transformed into the kernel space o; via

1

o = Xv;. (17)

Finally, the lower dimensional representation Y can be obtained
by projecting the data X onto the kernel space spanned by .,
such that i* =1, 2, ..., d, as follows

N N
Yi= HZa{kﬁ, ...,Zaékﬁ }
j=1 j=1

where aif; represents the jt value of the eigenvector a;.. Note that
Yis a N x dmatrix and d < N is the number of the dimensions to
output.

It is obvious that the size of the kernel matrix is proportional
toN2, the square of the number of observations or instances of the
data set. This is considered as an important weakness of KPCA. In
addition, there are many kernel functions that have been devel-
oped in the literature, such as simple or linear, polynomial, Gaus-
sian, Cauchy, ANOVA, Bayesian, wave, wavelet, Laplacian, and so
on. Most of them require a selection of parameters. The influence
of different kernels chosen for KPCA and various values selected
for the relevant parameters on the final results can be significant.
However, there is no direct way to make an appropriate selection
of the parameters; a large number of experiments are usually per-
formed and tested to identify the best choice. The computational
cost can be increased to certain level accordingly. Therefore, choos-
ing an appropriate kernel function with the best parameter setting
is critical but difficult for the efficiency of a KPCA procedure. The
three most commonly used kernels can be expressed as

Linear Kernel:

K(X;. %)) = X% +C, (18)

where c is a constant.

The linear kernel is the simplest kernel function, which is the
same as standard PCA theoretically.

Polynomial Kernel:

1(X;, 87) = (aX'ix; + c)d, (19)
where « is the slope, ¢ is a constant, and d is the polynomial
degree.

The polynomial kernel is a nonstationary kernel. Such kernels
are well suited for problems where all the training data are
normalized.

Gaussian Kernel:

[1x; — ;]|
K (%;, X5) = exp(—'%‘z’ ,

where o is the bandwidth.

The Gaussian kernel is an example of radial basis function
kernel. The adjustable parameter ¢ plays a major role in the
performance of the Gaussian kernel. The larger the bandwidth, the
more linear the function. That is, if o is overestimated, the ex-
ponential will behave almost linearly and the higher-dimensional
projection will start to lose its nonlinear power; if o is under-
estimated, the Gaussian kernel will lack regularization and the
decision boundary will be highly sensitive to noise afterwards.
Alternatively, it could also be implemented using

K(xi, %)) = exp(—y |1 — ;] *),
where y is the parameter to select.
More details about KPCA can be found in Schélkopf, Smola, and

Miiller (1998), Shawe-Taylor and Christianini (2004), and Turk and
Pentland (1991).

(20)

(21)

4. The ANN classifiers

Artificial Neural Networks (ANNs) were invented to mimic the
human brain by carefully defining and designing the network
architecture, including the number of network layers, the types
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Hidden Layer

Input Layer

Output layer

Class 1

Class k

Fig. 2. A three-layer feed-forward neural network used for classification.

of connections among the network layers, the numbers of the
neurons in each layer, the learning algorithm, the learning rate,
weights between neurons, and the various neuron activation func-
tions. ANNs function like a black box that can output prediction or
classification results based on the input information.

An efficient ANN system usually includes three phases. First, the
weights of the connections among the layers and the neurons are
adjusted over the training data to achieve a reasonably accurate
and reliable prediction or classification result. Second, to avoid
overfitting the data and improve the generalization of the ANN,
validation data are used to determine when the training phase
should stop based on an early-stopping rule. Third, the testing
data can be input to the trained ANN to provide an independent
measure of network performance.

There are numerous types of ANN that have been explored.
They can be categorized according to different aspects, such as the
network architecture, the learning algorithm, and the application
(Amornwattana, Enke, & Dagli, 2007; Bao & Yang, 2008; Bogullu,
Enke, & Dagli, 2002; Chavarnakul & Enke, 2008; Enke, Ratanapan,
& Dagli, 2000; Patel, Shah, Thakkar, & Kotecha, 2015; Rather,
Agarwal, & Sastry, 2015). Among them, the multi-layer feed-
forward ANN model with a backpropagation learning algorithm
is recognized as one of the most popular financial forecasting
tools for its simplicity and efficiency (Vellido, et al., 1999). The
configuration of a three-layer feed-forward neural network that
is used for classification in this research is given in Fig. 2. In the
model, various selected variables, X;toX,, are provided as input
to the network. These input variables are selected as discussed
in Sections 3 and 4. The network outputs represent the chosen
result, which in this study will be the classification of the market
direction as either rising or falling over the next period. Neurons
in the network will contain a specific activation function, and each
neuron will be connected to other neurons in subsequent layers
using a weight. The backpropagation learning process will be used
to update the individual connection weights to achieve the desired
classification accuracy. Further detail of the training, validation,
and testing of the ANN that is used for classification in this study
is provided in Section 5.2.

As mentioned in Section 1, trading strategies guided by classi-
fication models usually generate higher risk-adjusted profits (Enke
& Thawornwong, 2005; Leung et al., 2000). Therefore, this study
will also compare classification-based forecasts through ANNs
against two defined benchmarks. The specific results can be found
in Section 7.

5. Data analysis and model development

5.1. Use PCA, FRPCA, and KPCA to reduce the dimensionality
Background modeling details for the PCA, FRPCA, and KPCA

dimensionality reduction techniques are provided in Sections 3.1,

3.2, and 3.3, respectively. The following sections apply each
previously described technique to the datasets being tested.

5.1.1. Apply PCA to the data

Using PCA, the 60 principal components of the entire data can
be generated. The resulting number of principal components that
can explain almost 100% ( >99.9999%) variation of the data set is
37. More details about the cumulative proportions of variation of
the entire data set that can be explained by a different number of
principal components corresponding to the data set can be found
in Table 1. These principal components are ordered based on their
importance or weights. Each principal component corresponds to
an eigenvalue of the correlation matrix of the data set. The first
principal component listed on the table represents the most influ-
ential principal component that is determined by the eigenvector
corresponding to the largest eigenvalue of the correlation matrix.
This is the same for the subsequent components.

Each principal component is a linear combination of all 60
features. The coefficients or the weights of the 60 features for
each principal component imply the level of their importance or
influence in the data set. The absolute value of the weight that
a feature has will characterize the importance or relevance of
that feature to the principal component. Thus, by checking the
coefficients of the principal components we can tell which features
explain the data better. From Table 1, we observe that the number
of principal components that can explain almost 99% variation of
the data set is 11. Thus, by observing the coefficients of the first
11 principal components for the data set, a number of conclusions
can be drawn. Four groups, including the relative changes in the
exchange rates between USD and four other currencies, the SPY
return for the current and three previous days, the return of the
other seven world major indices, and the return of the eight large
market capitalization companies in S&P 500 are important. The
group of financial and economic indicators are less important,
whereas the other groups, such as the relative difference in per-
centage of the SPY return, exponential moving averages of the
SPY return, T-bill rates, certificate of deposit rates, the term and
default spreads, and the SPY trading volume have the least impact,
and almost zero effect on the first 11 principal components. More
specifically, the USD_CNY, i.e., the relative change in the exchange
rate between US dollar and Chinese Yuan (Renminbi), is the one
feature that plays a much more significant role than the other
features in the first principal component of each case. The first
principal component can actually explain the majority of the varia-
tion for each data set. Table 2 illustrates the coefficients of the first
11 principal components generated from the correlation matrices
of the entire data with the size 2518, where the level of impor-
tance of each group of features is indicated by different numbers
on the leftmost column: 1=least important; 2 =Iless important;
3 =important. The PCA results are obtained with the MATLAB
function pcacov, using the methodology described in Section 3.1.

5.1.2. Apply FRPCA to the data

In Section 3.2, four algorithms regarding FRPCA are introduced
with details. In this paper, the New Nonlinear FRPCA3 algorithm
is applied to the clean and preprocessed data. As with using PCA
for dimensionality reduction, certain numbers of principal compo-
nents are chosen and input to the ANN classifier for forecasting in
Section 5.2.

5.1.3. Apply KPCA to the data

As described in Section 3.3, the polynomial kernel is a nonsta-
tionary kernel and is well suited for normalized data. In this paper,
the polynomial kernel is used in KPCA procedure since the prepro-
cessed data with outlier removal is roughly normal as shown in
Fig. 1. Nonetheless, there is no direct way to choose the relevant
parameter of the polynomial kernel. To save the computational
cost and for the simplicity, we specify « =1, c=1, and d = 0.5 in
expression (19). The same numbers of principal components, as
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Table 1
The results of PCA over the entire data.

PCs  Cumulative proportion ~ PCs  Cumulative proportion

PCs  Cumulative proportion ~ PCs  Cumulative proportion

1 0.930842 1 0.990272
2 0.947948 12 0.991921

3 0.961163 13 0.993275
4 0.9696 14 0.994235
5 0.974644 15 0.995146
6 0.978549 16 0.995968
7 0.981723 17 0.996543
8 0.984181 18 0.997069
9 0.986476 19 0.997575
10 0.988453 20 0.99797

21 0.998352 31 0.999981
22 0.998711 32 0.999987
23 0.999035 33 0.99999
24 0.999233 34 0.999993
25 0.999423 35 0.999996
26 0.999604 36 0.999999
27 0.999742 37 1

28 0.999841 38 1

29 0.999933 39 1

30 0.999962 40 1

in the cases of PCA and FRPCA, are selected and used for the
forecasting of daily return with the ANN classifier in Section 5.2.

5.2. Use ANN to classify the data

The Neural Network toolbox available in MATLAB is used to
develop the artificial neural network that is applied to perform the
classification in this study. A three-layered feedforward ANN struc-
ture was used. The network was trained using a scaled conjugate
gradient backpropagation algorithm. The number of neurons in the
hidden layer was set to 10 based on trial-and-error experience,
and for the purpose of comparison. A tangent sigmoid transfer
function was selected for the hidden layer. There were two nodes
in the output layer representing two classes (UP or DOWN). The
output values are actually the probabilities of each input value
belonging to the two classes. The larger probability is chosen as
the winner. A logistic sigmoid transfer function was used in the
output layer. Different numbers of principal components were
used as inputs for each cluster and the entire data set.

The Mean Squared Error (MSE) and the confusion matrix were
used to evaluate the performance of the ANN classifier. MSE is the
average squared difference between outputs and targets. Lower
values are better. Zero means no error. The confusion matrix
consists of four correctness percentages for training, validation,
testing, and the total data set that were provided as inputs to the
ANN classifier. The percent of correctness indicates the fraction of
samples that are correctly classified. A value of 0 means no correct
classification, whereas 100 indicates maximum correct classifica-
tions. In particular, the Neural Network toolbox in MATLAB func-
tions in the following way. The training data are input to train the
ANN model, and the validation data are input to control the ANN’s
overfitting problem almost simultaneously. That is, as the ANN is
trained using the training data, the MSE obtained from classifying
the validation data with the trained ANN model gets decreased at
first and continues to fall for certain amount of time; the MSE of
the validation will start to increase when the ANN model is having
an overfitting problem, resulting in the need for the training phase
to be terminated. Thus, the ANN model can be trained best in the
sense that the validation phase achieves its lowest MSE with the
trained model. After the ANN is trained and selected, all training
data, validation data, and testing data (untouched) are input to
and classified by the trained model separately. The percentage of
correctly predicted or classified daily directions corresponding to
each category can be obtained and recorded.

This study focuses on predicting the daily direction of SPY for
next day. The direction can be either UP or DOWN. That is, the out-
put or the response (random) variable has a Bernoulli distribution.
In addition, for each selected dimensionality reduction technique,
twelve new data sets can be generated by transforming the original
cleaned and preprocessed data based on the different number of
principal components chosen. In other words, the twelve data sets
are a reflection of the original 60-dimensional data in twelve data

spaces with various dimensions lower than 60. To show the in-
fluence of dimensionality reduction with PCA, FRPCA, and KPCA on
the daily direction classification, ANNs are applied to each of the
thirty-six transformed data sets. The results are listed in Table 3.

6. Results

The performance of the ANN classifier is measured with the
rate or percentage of times correctly predicting the direction
of the SPY for the next day. Table 3 includes four sections. The
leftmost section lists twelve values; each of these values repre-
sents the number of principal components based on which one
of the twelve new data sets with respect to each of the three
dimensionality reduction methods is generated. Moreover, each
of the twelve numbers is selected from Table 1 according to the
cumulative proportion of variation of the entire data that can be
explained by this specific number of principal components. Each
row of the other three sections of Table 3 contains classification
rates measured for each training, validation, testing, and total data
set considered in this study based on PCA, FRPCA, and KPCA. Each
combination of the four rates is chosen from the training results.
The criteria of the selection include: all four classification rates
are among the highest rates in each of the four categories; all four
rates are close to each other as much as possible with the paired
difference less than or around 5%.

The rate or percentage of correctness for the testing phase
is considered the most important measure to determine the
prediction accuracy of the ANNs. In order to make a comparison
regarding the prediction accuracy among the combining proce-
dures of the ANNs and each of the three different dimensionality
reduction techniques, a group of paired t-tests are performed over
the population means of the correctness rates or percentages for
all classification models considered in this study. The P-values are
used as the criteria to draw a conclusion. The hypothesis testing
results are given in Table 4.

Assuming the significance level is 0.05 for any hypothesis test,
we reject the null hypothesis if the P-value is less than 0.05 and
favor the alternative hypothesis if the P-value is greater than
0.05; the smaller the P-value, the more favorable the alternative
hypothesis. Therefore, from Table 4, we can conclude that the
three PCAs do not give significantly different results in average.
However, based on the P-values, it is fair to say that the standard
PCA performs slightly better than FRPCA, and FRPCA performs
slightly better than KPCA in average. This is consistent with the
results demonstrated by Van der Maaten, Postma, and Van den
Herik (2009).

In addition, for each version of PCA involved, the number of
the principal components used as the inputs does not have much
impact on the prediction accuracy for the ANNs. For example,
when standard PCA is considered, even if using only the first prin-
cipal component as the input, the (testing) prediction accuracy for
ANNs is 56.8% compared to the highest percentage 58.1%, which
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Table 2
The allocation of the coefficients of the first 11 PCAs from the entire data with size 2518.

Level Group Factors PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 ﬁr!’CQ PC10 PC11

3 SPY return in current and three previous days SPYt —-0.0019 —0.0402 —0.2349 0.2763 0.0646 0.1976 0.0032 —0.2156 E.; %0.2969 —0.4925 0.6027
SPYt1 —0.0047 0.4022 —0.0010 0.0546 —0.1247 —0.0095 0.0075 —0.0013 7 20.2143 —0.0876 0.0500
SPYt2 —0.0014 0.0096 0.0048 —0.0391 0.6157 —0.0160 —0.0468 05000 - £.0.2365 —0.0956 0.0701
SPYt3 0.0007 —0.0138 0.0052 0.0203 —0.0551 —0.0087 0.9841 0.0792 7 ‘5_ 0.0739 0.0275 —0.0118

1 Relative difference in percentage of SPY return RDP5 0.0000 0.0008 —0.0005 0.0007 0.0010 0.0003 0.0018 0.0008 T=r0.0001 —0.0014 0.0014
RDP10 0.0000 0.0004 —0.0003 0.0003 0.0006 0.0001 0.0009 0.0004 % .0000 —0.0008 0.0006
RDP15 0.0000 0.0003 —0.0002 0.0003 0.0004 0.0001 0.0006 0.0003 l‘_E .0000 —0.0005 0.0005
RDP20 0.0000 0.0002 —0.0002 0.0002 0.0003 0.0001 0.0005 0.0003 0.0000 —0.0004 0.0003

1 Exponential moving averages of SPY return EMA10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EMA20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EMAS50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EMA200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 T-bill rates T1 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 —0.0001 0.0001 0.0001
T3 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 —0.0001 0.0001 0.0001
T6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 —0.0001 0.0001 0.0001
T60 0.0000 0.0000 —0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 —0.0002 0.0001 0.0001
T120 0.0000 0.0000 —0.0001 0.0000 0.0001 0.0000 0.0000 —0.0001 —0.0002 0.0001 0.0001

1 Certificate of deposit rates CD1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 —0.0001 —0.0001 —0.0001 0.0002 0.0000
CD3 0.0000 —0.0001 0.0000 0.0000 0.0000 0.0000 —0.0001 —0.0001 —0.0001 0.0002 0.0000
CD6 0.0000 —0.0001 0.0000 0.0000 0.0000 0.0000 ——0.0001 —0.0001 —0.0001 0.0002 0.0000

2 Financial and economical indicators oil —0.0014 0.0055 —0.0865 0.0417 —0.0172 0.0396 —0.0086 0.0117 —0.0429 0.0615 0.0812
gold —-0.0019 0.0151 —0.2005 -0.1119 ——0.0065 0.0667 0.0069 —0.0256 -0.1725 0.7209 0.6107
CTB3M 0.0014 0.0008 —0.0022 0.0555 0.0136 0.0008 0.0074 —0.0060 —0.0126 —0.0831 0.1065
CTB6M 0.0018 —0.0055 0.0007 0.0854 —0.0040 —0.0109 0.0080 —0.0103 —0.0150 —0.0919 0.1217
CTB1Y 0.0010 —0.0099 0.0042 0.0974 —0.0028 —0.0086 0.0064 —0.0015 —0.0054 —0.0795 0.1075
CTB5Y —0.0002 —0.0054 —0.0077 0.0499 0.0009 0.0030 —0.0060 —0.0031 0.0006 —0.0318 0.0272
CTB10Y —0.0003 —0.0044 —0.0104 0.0473 0.0012 0.0035 —0.0062 —0.0037 0.0009 —0.0306 0.0248
AAA —0.0002 —0.0052 —0.0120 0.0418 —0.0009 0.0017 —0.0059 —0.0049 —0.0043 —0.0252 0.0159
BAA —0.0003 —0.0068 —0.0109 0.0447 —0.0036 0.0054 —0.0136 —0.0056 —0.0031 —0.0263 0.0186

1 The term and default spreads TE1 0.0000 0.0000 0.0000 0.0000 —0.0001 0.0001 0.0000 —0.0001 0.0002 —0.0001 —0.0001
TE2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 —0.0001 —0.0001
TE3 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 —0.0002 —0.0001
TE5 0.0003 —0.0001 0.0012 0.0013 0.0001 0.0022 —0.0011 —0.0030 —0.0011 —0.0007 —0.0003
TE6 0.0001 —0.0004 0.0007 0.0005 —0.0005 0.0012 —0.0015 —0.0016 0.0000 0.0007 —0.0008
DE1 0.0000 —0.0001 0.0002 —0.0003 —0.0003 0.0002 —0.0002 —0.0001 0.0005 0.0001 —0.0006
DE2 0.0000 —0.0001 0.0002 —0.0003 —0.0003 0.0002 —0.0002 —0.0001 0.0005 0.0001 —0.0006
DE4 0.0000 0.0000 0.0000 —0.0001 0.0000 0.0000 0.0000 0.0000 0.0002 —0.0001 —0.0001
DE5 0.0000 0.0000 0.0000 —0.0001 —0.0001 0.0000 0.0000 0.0000 0.0002 —-0.0001 —0.0001
DE6 0.0000 0.0000 0.0000 —0.0001 —0.0001 0.0001 0.0000 0.0000 0.0002 —0.0001 —0.0001
DE7 —0.0002 —0.0007 0.0003 —0.0010 —0.0008 0.0005 —0.0016 —0.0007 0.0002 0.0023 —0.0021

3 Exchange rate between USD and four other currencies UsD_Y 0.0013 —0.1147 0.0669 0.8829 0.0444 —0.3448 —0.0196 0.0323 —0.0938 0.2267 —0.0731
USD_GBP 0.0027 —0.0441 0.6888 0.1819 0.0071 0.6861 0.0037 0.0213 —0.0762 0.0855 0.0669
USD_CAD —0.0002 —0.0016 0.6439 -0.2181 —0.0208 —0.6016 —0.0048 -0.1016 0.0885 —0.0858 0.3690
USD_CNY 0.9999 0.0117 —0.0024 —0.0003 0.0016 —0.0010 —0.0005 0.0005 0.0005 0.0001 0.0022

3 The return of the other seven world major indices HSI —-0.0021 0.0827 —0.0070 —0.0131 03530 —0.0308 0.0866 0.2539 —0.0986 -0.1207 0.0871
SSE Composite —0.0008 0.0282 —0.0051 —0.0186 0.1616 —0.0191 0.0723 0.1428 —-0.0973 -0.1113 0.1487
FCHI —0.0029 0.2522 0.0253 0.0114 0.2961 0.0033 0.0140 —0.2532 0.1875 0.1137 —0.0767
FTSE —0.0036 0.3070 0.0334 0.0187 0.3919 0.0153 0.0162 —0.3262 0.2417 0.1489 -0.1197
GDAXI —0.0033 0.2562 0.0199 0.0214 0.2888 0.0054 0.0422 —0.2443 0.1863 0.1238 -0.0762
DJI —0.0043 0.4239 0.0064 0.0624 —0.1451 —0.0045 0.0211 0.0406 -0.1777 —0.0700 0.0352
IXIC —0.0032 0.3070 —0.0031 0.0483 —0.0858 —0.0170 0.0086 -0.0122 —0.2347 -0.0671 0.0417

1 SPY trading volume \% 0.0000 —0.0002 0.0015 —0.0024 0.0011 —0.0016 0.0001 0.0015 —0.0007 0.0016 —0.0057

3 The return of the eight big companies in S&P 500 AAPL —0.0010 0.1002 —0.0082 0.0134 —0.0383 —0.0125 0.0085 0.0155 —0.1364 —0.0233 0.0090
MSFT —0.0023 0.2092 0.0023 0.0310 —0.0886 -0.0114 —0.0027 —0.0081 -0.1133 -0.0314 0.0306
XOM —0.0044 0.2196 0.0053 0.0192 —0.0972 —0.0027 0.0083 0.0069 —0.1035 —0.0368 —0.0091
GE —0.0027 0.2210 —0.0002 0.0295 -0.0714 0.0175 0.0055 0.0178 —0.0931 —0.0637 0.0015
INJ —0.0039 0.3129 0.0261 0.0684 —0.2218 0.0095 —0.1121 0.6026 0.6577 0.1486 0.0502
WEFC —0.0011 0.1722 0.0079 0.0224 -0.1032 0.0101 0.0024 —0.0504 —0.1042 —0.0649 0.0050
AMZN —0.0012 0.1034 0.0016 0.0130 —0.0330 0.0006 —0.0023 0.0106 —0.0955 —0.0218 0.0396
JPM —0.0013 0.1624 0.0009 0.0228 —0.0811 —0.0052 0.0025 —0.0329 -0.1119 —0.0703 0.0065
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Table 3

The ANN classification results of the 36 transformed data sets based on three PCAs.
PCs  PCA FPCA KPCA

Training  Validation = Testing  Total  Training  Validation  Testing  Total  Training  Validation  Testing  Total

1 54.8 53.6 56.8 54.9 54.8 533 57 54.9 55.3 533 57 55.2
3 55.2 53.3 57.3 55.2 55.2 53.8 56.8 55.2 55.8 53.6 57 55.6
6 54.9 53.6 57.3 55 57.1 53.6 57 56.6 55.6 533 57 55.5
10 56.4 54.6 57.3 56.3 57.1 56.5 56.8 57 56.7 54.6 58.1 56.6
15 56.3 533 57.6 56 55.3 55.4 57.8 55.7 56 549 57.6 56
22 55.2 54.6 58.1 55.5 56.2 54.9 57.8 56.2 56.6 56 57.8 56.7
26 55.1 53.1 58.1 55.2 56.8 56.5 58.6 57 55.4 54.1 57.8 55.6
31 57.5 57.3 58.1 57.5 56.2 54.4 59.2 56.4 55.7 541 57.3 55.7
34 56.2 56 57.3 56.4 56 53.8 58.1 56 55.5 54.4 56.8 55.5
37 55 54.4 57 55.2 56.3 54.1 57.8 56.2 55.7 53.1 57.3 57.6
40 56.2 56.2 56.2 56.2 56 541 57.8 56 55.8 59.2 57.6 56.6
60 57.5 541 58.1 57.1 56.5 54.4 57.3 56.3 57.4 54.9 58.4 57.1

Table 4

The paired t-test results used for the comparison of dif-
ferent classification models with respect to the PCAs.

Null hypothesis  Alternative hypothesis ~ P-value
Mpca = [LFRPCA Mpca # JLFRPCA 0.2989
Ipca = JLKPCA IApcA # JAKPCA 0.8163
JLERPCA = JLKPCA JLFRPCA 7 JLKPCA 0.4727
Hpca = JLFRPCA Mpca > JLFRPCA 0.8505
Mpca = [kpca Mpca > [kpca 0.5918
JLERPCA = JLKPCA JLFRPCA > JAKPCA 0.2363

can be achieved in much higher dimensional data spaces. This
phenomenon may be interpreted by considering Table 1. From
Column 2 of Table 1 we see that the first (and the largest) prin-
cipal component of the entire cleaned data set can explain 93.08%
variation of the data, such that there is not much space left for
improvement for the remaining 59 smaller principal components.

7. Trading simulation

After using the ANNs to predict the daily SPY direction, it
is natural to carry out a trading simulation to see if the higher
predictability implies higher profitability. Given that this research
study is based on predicting the direction of S&P 500 ETF (SPY)
daily returns, we modified the trading strategy for classification
models defined by Enke and Thawornwong (2005) as follows:

If UPe, 1 = 1, fully invest in stocks or maintain, and receive the
actual stock return for the day t+1 (i.e., SPYy,q ); if UP 1 = O,
fully invest in one-month T-bills or maintain, and receive the
actual one-month T-bill return for the day t+ 1 (i.e.,, T1H¢,q ).

Here UP is the direction of the SPY daily return as predicted by
the models described in this paper. The actual one-month T-bill
return for the day t + 1 is:

discount rate term
MHe = =56 * 360 days
_ T1q 28 days Ty . l (22)
100 ~ 360 days ~ 100 ~ 90’

where T1.,; is the one-month T-bill discount rate (or risk-free
rate) in percentage on the secondary market for business day t + 1.

Specifically, at the beginning of each trading day, the investor
decides to buy the SPY portfolio or the one-month T-bill according
to the forecasted direction of the SPY daily return. For simplicity, it
is assumed in this paper that the money invested in either a stock
portfolio or T-bills is illiquid and detained in each asset during
the entire trading day. Dividends and transaction costs are also

not considered. Moreover, both leveraging and short selling when
investing are forbidden. The two benchmarks used to measure
how well the models can perform include investing in a stock
portfolio (i.e., buy-and-hold) and purchasing a one-month T-bill at
the start of the testing period, and closing the trading at the end
of the testing period. The trading simulation is done for all the
classification models over each testing period, including 376 sam-
ples (excluding the first day of the 377-day testing period because
of the lack of direction prediction for that day) of the thirty-six
transformed data sets corresponding to the number of principal
components involved. The resulting mean, standard deviation or
volatility, and Sharpe ratio of the daily returns on investment
generated from each forecasting model over each testing data are
then calculated. The results are presented in Table 5. In addition
to the trading simulation results of the three models for each of
the twelve principals components, the 376-day return for both the
buy-and-hold and T-bill benchmarks are provided for comparison.

As shown in Table 5, the return from the buy-and-hold
benchmark is much higher than one-month T-bill benchmark. By
multiplying the mean of the daily return column by 376 and then
comparing with the two benchmarks, this comparison indicates
that: for all thirty-six transformed data sets, the trading strategies
based on the classification models generate higher returns than
the one-month T-bill benchmark; the trading strategies based
on the ANNs combining PCA generate higher returns than the
buy-and-hold benchmark except for three data sets (PCs=3, 22,
and 31) where the returns are slightly less than the buy-and-hold
benchmark; the returns from the trading strategies based on the
ANNs combining FRPCA generate higher returns than the buy-and-
hold benchmark except for four data sets (PCs =1, 3, 10, and 60);
and the returns from the trading strategies based on the ANNs
combining KPCA generate higher returns than the buy-and-hold
benchmark except for six data sets (PCs=1, 3, 6, 26, 31, and 34).
Six paired t-tests are carried out to make a comparison of the
mean of daily return from three different model combinations.
The results are given in Table 6.

Since all the P-values are greater than 0.05, there is no sig-
nificant difference among the mean of daily returns generated by
the models involving PCA, FRPCA, and KPCA given the thirty-six
transformed natural data sets. However, with more careful obser-
vation of the P-values listed in Table 6, it seems that on average
PCA performs slightly better than FRPCA and KPCA, while FRPCA
performs slightly better than KPCA.

The Sharpe ratio is calculated by dividing the mean daily
return by the standard deviation of the daily returns. The higher
the Sharpe ratio, the higher the return and the lower the standard
deviation or volatility, the better the trading strategy. Therefore,
another six paired t-tests over the Sharpe ratio are performed to
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Table 5

Trading simulation results.

X. Zhong, D. Enke/Expert Systems With Applications 67 (2017) 126-139

Benchmarks

376-Day return

Buy-and-hold  3.08E-01

T-bill 3.89E-04
PCs Models Mean of daily return Std. of daily return Sharpe ratio PCs Models Mean of daily return Std. of daily return Sharpe ratio
1 PCA 8.40E-04 0.0079 0.1011 26 PCA 8.24E-04 0.0077 0.1069
FRPCA 7.93E-04 0.0079 0.1006 FRPCA  8.81E-04 0.0077 0.1149
KPCA 7.93E-04 0.0079 0.1006 KPCA 7.52E-04 0.0075 0.1008
3 PCA 7.97E-04 0.0079 0.1012 31  PCA 8.02E-04 0.0077 0.1036
FRPCA 7.88E-04 0.0079 0.1 FRPCA  8.56E-04 0.0078 0.1097
KPCA 7.93E-04 0.0079 0.1006 KPCA 7.95E-04 0.0078 0.1019
6 PCA 8.47E-04 0.0078 0.1086 34 PCA 8.61E-04 0.007 0.1235
FRPCA 9.75E-04 0.0069 0.141 FRPCA  9.00E-04 0.0077 0.1173
KPCA 7.93E-04 0.0079 0.1006 KPCA 7.83E-04 0.0079 0.0994
10 PCA 8.37E-04 0.0077 0.1084 37 PCA 8.41E-04 0.0074 0.1134
FRPCA 8.00E-04 0.0073 0.1099 FRPCA  8.89E-04 0.0077 0.1152
KPCA 9.04E-04 0.0077 0.118 KPCA 8.27E-04 0.0078 0.1055
15 PCA 8.21E-04 0.0079 0.1045 40 PCA 9.61E-04 0.0071 0.1357
FRPCA 8.53E-04 0.0077 0.1111 FRPCA  8.97E-04 0.0078 0.1157
KPCA 8.78E-04 0.0073 0.1196 KPCA 0.001 0.007 0.1478
22 PCA 8.07E-04 0.0076 0.1067 60 PCA 9.21E-04 0.0073 0.1264
FRPCA 9.59E-04 0.0076 0.1269 FRPCA  8.00E-04 0.0079 0.1016
KPCA 8.63E-04 0.0077 0.1122 KPCA 8.88E-04 0.0077 0.1177
Table 6 define the test as

The paired t-test results used for the comparison of dif-
ferent models with respect to mean of daily return.

Null hypothesis  Alternative hypothesis ~ P-value

Mpca = [LFRPCA Mpca # ILFRPCA 0.4139
IpcA = JLKPCA JApcA # JLKPCA 0.6256
JLERPCA = JLKPCA JLFRPCA 7 JAKPCA 0.3538
HMpca = ILFRPCA JApcA > JLFRPCA 0.7931
Mpca = [kpca Mpca > [kpca 0.3128
[AFRPCA = HKPCA MERPCA > LKPCA 0.1769

Table 7
The paired t-test results used for the comparison of dif-
ferent classification models with respect to Sharpe ratio.

Null hypothesis  Alternative hypothesis ~ P-value
Ipca = [LFRPCA JApca # ILERPCA 0.6633
Mpca = LKPCA ILpca # JLKPCA 0.6924
JLFRPCA = JAKPCA JLFRPCA 7 JLKPCA 0.5561
Ipca = LFRPCA JLpca > JLERPCA 0.6684
Mpca = LKPCA ILpca > JAKPCA 0.3462
JLFRPCA = JLKPCA JLFRPCA > JLKPCA 0.2781

compare the three dimensionality reduction technique-relevant
forecasting models. The results are listed in Table 7.

The same pattern of P-values can be detected from Table 7 as
Table 6. Thus, there is no significant difference among the trading
strategies generated from three different model combinations,
although it seems that PCA-relevant strategies perform insignif-
icantly better than the other two, and FRPCA-relevant strategies
perform a bit better than the KPCA case. This is consistent with
the conclusion drawn from Table 6. That is, among the three
dimensionality reduction methods, the classification model that
is based on PCA gives slightly better trading strategy performance
with respect to mean of daily return and Sharpe ratio over the
thirty-six transformed data sets.

In order to make a statistically meaningful comparison between
the returns from the ANN-PCA-based trading strategies and the
return from the buy-and-hold benchmark, a t-test is conducted
at the significance level of 0.05. Dividing the 376-day return from
buy-and-hold benchmark by 376 gives 0.000 819. Therefore, we

HO . MANN = 0.000 819;
Hq @ ftann > 0.000 819.

Under Hy, the value of the t-test statisticTis Rany—0.000 819
sann/V12

where X,yy is the sample average of the ANN mean daily returns
from the twelve testing data sets or testing periods and sayy is the
sample standard deviation of the twelve mean daily returns, which
equals 1.9586. Then, the P-value = P(T > 1.9586), where T ~ ty
given Hy is true. Using the t-table or online distribution calculator,
the P-value=0.038. Since the P-value is smaller than 0.05, we
reject the null hypothesis and conclude that the ANN-PCA-based
trading strategies generate significantly higher (mean) daily return
than the benchmark buy-and-hold passive trading strategy.

8. Conclusion

For this research a comprehensive and efficient daily direction
of the stock market return forecasting process is presented. The
process starts with data cleaning and data preprocessing, and con-
cludes with an analysis of forecasting and simulation results. Often,
researchers look to apply the simplest set of algorithms to the least
amount of data with both the most accurate forecasting results and
the highest risk-adjusted profits. To achieve this goal, three dimen-
sionality reduction techniques, including PCA, FRPCA, and KPCA are
introduced and applied to the natural data set involving 60 finan-
cial and economic features before the ANN classification procedure.

In summary, the mining process using the ANN-PCA models
gives slightly higher prediction accuracy for the daily direction of
SPY for next day compared to the mining process involving FRPCA
and KPCA. Moreover, the trading strategies based on the ANN-PCA
models gain significantly higher risk-adjusted profits than the
comparison benchmarks, and slightly higher than those strate-
gies guided by the forecasts based on FRPCA and KPCA-relevant
models. All classification models-based trading strategies generate
higher returns than the benchmark one-month T-bill strategy. As
developed, tested, and discussed, analysis has shown that data
collection and preprocessing is critical and can help improve the
performance of many techniques, such as PCA and ANN, while
decreasing the complexity of the mining procedure and achieving
reasonable accuracy and high risk-adjusted profits.
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In this study, a natural data set is collected and analyzed. The
ANN classifiers combing PCA are recognized as the simplest, but
relatively more accurate procedure. The trading strategies based
on this procedure generate slightly higher risk-adjusted profits
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than the ones based on combing the ANNs with either FRPCA

Appendix

or KPCA. Nonetheless, the selection of a proper kernel function
is important for the performance of KPCA. In the future, a more
delicate selection of the kernel functions and the relevant kernel
parameters are suggested.
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Table A1
The 60 financial and economic features of the raw data.
Group Name Description Source/Calculation
Date_SPY trading dates considered finance.yahoo.com
Close_SPY closing prices of SPY on the trading days finance.yahoo.com
SPY return in current and SPYt The return of the SPDR S&P 500 ETF (SPY) in day t. finance.yahoo.com | (p(t) - p(t-1))/p(t-1)
three previous days

SPYt1 The return of the SPY in day t-1. finance.yahoo.com [ (p(t-1) - p(t-2))/p(t-2)

SPYt2 The return of the SPY in day t-2. finance.yahoo.com [ (p(t-2) - p(t-3))/p(t-3)

SPYt3 The return of the SPY in day t-3. finance.yahoo.com [ (p(t-3) - p(t-4))/p(t-4)

Relative difference in RDP5 The 5-day relative difference in percentage of the SPY. (p(t) - p(t-5))/p(t-5) * 100
percentage of the SPY
return

RDP10 The 10-day relative difference in percentage of the SPY. (p(t) - p(t-10))/p(t-10) * 100

RDP15 The 15-day relative difference in percentage of the SPY. (p(t) - p(t-15))/p(t-15) * 100

RDP20 The 20-day relative difference in percentage of the (p(t) - p(t-20))/p(t-20) * 100

SPY.
Exponential moving averages EMA10 The 10-day exponential moving average of the SPY. p(t)%(2/(104+1))+EMAT10 (t-1) %(1-2/(10+1))
of the SPY return

EMA20 The 20-day exponential moving average of the SPY. p(t)%(2/(20+1))+EMA20 (t-1) %(1-2/(20+1))

EMAS50 The 50-day exponential moving average of the SPY. p(t)x(2/(50+1))+EMAS50 (t-1) %(1-2/(50+1))

EMA200 The 200-day exponential moving average of the SPY. p(t)%(2/(200+1))+EMA200 (t-1) %(1-2/(200+1))

T-bill rates (day t) T1 1-month T-bill rate (in percentage), secondary market, H. 15 Release - Federal Reserve Board of Governors (https:
business days, discount basis. |[research.stlouisfed.org/fred2/series/DGS5/downloaddata)

T3 3-month T-bill rate, secondary market, business days, H. 15 Release - Federal Reserve Board of Governors (https:

discount basis. |[research.stlouisfed.org/fred2/series/DGS5/downloaddata)

T6 6-month T-bill rate, secondary market, business days, H. 15 Release - Federal Reserve Board of Governors (https:

discount basis. [[research.stlouisfed.org/fred2/series/DGS5/downloaddata)

T60 5-year T-bill constant maturity rate, secondary market, H. 15 Release - Federal Reserve Board of Governors (https:

business days. |[research.stlouisfed.org/fred2/series/DGS5/downloaddata)

T120 10-year T-bill constant maturity rate, secondary H. 15 Release - Federal Reserve Board of Governors

market, business days. (https://research.stlouisfed.org/fred2/series/DGS10?catbc=
1&utm_expid=19978471-Srcl7QpGidAURO4vg_Q.
1&utm_referrer=https%3A%2F%2Fresearch.stlouisfed.org%
2Ffred2%2Frelease%3Frid%3D18)
Certificate of deposit rates CD1 Average rate on 1-month neogtiable certificates of H. 15 Release - Federal Reserve Board of Governors
(day t) deposit (secondary market), quoted on an
investment basis.

CD3 Average rate on 3-month neogtiable certificates of H. 15 Release - Federal Reserve Board of Governors

deposit (secondary market), quoted on an
investment basis.
CD6 Average rate on 6-month neogtiable certificates of H. 15 Release - Federal Reserve Board of Governors
deposit (secondary market), quoted on an
investment basis.
Financial and economical Oil Relative change in the price of the crude oil (Cushing, Energy Inormation Administration,
indicators (day t) OK WTI Spot Price FOB (dollars per barrel)). http://tonto.eia.doe.gov/dnav/pet/hist/rwtcd.htm (work on
cleaning the price column first using the SPY dates as
control, then calculate the relative change)

Gold Relative change in the gold price usagold.com (use Firefox to Select All, then copy and paste to
an Excel file) (the dates used by USAGOLD are not matching
with the SPY prices from yahoo.finance. For example, after
06/09/2004. We still clean/estimate/delete the gold prices
based on the dates of SPY prices from finance.yahoo.com.
Use the same procedure in the whole data set: Take the
average of the two closest data with the missing one in the
middle. Then delete the mismatching one, and calculate the
relatvie difference as before. Another example, the data in
2011, all Friday’s prices were recorded as Sunday’s prices, so
we estimated Friday’s prices with the average of Thursday
and Sunday’s prices. Then deleted Sunday’s prices. If there
are n continuous values missing, then take the average of
the n available values on each side of these n missing values,
use the average for all n missing values)

CTB3M Change in the market yield on US Treasury securities H. 15 Release - Federal Reserve Board of Governors

at 3-month constant maturity, quoted on investment
basis.

(continued on next page)


http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com
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http://finance.yahoo.com
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Source/Calculation

Change in the market yield on US Treasury securities
at 6-month constant maturity, quoted on investment

Change in the market yield on US Treasury securities
at 1-year constant maturity, quoted on investment

Change in the market yield on US Treasury securities
at 5-year constant maturity, quoted on investment

Change in the market yield on US Treasury securities
at 10-year constant maturity, quoted on investment

Change in the Moody’s yield on seasoned corporate

Group Name Description

CTB6M

basis.
CTB1Y

basis.
CTB5Y

basis.
CTB10Y

basis.
AAA

bonds - all industries, Aaa.
BAA

The term and default spreads TE1

Change in the Moody’s yield on seasoned corporate
bonds - all industries, Baa.

Term spread between T120 and T1.

TE2 Term spread between T120 and T3.
TE3 Term spread between T120 and T6.
TE5 Term spread between T3 and T1.

TE6 Term spread between T6 and T1.

DE1 Default spread between BAA and AAA.
DE2 Default spread between BAA and T120.
DE4 Default spread between BAA and T6.
DE5 Default spread between BAA and T3.
DE6 Default spread between BAA and T1.
DE7 Default spread between CD6 and T6.

Exchange rate between USD USD_Y
and four other currencies

Relative change in the exchange rate between US
dollar and Japanese yen.

(day t)
USD_GBP Relative change in the exchange rate between US
dollar and British pound.
USD_CAD Relative change in the exchange rate between US
dollar and Canadian dollar.
USD_CNY Relative change in the exchange rate between US

The return of the other seven HSI
world major indices (day t)
SSE Composite

dollar and Chinese Yuan (Renminbi).

Hang Seng index return.

Shang Hai Stock Exchange Composite index return.

FCHI CAC 40 index return.
FTSE FTSE 100 index return.
GDAXI DAX index return.
DJI Dow Jones Industrial Average index return.
IXIC NASDAQ Composite index return.
SPY trading volume (day t) \% Relative change in the trading volume of S&P 500
index (SPY)
The return of the eight big AAPL Apple Inc stock return.
companies in S&P 500 (day
t)
MSFT Microsoft stock return.
XOM Exxon Mobil stock return.
GE General Electric stock return.
JNJ Johnson and Johnson stock return.
WEFC Wells Fargo stock return.
AMZN Amazon.com Inc stock return.
JPM JPMorgan Chase & Co stock return.

H. 15 Release - Federal Reserve Board of Governors

H. 15 Release - Federal Reserve Board of Governors

H. 15 Release - Federal Reserve Board of Governors

H. 15 Release - Federal Reserve Board of Governors

H. 15 Release - Federal Reserve Board of Governors

H. 15 Release - Federal Reserve Board of Governors

TE1=T120 - T1
TE2=T120 - T3
TE3=T120 - T6
TE5=T3 - T1
TE6=T6 - T1
DE1=BAA - AAA
DE2=BAA - T120
DE4=BAA - T6
DE5=BAA - T3
DE6=BAA - T1
DE7=CD6 - T6

http://www.investing.com/currencies/usd-jpy- historical-data

http://www.investing.com/currencies/gbp-usd- historical-data
(then, take the opposites to the changes)
http://www.investing.com/currencies/usd- cad- historical-data

http://www.investing.com/currencies/usd-cny- historical-data

finance.yahoo.com

finance.yahoo.com
finance.yahoo.com
finance.yahoo.com
finance.yahoo.com
finance.yahoo.com (no download function for this one);
measuringworth.com/datasets/DJA/result.php
finance.yahoo.com

finance.yahoo.com

finance.yahoo.com

finance.yahoo.com
finance.yahoo.com
finance.yahoo.com
finance.yahoo.com
finance.yahoo.com
finance.yahoo.com
finance.yahoo.com
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